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Poor regeneration of functional dopaminergic neurons (DA) is one of the most common healthcare challenges for 
Parkinson’s Disease (PD) patients. In contrast to mammals, zebrafish has an amazing potential to repair their dopaminergic 
neurons (DA) after injury. However, the molecular mechanisms that regulate these reparative events remain to be 
determined. To address this, we compared the temporal changes in key transcription factors (TFs), which regulate the 
developmental trajectories of DA neurons during injury and regeneration in zebrafish. MPP+ was exposed to zebrafish 
embryos between 18 Hpf and 96 Hpf to create a model of DA injury and regeneration after injury (1day, 2days, 3 days, 4 
days, 5 days, 6 days, 7 days and 87 days post DA injury). During time series of MPP+ exposure, we found temporal 
alterations in the expression patterns of TFs; Nurr1, Foxa1, Lmx1a/b and En1/2 using WISH and RT-PCR. This turning 
point in expression dynamics coincided with a DA phenotypic turning point, as shown by 50% decline in TH+/DAT+ 
neurons and locomotor activity in the days following the MPP+ exposure. Using this model, we demonstrate for the first time 
that zebrafish are capable of regenerating a functional DA phenotype after 50% DA ablation. Following acute DA injury, 
mRNA levels of most TFs started to increase between 3-8 days after injury which was significantly elevated to normal 
levels in adult zebrafish brain i.e. at 87th day after injury. Remarkably, the changes in mRNA expression of TFs temporally 
correlate with corresponding increase in TH/DAT expression and functional recovery. Taken together, this study showed a 
highly relevant role of TFs for dopamine producing neurons during regeneration of DA neurons following ablation with 
restoration of normal behavior. This study implies that TFs as potential therapeutic targets for enhancing regeneration of DA 
neurons in mammalsobserved over.  
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Dopaminergic (DA) neurons regulate a diverse set of 
behavior’s, from the control of movement to 
modulation of cognition, and are susceptible to 
degeneration in Parkinson's disease (PD)1. The 
substantial (i.e., >70%) loss of DA neurons in 
substantianigra causes long term functional deficiency2 
which is devastating because lost neurons are not 
replaced in the adult mammalian central nervous 
system (CNS)3. In contrast, zebrafish has impressively 
higher capacity for neurogenesis and CNS regeneration 
after spinal cord transection, tail amputation or 
lesioning DA neurons4. In adult vertebrates’ lifelong 
neurogenesis relies on neural stem cells (NSCs) 
producing proliferation zone that generates neural 
progenitor cells (NPCs) with diverse fates. 
Proliferation zones in the adult zebrafish brain are 

located in 16 different zones unlike mammals, which 
have two main proliferation zones—the sub granular 
and sub ventricular zones5. The NPCs proliferate and 
migration to injury site in order to integrate the new 
neurons into existing neural circuits resulting in 
remodeling the brain in regenerative manner6. However, 
the regeneration efficiency of neurons in the injured 
mammalian brain is extremely low. Besides studies have 
reported an activation of immune responses following 
ablation of DA neurons using 6-hydroxydopamine  
(6-OHDA) is necessary for regenerative proliferation 
of ependymo-radial glia progenitor cells (ERGs) and 
neurogenesis in the adult zebrafish telencephalon7. 
Interestingly, a recent study points that DA neurons 
regenerate following chemogenetic ablation in the 
olfactory bulb of adult Zebrafish (Danio rerio)8. While, 
the molecular mechanisms relevant for DA 
regeneration in zebrafish is less explored. 

One approach to promote recovery would be to 
induce or enhance DA neurogenesis9. Several signaling 
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molecules and transcriptional cascades are known to 
influence neurogenesis in the developing DAergic 
system of zebrafish and other vertebrates10. 
Specifically, TFs such as Otx2, Nurr1, Lmx1a and 
Lmx1b (Lmx1a/b), Foxa1 and Foxa2 (Foxa1/2), 
Engrailed 1 and Engrailed 2 (En1/2), act co-operatively 
for the development, survival and physiology of DA 
ergic system11. For instance, during early development, 
Foxa subfamily of forkhead/winged helix transcription 
factors, Foxa1/2 are required, in a gene dosage-
dependent manner, for specification of mDA 
progenitor identity12. Loss-of-function studies revealed 
that Foxa1/2 are also vital for maturation of mDA 
neurons by regulating Lmx1a/b, Nurr1 and En1 in 
immature mDA neurons. During early and late 
differentiation of mature mDA neurons, Foxa1/2 
regulate the binding of Nurr1 to Tyrosine Hydroxylase 
(TH) and dopamine transporter (DAT) transcriptional 
regulatory sequences of the gene leading significant 
expression of TH and DAT in embryonic and adult DA 
neurons. Some of these transcription factors continue to 
be expressed in the adult CNS, might be to mediate the 
preservation of the dopaminergic phenotype and 
survival of DA neurons in the adult brain13. Loss of 
function and morpholino-knock down studies of these 
TFs, demonstrated that establishment of proper 
patterning and projections of DA neurons during 
development is pivotal for emergence of a precisely 
functioning locomotor system14. 

Signals that resemble the developmental programs 
by which the DA neurons were originally specified 
and organized may be redeployed during regeneration 
after injury. For example, Wnt/β-catenin signaling 
promotes regeneration after adult zebrafish spinal 
injury15. Furthermore, recruitment of developmental 
signaling such as hedgehog signaling promotes motor 
neuron regeneration in adult zebrafish16. However, it 
is not known whether TFs associated with 
developmental trajectories of DA are required for 
regeneration of DA neurons post injury. 

Interestingly, the developmental period of 
dopaminergic system in zebrafish (18–96 Hpf) (Hours 
post-fertilization) is homologous to those in humans17. 
The earliest differentiation of DA neurons from 
progenitors occurs approximately at 18 Hpf and by 96 
Hpf, the full complement of DA system is present in 
zebrafish18. While DA neurons are conspicuously 
absent from the ventral midbrain, the ventral forebrain 
DA neurons ascending to the striatum where ventral 
midbrain DA neurons in mammals project are likely 

the functional counterpart of the mammalian midbrain 
DA neurons19. Previously studies have shown that, a 
neurotoxin 1-methyl-4-phenyl pyridinium (MPP+) 

selective for diencephalic population 5,6,11 induced a 
transient functional deficit and motility disorder in 
zebrafish larvae20.  

Here we profiled TFs (Nurr1, Lmx1b Foxa1/2 and 
En1/2), their targets (TH/DAT) and locomotor 
activity during early stages of zebrafish differentiation 
of progenitors to DA neurons (18 Hpf, 24 Hpf, 48 Hpf 
and 96 Hpf) in the presence of MPP+ (1 mM). Our 
study showed a time dependent modulation of TFs 
that correlated with the appearance of 50% loss of DA 
neurons and motor impairments by 96 Hpf. This 
treatment paradigm mimics PD pathology without the 
need to wait for several months to generate age-old 
treated disease. These findings inspired us to focus on 
the participation of TFs in the specific process of DA 
recovery response. RT-PCR was performed to 
measure the gene expression changes after 1 day, 2 
days, 3 days, 4 days, 5 days, 6 days, 7 days and 87 
days post DA injury. Differently, a time dependent 
restoration of expression of TFs, allowing functional 
recovery at 87 days (i.e., 3 months old adult 
zebrafish) was observed. 

Transcription factors identified are likely to be 
critical in inducing neurogenesis in the damaged brain 
and further investigations warranted to establish 
regenerative strategies to enhance or induce 
endogenous repair of human DA neurons. 
 
Methods 
 

Vertebrate animals and collection of eggs 
Wild AB type adult Zebrafish (<8 month old) were 

reared and kept at aquatic research laboratory at 
Sathyabama Institute of Science and Technology 
under standard laboratory conditions of temperature 
28±0.5C, pH 7.2±0.2 on a 14:10 Dark/light 
photoperiod according to the standard breeding 
protocols21. Collected eggs were stored in embryo 
medium (EM) and fertilized embryos were staged 
under stereo microscope (ZEISS) according to the 
description of Sharmili S et al. 201522. 

Embryos showing proper and sequential 
development when they reached 18 Hpf were used 
and randomly classified into four groups: control 
group (Group 1; n=10), MPP+ lesioned group (Group 
2; n=10), 1 day-1 week post- DA injury group (Group 
3, n=10),) and 3 months post-DA injury group (Group 
4, n=10).  
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Treatment paradigm for DA neuron injury and regeneration 
To determine the optimum point at which DA 

neurons degenerate and induce functional 
impairments in response to MPP+ toxicity, briefly 
zebrafish embryos were maintained in EM containing 
1 mM MPP+ between 18 Hpf to 96 Hpf. At 96 Hpf, 
significantly ablated larvae were removed from MPP+ 

and allowed to recover in EM. Severely ablated larvae 
were selected based upon disruption of TH+/DAT+ 
neurons in zebrafish brain and motor impairments. 
The evidence of regeneration/neurogenesis/functional 
recovery was documented for 1 week every 24 h or  
87 days post injury. For the control group same 
volume of EM only was added. The solution of each 
group was disposed of daily and replaced with fresh 
EM. Exposures were carried out as three independent 
experiments and results were combined. MPP+ 
exposure was performed as described by23 with slight 
modifications and disposal according to current safety 
protocols21. 
 
Whole mount in situ hybridization (WISH) 

Whole mount in situ hybridization was performed 
as previously described24. Briefly, the embryos were 
fixed in 4% paraformaldehyde and then digested with 
proteinase K. Subsequently, the embryos were 
prehybridized for 5 hr in hybridization solution (50% 
Deionized formamide, 5% SSC, 0.1% Tween 20, 
50µg mL−1 of heparin, 500 µg mL−1 of RNase-free 
tRNA and 1 M Citric acid) and then incubated 
overnight at 70C in hybridization solution containing 
50 ng digoxigenin-labeled probes. Probe detection 
was performed with alkaline phosphatase-coupled 
anti-Digoxigenin antibody (Roche) and nitroblue 
tetrazolium salt/5-bromo-4-chloro-3-indolyl phosphate 
substrate (NBT/BCIP, Sigma). The NBT/BCIP-
stained embryos were mounted on microscope slide 
and captured using a Zeiss microscope equipped with 
a digital camera. The following digoxigenin labeled 
antisense probes were used: Nurr1; Foxa1; En-1a; 
Lmx1a; Tyrosine hydroxylase (TH) and dopamine 
transporter (DAT). These probes were synthesized 
using the Roche Digoxigenin (DIG) labeled Kit 
(Catalogue number: 1175025) according to the  
kit manufacture protocol while TH and DAT DIG 
labeled probes were procured from IDT Technologies 
(Suppl. Table 1). 
 
RNA isolation and Real Time PCR 

Total RNA was extracted using TRIZOL 
(Invitrogen) reagent according to the standard 

procedures. One microgram of RNA was converted 
into the complementary DNA (cDNA) by using high 
capacity cDNA synthesis kit from Applied Biosystem. 
The fluorescent real time PCR reaction was carried 
out in “Applied Biosystem Step one” instrument with 
Applied Biosystem power SYBR green with specific 
primers targeting of TH, DAT, Nurr1, Foxa1, En1a, 
En1b, En2a, En2b, Lmx 1 a/b (Suppl. Table 2) 
following the PCR conditions, Initial denaturation 
95°C for 1 min and followed by 40 cycles of 
denaturation 95°C for 30 sec, annealing with 52-
59.6°C for 45 sec (Suppl. Table 2) and extension with 
72°C for 1 min, followed by a final extension at 72°C 
for 10 min. β-actin was used as internal control, assay 
was performed in duplicates with 25 µL reaction. 
Real time PCR data was quantitatively analyzed by 
using the formation of 2−ΔCt, in which −ΔCt represents 
the ratio between the number of cycles (Ct) of the 
target genes with the endogenous control. 
 
Locomotor Activity  

Locomotor activity assays were performed as 
described previously18 with minor modifications. At 
24 Hpf, the tail movement of the embryos was 
observed under a stereo zoom microscope. At 48 
Hpf–adults, the locomotor activity was studied in a 
Petri plate marked with grid lines, containing embryo 
medium. The movement across the grid lines was 
observed for a period of 1 min, from which the 
distance covered by the embryos/larvae was 
calculated. However, the locomotor activity of adult 
zebrafish was measured as per the protocol followed 
by25. Small experimental tank (30 cm × 10 cm ×  
15 cm) containing water was used to assess the 
locomotor activity of zebrafish. A transparent plastic 
film was placed in front of the tank in order to divide 
the tank into four segments. Fish were placed 
individually in the tank and their behavior was 
recorded for 5 min after a 10 min habituation period. 
Spontaneous swimming activity was measured by 
recording the distance. 
 
Statistical analysis 

Statistical analysis was performed using SPSS for 
multi group analysis, Student’s t-test and one-way 
analysis of variance (ANOVA) was used followed by 
post hoc tests for multiple comparison. Regression 
and Pearson correlation was used for correlation 
analysis and the P-values were adjusted with the 
Benjamini and Hochberg method to control the false 
discovery rate. Quantitative data was represented in 
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Mean ± SEM and Statistical significance was defined 
at 95% level (P<0.05).  
 
Results  
 

MPP+ elucidates significant degeneration of DA neurons at 96 
Hpf 

First, we determined the optimum time point that 
MPP+causes significant DA neuron degeneration. 
Two phenotypic markers of DA:TH, the rate-limiting 
enzyme in dopamine synthesis and DAT, which up 
takes dopamine from the extracellular space to 
terminate dopamine neurotransmission were used to 
determine the loss of DA neurons using WISH and 
RT-PCR.  

In controls, mild TH signals were detected in 
ventral diencephalic cells at 24 Hpf. Later, between 

48 Hpf to 96 Hpf a considerable increase in TH 
expression was identified in the ventral telencephalon 
and in several diencephalic areas as well as in the 
inner nuclear layer of the retina26. In the cellular 
response to MPP+, WISH detected a time specific 
decrease in TH/DAT mRNA in DA neurons across 
the four time points analyzed in this study. By 96 Hpf, 
this protocol produces a 50% DA loss within 3 days 
of MPP+ exposure (for all comparisons; Fig. 1A).  

To further validate the accuracy of WISH results, 
we measured the expression changes for TH and DAT 
using RT-PCR at 24 Hpf, 48 Hpf, 72 Hpf and 96 Hpf 
(summarized on Suppl. Table 3 and illustrated on 
(Fig. 1B) (DAT and TH). Consistent with WISH, 
TH/DAT expression was down regulated in a time 
dependent manner between stages 24 Hpf and 48 Hpf, 

 

 
 

Fig. 1 — (A) Effects of MPP+ on TH and DAT expression via Whole mount In situ Hybridization: TH-reactive neurons in ventral 
diencephalon can be divided into DC: diencephalic catecholaminergic cluster  at 24 Hpf; catecholaminergic clusters in ventral
diencephalon of 4 dpf embryos can be divided into several groups from anterior to posterior: population 1 (between ventral thalamus and
posterior tuberculum), population 2 (anterior group of posterior tuberculum), population 3 (paraventricular organ), population 4 (posterior 
group of posterior tuberculum) and populations 5 and 6 (between posterior tuberculum and hypothalamus). The DA neurons in the ventral
diencephalon are shown by arrowheads. Exposure of 1mM MPP+ for different time periods reduced TH+ /DAT+ neurons in the ventral 
diencephalon in a time dependent manner. All images are shown as 500 μM bar; (B) Effects of 1mM MPP+ exposure on TH and DAT 
mRNA expression by qRT-PCR. MPP+ induced a significant reduction in transcripts of TH/DAT in a time dependent manner
(ANOVA,*P<0.05 relative to age matched controls), Data are presented as Mean ± SEM, Gene expression was normalized with beta
actin gene; (C) The dynamics of behavioral response to continuous embryonic MPP+ (1 mM) exposure. Exposure of MPP+ for different 
time periods (24 Hpf-96 Hpf) significantly reduced the distance traveled in a time dependent manner (ANOVA, *P<0.05 relative to 
control), Data are presented as Mean ± SEM (n = 10 per each group); and (D) Temporal Correlation between TH+/DAT+ neuron loss and 
Locomotor activityThere was a significant correlation of TH+neuron loss tolocomotor activity (R2 = 0.9533, P = 0.0031 by Pearson’s 
coefficient)  and DAT+neuron loss tolocomotor activity (R2 = 0.9339, P = 0.0006 by Pearson’s coefficient) 
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24 Hpf and 76 Hpf and 24 Hpf and 96 Hpf in the 
presence of MPP+. The assessed genes reported  
a strong difference in fold change between control 
and MPP+ embryos (change >3-fold and P< 0.03; 
Suppl. Table 4) 
 

MPP+ induced time course locomotor deficits correlatewith 
DA loss 

In order to characterize the locomotor activity of 
the zebrafish embryos during the course of DA 
degeneration, the current study observed the mean 
distance travelled during the exposure period between 
24-96 Hpf (Fig. 1C). In comparison to controls, 
locomotor activity reduced in a time-dependent 
manner over the course of MPP+ exposure. At 24 Hpf, 
locomotor activity was measured as spontaneous tail 
coiling and it was observed 21.28% reduction in 
MPP+ exposed group. At 48 Hpf, 72 Hpf and 96 Hpf 
the locomotor activity was significantly reduced by 
25.38%, 35.26%, 54.35%, 54.72% in MPP+ exposed 
groups (P< 0.05). 

Further, the association between the loss of DA 
neurons and locomotor activity in the MPP+ embryos 
was investigated by performing linear regression. The 
% TH+/DAT+ neurons loss within the DA system was 

positively correlated with MPP+-induced motor 
deficits (R2 = 0.93, P< 0.03; Fig. 1D). 
 

MPP+ modifies major developmental TFs in DA neurons  
To investigate the correlation between TFs and DA 

phenotype, we first looked at how normal 
developmental processes progressed over the course 
of MPP+ exposure. First we used WISH and RT-PCR 
to analyze the MPP+ expression patterns in relation to 
developmental TFs in DA neurons. 

Spatiotemporal expression patterns of the 4 TFs 
specifying the DA phenotype: Nurr1, Lmx1a, Foxa1 
and En1a were analyzed using WISH. While, 
transcript abundance of the 8 TFs: Nurr1, Lmx1a/b, 
Foxa1, En1a/b and En2a/b were quantified by RT-
PCR.  

The Nurr1 hybridization signal was detected in the 
ventral telencephalon, diencephalic areas, mid- and 
hindbrain tegmentum27, as well as in the medulla. 
Irrespective of treatment, mRNA expression of Nurr1 
was considerably increasing over the course of 
exposure. Comparisons between control and MPP+ 

expression patterns of NURR1 show a time specific 
decrease in the above areas (for all comparisons;  
Fig. 2A).  

 

 
 

Fig. 2 — (A) Effects of MPP+ on Nurr 1 and Lmx1a expression via Whole mount In situ Hybridization whole mount in situ hybridization. 
Exposure of 1 mM MPP+ for different time periods reduced Nurr1 (E-H) and Lmx1a (M-P) expression in the ventral diencephalon in a 
time dependent manner relative to control treatment for Nurr1 (A-D) and Lmx1a (I-L).  The ventral diencephalon area is framed and the
images are in ventral views captures. All images are shown as 500 μM bar. Abbreviations: dt, dorsal thalamus; d, diencephalon; t, 
telencephalon; MHB, Midbrain Hindbrain Boundary; (B) Effects of 1 mM MPP+ exposure on Nurr1 and Lmx1a/b mRNA expression by
qRT-PCR.  MPP+ induced a significant reduction in transcripts of Nurr1 and Lmx1a/b in a time dependent manner (ANOVA, P<0.05 
relative to age matched controls. Data are presented as Mean ± SEM (n = 3 per each group); Gene expression was normalized with beta
actin gene; and (C) Temporal Correlation between TH+/DAT+ neuron remaining and transcript levels of Nurr1 and Lmx1a/b There was a 
positive correlation of TH+/DAT+ neuron remaining with Nurr1/Lmx1a/b mRNA level (P<0.05) 
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The results for the mRNA expression of Lmx1a 
showed a localized expression within broad 
diencephalic domain at 24 Hpf; diencephalon, 
midbrain–hindbrain boundary and the amacrine layer 
at 48Hpf and from 72 to 96 Hpf26, lmx1a expression 
considerably increased in the diencephalon and non-
adrenergic neurons of locus coeruleus (Fig. 2A). In 
MPP+ exposure up regulated expression was observed 
in diencephalon at 24 Hpf. Furthermore, analysis of 
lmx1a expression at 48 Hpf detected down regulated 
expression in midbrain–hindbrain boundary with no 
detectable changes in the amacrine layer. There was 
relatively mild loss in expression in the diencephalon, 
whereas in the non-adrenergic neurons of locus 
coeruleus a significant down regulated expression was 
detected at 72 Hpf in MPP+ exposure. In contrast, a 
significant down regulated expression in the posterior 
group of catecholaminergic cluster in ventral 
diencephalon at 96 Hpf was noted in MPP+ exposure.  

During embryonic development En 1a expression 
was demonstrated in telencephalon and mesencephalon 
regions28. In contrast to increase in En 1a expression 
in the midbrain–hindbrain junction at 24 Hpf, a slight 
down regulated expression in the diencephalon with 
no effect in midbrain–hindbrain boundary and the 

amacrine layer at 48 Hpf25 was observed in MPP+ 
exposure. Moreover, from 72 Hpf to 96 Hpf a 
significant down regulated expression in the ventral 
diencephalon and midbrain–hindbrain boundary was 
elicited in MPP+ exposure (Fig. 3A).  

Regardless of MPP+ exposure, Foxa1 expression 
visibly increased in the diencephalon and non-
adrenergic neurons of locus coeruleus during the 
course of exposure. When compared with controls, 
MPP+ exposure induced increased FOXA1 expression 
in the floor plate region at 24 Hpf. Although FoxA1 
expression did not disappear in ventral diencephalon 
region, it was clearly reduced from 48 Hpf to 96 Hpf 
(Fig. 3A).  

The RT-PCR results confirmed the dynamic 
changes in the expression of TFs observed on WISH 
across the four time points for both control and MPP+ 
embryos (Summarized on Suppl. Table 3 and 
illustrated on (Fig. 2A) (Nurr1); (Fig. 2A) (Lmx1a/b); 
(Fig. 3B) (Foxa1) and (Fig. 3B) (En1a/b, En2a/b). 
The assessed genes reported a strong difference in 
fold change between control and MPP+ embryos as 
shown in (Suppl. Table 4). Very similar to WISH 
analysis all these genes were down regulated in a time 
dependent manner during the course of MPP+ 

 

 
 

Fig. 3 — (A) Effects of MPP+ on Foxa1 and EN-1a expression via Whole mount In situ Hybridization. Exposure of 1 mM MPP+ for 
different time periods reduced Foxa1 (E-H) and EN-1a (M-P) expression in the ventral diencephalon in a time dependent manner relative
to control treatment for Nurr1 (A-D) and Lmx1a (I-L).  The ventral diencephalon area is framed and the images are in ventral views 
captures. All images are shown as 500 μM bar. Arrows shows the EN-1a expression at 24 Hpf. Abbreviations: m, mesencephalon region; 
d, diencephalon; t, telencephalon; (B) Effects of 1 mM MPP+ exposure on Foxa1 and En1a/b and En 2a/b mRNA expression by 
qRT-PCR., MPP+ induced a significant reduction in transcripts of Foxa1 and En 1b and En2b in a time dependent manner (ANOVA,
P< 0.05 relative to age matched controls). Data are presented as Mean ± SEM (n = 3 per each group); Gene expression was normalized 
with beta actin gene; and (C) Temporal Correlation between TH+/DAT+ neuron remaining and transcript levels of  Foxa1 and En1a/b and
En 2a/b A positive correlation was observed with TFs; En 1b & Foxa1 while a negative correlation was observed with TF; En 2b 
(*P< 0.05). No correlation was seen with En1a expression. 
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exposure i.e., between 24 Hpf and 48 Hpf, 24 Hpf and 
76 Hpf and 24 Hpf and 96 Hpf embryos. 
 

Correlation between altered TFs expression and loss of DA 
phenotypes 

To investigate the correlations between changes in 
transcript abundance of TFs with TH/DAT expression 
at four different time periods during MPP+ exposure, 
we used Pearson linear regression. The analysis 
suggests that TH/DAT expression significantly 
correlated with mRNA expression levels of TFs. 
Pearson correlation values between TH/DAT and 
Nurr1 and Lmx1a and Lmx1b and Foxa1 and En 1b 
and En 2b are represented in (Fig. 2C & 3C), 
respectively. The tightest correlation appears to exist 
between TH and Nurr1 (R2 = 0.9127, P< 0.001) and 
the weakest correlation between TH/DAT and En1b  
(R2 = 0.54-0.59, P< 0.05). An interesting significant 
negative correlation was observed between the 
expression of TH/DAT and En2b (R2=0.54-0.59,  
P< 0.05).However, no correlation exists between 
TH/DAT and En1a and En2a (data not shown). 
Overall, the significant decrease observed in mRNA 

expression of eight different TFs in DA neurons led to 
the substantial loss of DA phenotypes, highlighting 
the importance of analyzing TFs expression in DA 
regeneration post injury. 
 

Progression of gene expression changes post MPP+ induced 
DA injury 

Next we profiled the temporal changes in gene 
expression after DA injury and related these changes 
to the locomotor activity.  

Using RT-PCR, we profiled the expressions 
changes post injury for the following 10 genes: 
phenotypic markers of DA neurons (TH/DAT) and 
TFs specifying the DAergic phenotypes (Nurr1, 
Lmx1a/b, Foxa1, En1a/b and En2a/b) for 1 week 
every 24 h or 3 months, where males and females 
were sampled separately. 

Our RT-PCR showed that the expression of Nurr1, 
Lmx1a/b, Foxa1, En1a/b, and En2a/b was unchanged 
over 3 days but a sustained up regulation was noted 
from 4 to 8 days reaching normal levels in adult 
zebrafish brain (summarized on Suppl. Table 5) and 
illustrated on (Fig. 4A) (DAT and TH); (Fig. 4B) 

 
 
Fig. 4 — Changes in gene expression and locomotor activity after DA injury. The figure shows RT-PCR analysis for (A) TH/DAT; 
(B) Nurr1/Foxa1 (C) En-1a/b; (D) En-2a/b; (E) Lmx1a/b.  Each graph represents the relative expression of the corresponding gene after
1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days and 87 days post injury. mRNA levels of most genes started to increase between
3-7 days after injury (ANOVA,*P<0.05 relative to age matched controls) which was significantly elevated to normal levels in adult
zebrafish brain i.e. at 87th day after injury. Gene expression was normalized with beta actin gene. Data are presented as Mean ± SEM; and
(F) Changes in locomotor activity at different time points after acute DA injury. All data expressed as Mean ± SEM and statistical 
significance * denotes P<0.05 relative to age matched controls 
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(Nurr1/ Foxa1); (Fig. 4C) (En1a/b); (Fig. 4D) 
(En2a/b) ) and (Fig. 4E) (Lmx1a/b). The fold changes 
of each gene was calculated at different phases and 
summarized in (Suppl. Table 6). 

Subsequently, 54.73%, 56.28%, 38.90%, 32.03%, 
29.83%, 20.88% and 0.4% reduction in locomotor 
activity was demonstrated at 1Day, 2 Days, 3 Days, 4 
Days, 5 Days, 6 Days and 7 Days post-injury, 
respectively, (P< 0.05). Furthermore, levels of 
locomotor activity were found to rapidly return to 
values comparable to those observed in control adult 
zebrafish at 87th day post injury. In adult zebrafish 
both genders showed an identical recovery when the 
distance traveled was considered. 
 

Correlating mRNA expression levels of TFs with TH/DAT 
mRNA expression during functional recovery  

Aside from the expression levels of TFs and 
TH/DAT, we used Pearson linear regression to define 
further the associations between mRNA expression 
patterns of the 8 TFs with the expression of TH/DAT 
and expression of TH/DAT with locomotor activity 
across each time point analyzed. The 18 correlation 
coefficients found to be statistically significant (R2> 
0.559, P< 0.001) are indicated in (Table 1). The 
tightest correlation appear to exist between TH/DAT 
and En2a (R2 = 0.9917, P< 0.001) and the weakest 
correlation between TH/DAT and Nurr1 (R2 = 0.56-
0.59, P< 0.05). TH/DAT expression also significantly 
correlated with En2b, En1b, En1a, Lmx1b, Foxa1 and 
Lmx1a expression. This shows that the timing of up 
regulation of TFs expression relates to the activation 
of TH/DAT expression. 

Next we investigated whether the timing of 
activation of TH/DAT expression correlated with the 
restoration of locomotor activity in post-DA injury 
model of MPP+. We observed that the magnitude of 
expression of TH/DAT that has increased at specific 
time points correlates positively with the locomotor 
activity (R2=0.9976, P<0.0001, R2 = 0.9947, P< 0.0001). 

Discussion 
Transcriptional regulation is central to specification 

and differentiation of neural progenitor cells to DA 
neurons11. Previous studies in human and animal 
models has led to the hypothesis that measuring the 
developmental trajectory of functional connectivity 
deficits in PD models is useful to understand the 
factors driving the pathology progress and may be 
crucial for therapeutic purposes, such as regenerative 
medicine 

Here, we tested this hypothesis by administrating 
MPP+

, in zebrafish model commonly used in PD 
research, during critical DA developmental periods 
between 18 Hpf and 96 Hpf. Remarkably we found 
that the number of TH+/DAT+ neurons progressively 
decreased from 24 Hpf manifesting 50% loss of DA 
neurons at 96 Hpf. When linear regression analysis 
was performed, MPP+-induced progressive 
TH+/DAT+ neuron loss exhibited a positive 
correlation with the decrease in locomotor activity. In 
humans, clinically noticeable functional deficits occur 
at least after 60-70% of DA neurons in substantia 
nigra are lost2 and our MPP+ treatment regimen 
mimics specific aspects of age-old related 
neurodegenerative condition in zebrafish larvae. 

Importantly, current studies imply that PD 
pathophysiology is associated with dysregulation of 
TFs. It is interesting to point out that many 
interconnections between En1/2, Nurr1, Lmx1a/b, 
Foxa1/2, and PD-linked genes such as α-synuclein, 
Pink1 or Parkin have been recognized 29. Conversely, 
decreased expression of Nurr1 reported in PD patients 
could transcriptionally induce expression of α-
synuclein30. Haubenberger et al., data suggest that 
variations of the engrailed-2 gene are implicated in 
the development of young-onset PD31. Laguna et al., 
reveal that Lmx1b dysfunction is associated with PD 
pathogenesis32. Previous findings from our lab 
endorse the fact that common haplotype variation in 
Nurr1 and Foxa1 might have important and clinically 
relevant associations with PD33. Interestingly, a 
selective ablation of Nurr1 in adult DA neurons  
using a tamox-ifen (TAM)-inducible Cre/LoxP 
recombination system leads to the fiber pathology of 
DA neuronal population and loss of striatal dopamine, 
recapitulating early stages of PD developments34. An 
asymmetrical degeneration of SNpc DA neurons has 
been observed in about 30% of aged mice bearing a 
global heterozygous deletion of Foxa2 gene allele35. A 
tissue-specific ablation both the Foxa1 and Foxa2 

 

Table —  Correlating mRNA expression levels 

 TH DAT 
Nurr1 0.5881** 0.5599** 
Foxa1 0.9253* 0.9356* 
Lmx1a 0.8222* 0.8646* 
Lmx1b 0.9616* 0.9703* 
EN-1a 0.9623* 0.9513* 
En-1b 0.9891* 0.9914* 
En-2a 0.9907* 0.9986* 
En-2b 0.9917* 0.9931* 

Locomotor Activity 0.9976* 0.9947* 
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genes selectively in adult DA neurons resulted in DA 
neurons losing their dopaminergic phenotype, which 
was reflected by the decline in expression of DAT and 
TH, as well as reduced striatal dopamine leading to 
the development of locomotor abnormalities36.  

Our results are in concurrence with these discussed 
findings, suggesting a general role of TFs in DA 
neuron physiology and functional impairment 
consequent to its impairment. This study is first to 
report MPP+ induced changes in TFs transcript levels 
during the critical time periods of DAergic 
development in zebrafish. The key TFs measured by 
WISH and qRT-PCR showed temporal and spatial 
pattern of altered mRNA levels by MPP+, over 
differentiation times. Apparently, a certain level of 
TFs is maintained for survival of remaining DA 
neurons, particularly during stress37.Interestingly, the 
progressive loss of TH+/DAT+ positively correlated 
with the degree of MPP+ induced changes in transcript 
abundance of most TFs over time. These trajectories 
demonstrated that cells exposed to MPP+ during 
differentiation presented a phenotype similar to PD 
with altered transcriptional program.  

Some researchers have proposed that brain has an 
intrinsic ability to undergo neuroanatomical changes 
that lead to reorganization of remaining tissue 
following injury likely by certain events related to 
normal development38. However, this recover has 
behavioral consequences that need to be considered 
while determining whether recovery has occurred. 
Another way experimental researchers define 
recovery is to achieve a particular end point following 
injury which is similar to how it would be performed 
in the intact animal39. Our study is consistent with 
these literatures on recovery following damage that 2 
days post injury; do not exhibit significant impact on 
locomotor deficits. Over time, recovery in locomotor 
activity was noted from 3 to 7 days reaching to 
normal levels in male and female adult zebrafish 
(91Dpf). This functional recovery may be the result of 
the regenerative proliferation of progenitor cells and 
replacement of lost neurons after DA injury40. Central 
nervous system (CNS) regeneration in Newts has 
mostly been studied after spinal cord transection, tail 
amputation, by removing a piece of brain tissue or 
lesioning DA neurons4. But adult zebrafish has an 
amazing potential in the control of progenitor cells to 
repairs to injuries to their dopaminergic neuron 
populations in the brain9. In previous ablation 
experiment in adult zebrafish, observations were 

made that loss of Th+ cells lead to regenerative 
proliferation of progenitor cells and replacement of 
specific dopaminergic neuron populations41. This is 
mainly achieved through a tight regulation of 
progenitor/stem cell proliferation and differentiation 
via a complex network of signaling pathways that get 
activated in response to injury42. Here we profiled the 
expressions of TFs involved in DA neuron death 
which might provide gene targets for reducing the 
loss of DA neurons and improving their survival 
following injury. We observed a regenerative 
response after ablation of DA neurons, defined by an 
increased expression of TH and DAT. This 
regenerative neurogenesis depends on sustained 
activation of TFs, Foxa1/2, Lmxa1/2, Nurr1 and 
En1/2. There were some reports that demonstrate a 
rapid increase of Nurr1 expression in the substantia 
nigra after 6-hydroxydopamine lesion in the striatum 
of the rat in order to normalize the dopamine levels 43. 
Sang-mi Kim et al., demonstrated that repeated 
synthetic mRNA transfection of Nurr1 and Foxa2 in 
the delayed schedule is an efficient and safe 
procedure to generate DA neurons from rat neural 
progenitor cells44. The immune system has also been 
shown to play a critical role in influencing the 
regenerative response7 and Nurr1 influences the 
inflammatory properties of immune cells45. To our 
knowledge, we provide the first evidence of 
correlation between the dynamic changes in the 
expression of Foxa1/2, Lmxa1/2, Nurr1 and En1/2 
with establishment of TH+/DAT+ expression with 
clearly detectable DA neuronal activities after injury 
in any model system. This gene expression change 
may contribute to new research of further 
understanding the role of these TFs in the stimulation 
of multiple regenerative processes in the neurogenic 
area in this animal model of PD. The mechanisms 
underlying pathology of DA neuron injury and repair 
in zebrafish may provide critical insights into 
improving treatment of PD in human’s mechanisms 
and therapeutic targets for PD by inducing new  
DA neurons through TF-mediated cell fate 
reprogramming even in adult brain.  
 
Conclusion 

In conclusion we have developed a treatment 
paradigm that mimics PD pathology without the need 
to wait for several months to generate age-old treated 
disease. Remarkably, DA neuronal populations in 
adult zebrafish showed an unexpected regenerative 
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capacity. Here, neuronal regeneration led to the 
formation of functional neurons capable of restoring a 
previously described behavioral impairment. This 
system shows here that redeploying the 
developmental transcriptional cascades is critical for 
DA regeneration. Ultimately, targeting TFs may be 
used to activate pro-regenerative mechanisms also in 
mammals to lead to generation and functional 
integration of new dopaminergic neurons. 
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