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Polymeric nanoparticles have been the focus for nanocarrier preparation in numerous biomedical applications such as 

cancer treatment, disease diagnosis, vaccination, in the last two decades. They have been variably surface modified using 

copolymers, Polyethylene glycol (PEG), dextran, cyclodextrin, cytokines, small molecules to improve their efficiency and 

efficacy. The resulting nano-formulations include polymer-protein conjugate, polymeric micelle, polymer-small molecule 

conjugate, dendrimer, polymeric vesicles, nano-hybrids, hydrogels etc. These may have intrinsic immunogenicity and require 

accurate characterization in order to improve their pharmacological targeting, pharmacokinetic profiles and to reduce adverse 

reactions. Therefore, we have reviewed the polymeric nanoparticles and the electron microscopy techniques available for their 

characterization in the context of their surface modifications and functionalization. 
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The nanocarriers available for biomedical use include; 

polymers, lipid carriers (liposomes/micelles), 

dendrimers, carbon nanotubes, silver, gold 

nanoparticles
1
, quantum dots, organic nanoparticles, 

liposomes etc. Of these, polymers are the most 

common materials used for nanoparticle (NPs) based 

drug formulations (Table 1 & Fig. 1). Polymeric 

nanoparticles (10-1000 nm) are biodegradable, 

biocompatible, non-toxic, non-immunogenic and water 

soluble with potential application in tissue engineering, 

drug and gene delivery, imaging and vaccination 

strategies. Their action has been studied in cancer 

therapy at different steps: (i) immunomodulation; 

(ii) prodrug activation; (iii) anti-sense/ RNAi delivery,

(iv) induction of apoptosis etc
2-4

. Recently the use of

polymeric nanoparticles in vaccine design and delivery

has gained interest (Table 2). Hydrogels embedded

with nanoparticles are also being extensively studied

due to their functional resemblance with the

extracellular matrix (ECM)
5
.

Polymeric nanoparticles are synthesized by multiple 

methods and influenced by a number of factors such as 

polymer DA, DP (degree of acetylation and 

polymerization), polymer concentration, surfactant 

used, and degree of crosslinking with surfactant. These 

result in enormous variation in NPs size, shape and 

chemical functionality
6
. The polymeric NPs are mainly 

spherical in morphology and comprise of nanocapsules 

and nanospheres
7
. They have been categorized based on 

their origin into: natural polymers such as chitosan
8
, 

gelatin, sodium alginate (Table 1 & Fig. 1) and 

synthetic polymers like PLA (polylactic acid), 

polycyanoacrylate, PLGA {poly(lactide-co-glycolide)}, 

PCL (polycaprolactone), PHBV {poly (3-hydroxybutyric 

acid-co-hydroxyvaleric acid)}
9
, PEI ( polyethylenimine). 

Polymeric NPs are produced by dispersion of preformed 

polymers (e.g., PLA) in an aqueous colloidal suspension 

or by polymerization of monomers (e.g., polyalkyl 

cyanoacrylate)
10

 which allows for insertion of drug 

compounds with greater efficiency
11

. Nanoprecipitation 

is the commonly used method for preparation of both 

nanospheres and nanocapsules
12

 of around 170 nm 

dimensions
13

.  

The morphology (shape and size) of the polymeric 

nanoparticles is mainly determined by scanning and/or 

transmission electron microscopy (SEM and TEM) 

(Fig. 2). SEM generates visual information on external 

morphology, chemical composition and surface texture 

which is not quantitative. SEM provides limited 

information about size distribution of the particles and 

their pores. TEM is used to determine the size and shape 
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Table 1 — Types of Polymeric nanoparticles and their surface modifications 

Polymeric NP Surface modifications Size of NP (Diameter) Shape on TEM/SEM References 

Natural Polymers 

Chitosan LMW-PEI linked chitosan  

Chitosan-TPP 

100–250 nm  

100-1200 nm 

uniform sphere  

Spherical 

[8, 95-97] 

Chitosan based 

polymeric micelles 

Stearyl-grafted chitosan 120-160 nm Spherical [56] 

Gelatin Thiolated/ PEGylated/ Cationized 

Antibody/Peptide/ 

Carbohydrate/Fatty acid coated 

Gelatin methacryloyl (GelMA) 

based hydrogels  

100-200 nm 

 

 

μm 

Nanocapsules, (having a hollow interior 

that is surrounded by a polymeric shell) 

[98-99] 

 

 

[100] 

Sodium alginate Alginate-chitosan NPs 50–80 nm Spherical shape [101] 

Synthetic Polymers 

PLA (polylactic acid) -None- 100 nm Dehydrated hard sphere [102, 9] 

 PEI-coated PLA NPs 115 nm Core shell [103] 

 Lactoferrin (Lf) conjugated  

PEG-PLA–NPs  

131 nm Spherical [104] 

 Polydopamine-modified  

(pD-TPGS-PLA/NPs) 

205.2 nm Spherical with smooth surface [105] 

PLGA poly 

(lactide-co-

glycolide), 

-None 152.0±58.08 nm Spherical particles with smooth surfaces 

on SEM and core-shell structure on TEM 

[106] 

 Chitosan coated PLGA coated 284 nm Spherical [107] 

 S2P Peptide-PLGA-Maleimide- 

PEG-NPs 

183.3 nm Spherical [108] 

 PLGA–PEG–PLGA 275.3 nm Spherical with smooth surface [109] 

 Gelatin -PLGA composites  160 and 175 μm microsphere [99] 

PCL(polycaprolactone) 

 Chitosan-PCL-NPs 230 nm Spherical [107] 

 mPEG-PCL 36 nm Spherical [110] 

 Polysorbate 80 (PS80)-PCL- NPs 100-200 nm Spherical shaped with coating [111] 

PHBV {poly  

(3-hydroxybutyric 

acid-co-

hydroxyvaleric acid) 

-None- 243-260 nm Core shell shaped spherical structure  

on TEM 

[9] 

 PEGylated PHB– 

sorafenib–doxorubicin NPs 

199 nm Spherical [112] 

Hydrogel 

nanoparticles 

(HNPs)/nanogels 

Injectable and in situ gelling 

hydrogels 

80-120 nm Spherical [113] 

Lipid-polymer 

hybrid NPs  

PLGA–lecithin–DSPE-PEG LPHNs  The lipid component, forms lipid 

“flowers”, with “petals” extruding from 

the polymer core which exhibits “onion” 

morphologies, with multilamellar 

stacking 

[73, 74] 

Zwitterionic 

polymers 

DSPE-PEG and DSPE-PCB20 

cationic liposomes 

80 nm Spherical shape [39] 

Branched polymers PEGMA5/DEA95– 

EGDMA15–DDT15 branched star 

shaped copolymers 

10–30 nm Spherical particles [6] 

Glycopolymers di-block copolymers of PEG- FITC 

functionalized gold nanoparticles 

(AuNP) 

7 nm Spherical [77] 

Green NPs AgNPs 20-50 nm Spherical [114] 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nanogel
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of nanoparticles. It can measure the thickness of 

the nanocapsule wall and is used to distinguish 

between nanocapsules and nanospheres
14

. On TEM, 

nanospheres have a spherical shape, with a solid 

polymeric structure, whereas nanocapsules show a thin 

(about 5 nm) polymeric envelope around an oily core 

(Core-shell structure) (Fig. 2).  

The polymeric nanoformulations undergo surface 

modifications by various covalent and non-covalent 

coupling techniques
15 

which can extend their half-life, 

surface charge and improve drug efficacy. For 

nanospheres, the surface adsorption of drugs allows 

for a higher proportion of atoms to be in direct 

contact with solvents. The core-shell structure, in 

Fig. 1 — Biodegradable polymeric nanoparticles for biomedical use. These include the natural and synthetic polymers 

Fig. 2 (A-H) — Shape and size of polymeric Nanoparticles ranging from 200-500 nm on TEM and their advantages 
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nanocapsules, results in outer surface atoms different 

from those of the interior core in entrapped drug 

formulations. Therefore, in nanocapsules, the dual 

attachment of TNF-α in both the core and the shell 

of NPs is needed for their strong and specific binding 

to TNF receptor-expressing cells
16

. The solvent 

concentration, pH, temperature, and sonication 

additionally tune the morphology of polymer 

nanospheres and capsules
10

. The cationically charged 

polymers (Chitosan and PEI) produce more stable 

complexes during cellular trafficking
1
 with high 

level of transfection efficacy and are widely used 

for nucleic acid delivery in a number of target 

organs
17,18

 (Fig. 3). 

Therefore, characterization of the nanoparticle 

morphology, their surface chemistry and growth kinetics 

by advanced electron microscopic techniques, such as, 

SEM-EDX/SAM {Energy Dispersive X-ray 

Spectroscopy (EDX) and Scanning Auger Microscopy 

(SAM)}, High resolution TEM/SEM (HRTEM, 

HRSEM), liquid TEM, cryo-TEM, which can 

characterize the morphology of NPs as well as their 

elemental-chemical composition are increasing in 

relevance. The utility of these advanced techniques in 

polymeric nanoparticle characterization is reviewed in 

the present paper (Table 2 & Fig. 4). 

Types of Polymeric Nanoparticles 

The polymeric nanoparticles for biomedical use have 

been broadly categorized into matrix-like and reservoir-

type NPs
19

; (i) matrix-like NPs; Nanospheres (50-300 nm 

diameter) have a continuous polymeric matrix (drug can 

be retained inside or adsorbed on the surface) and 

(ii) reservoir type NPs: nanocapsules (100-300 nm),

having central aqueous or oil reservoir and

polymerosomes (60-500 nm)
20

 (Fig. 2). Recently hybrid

polymeric NPs have been designed to improve the

circulation stability and for targeted delivery of

Fig 3 — Biological applications of polymeric nanoparticles 

Table 2 — Polymeric Nanoparticles for vaccine delivery 

S. No Polymer Size (EM/Zetasizer) Disease References 

1. PEG-2000 100-200 nm COVID-19 [115] 

2. PEI-mannose 100 nm HIV [116] 

3. PLGA 164 nm Poultry vaccine [117] 

4. PLGA 200 nm Mycobacterium tuberculosis [118] 

5. PLGA 200 nm H5N1influenza; HIV Helicobacter pylori [119] 

6. PCL-Chitosan 208 nm Hepatitis B [120] 

7. PEG-PLA-PEG 242 nm Hepatitis B [121] 

8. Polyethyleneimine-triethyleneglycol 170 nm HIV Infection [122]
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chemotherapeutic agents using polymeric NPs
21

. 

Currently injectable in-situ gelling hydrogels that  

form highly branched hydrazone cross-linked (poly 

oligoethylene glycol methacrylate, POEGMA) are being 

assessed for biological applications
22,23

. 

Nanospheres are obtained when the active principle 

is dissolved or dispersed in the polymeric solution. 

Nanocapsules are obtained when the drug is previously 

dissolved in an oil, which is then emulsified in the 

organic polymeric solution before the internal phase 

is dispersed in the external phase of the emulsion
24,25

. 

Non-spherical polymeric nanoparticles with exotic 

morphologies, such as worms, vesicles, lamellae, 

framboidal vesicles, jellyfish, and yolk/shell particles, 

have been prepared by controlled radical synthesis 

technique, reversible addition-fragmentation chain-

transfer polymerization
26-28

. The diagrammatic 

representation of these morphologies as seen by TEM 

is given in (Fig. 2). 

Surface modifications of polymeric nanoparticles 

Polymeric NPs are variably classified on the basis 

of their surface modifications into; polymer-protein 

conjugations with polyethylene glycol (PEG)
29

 and 

PEG-alternatives
30

 (Table 1), polymeric micelle
31,32

, 

polymer-small molecule conjugation
33

, polymeric 

vesicle
34

, dendrimer
35

, polymer-polymer NPs, 

polymer-lipid NPs, polymer-metal NPs (Fig.4). 

Polymer-protein conjugations 

Protein–polymer conjugates are widely used as 

therapeutics. These nanosystems are based on drug-

loaded polymeric core and are additionally coated by a 

cross linked bovine serum albumin shell that reduces 

their interactions with serum proteins and macrophages. 

Therefore, these surface modified NPs can show potent 

anticancer activity in vitro and in vivo while not 

exhibiting any toxicity to healthy tissue
21

. The other 

polymeric-protein modified nanoparticles include; 

Zwitterionic polymers, glycopolymers, hydrogels, green 

NPs (Table 1). 

Zwitterionic polymers 
The Zwitterionic polymers include poly 

(carboxybetaine) (pCB) and poly(sulfobetaine) 

(pSB)
36

. These have been proposed as PEG alternatives 

due to their inherently low immunogenicity and high 

resistance to nonspecific protein absorption and 

agglomeration
37,38

. Recently, Li et al., 2015 developed 

zwitterionic poly (carboxybetaine) (pCB) modified 

lipoplexes for the delivery of siRNA therapeutics
39

. 

These PCB plated lipoplexes showed enhanced tumor 

accumulation in vivo while avoiding the ABC 

phenomenon. Zwitterionic polymers can undergo 

pH-responsive surface charge and size variations and 

spontaneously self-assemble to form micelle-like and 

inverse micelle-like assemblies depending on the 

solvent environment
40

. 

Fig. 4 — Surface modifications of biodegradable polymeric nanoparticles, their properties, morphology and their characterization by 

advanced electron microscopy techniques 

https://www.sciencedirect.com/topics/materials-science/hydrogel
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Hydrogels 
Hydrogels have structural and mechanical similarity 

to the extracellular matrix. These branched polymers 

have secondary polymer chains cross linked to a primary 

backbone, showing a variety of polymer architectures 

such as star, H-shaped, pom-pom, and comb-shaped 

polymers
41

. SEM of the cross linked hydrogels shows a 

cellular structure with macropores of approximately 

1 μm diameter. The topology of the hydrogel depends 

on the molecular shape (e.g. branched or circular 

polymers) polymer sequence, molecular weight, 

architecture, and chain connectivity of the precursor 

polymer
42

. Tuning the precursor polymer branch 

length and density results in single-component 

material with superior elasticity and extensibility 

and formation of three-dimensional cross-linked 

polymer hydrogels
43

.  

Green NPs 
These nanoparticles show good biocompatibility as 

they are based on amino acid-based block copolymers 

and plant extracts. Green synthesis of metal NPs is 

recently gaining attention as a reliable, sustainable, and 

eco-friendly technique for synthesizing metal/metal 

oxides nanomaterials, hybrid materials, and bio 

inspired materials
44

. For e.g.; the silver and gold NPs 

which were synthesized using chemical methods
45-48

 

are being synthesized using green methods/sources, 

like bacteria, fungi, algae, and plant extracts
44,49

, 

resulting in large-scale production with less 

contamination. These green synthesized-silver 

nanoparticles are 10-30 nm by TEM and SEM/EDS 

(Energy-dispersive spectra) revealed that these 

nanoparticles contain silver in its pure form
50

. 

Polymeric micelles (PMs) 
PMs range from 10 to 100 nm, have a unique core-

shell structure and are used for drug delivery of 

hydrophobic drugs. The inner hydrophobic core 

incorporates the poorly water-soluble drugs and is 

surrounded by hydrophilic shell
51,52

. Polymeric 

micelles are formed by electrostatic interactions, using 

charged block copolymers of oppositely charged 

macromolecules, resulting in the formation of 

micelles
53

. The commonly used core-forming blocks of 

PMs, include poly(propylene oxide) (PPO) which 

belongs to pluronics
54

, poly(esters) such as poly(lactic 

acid) (PLA)
55

, hydrophobic poly(amino acids)
56

, 

copolymers of lactic acid and glycolic acids
57

, 

poly(caprolactone) (PCL)
58

 and chitosan
59

. 

Poly(ethylene glycol) (PEG) conjugation is mainly 

used as a hydrophilic block in micelles
60,61

 to improve 

their in vivo stability
62

, increase the half-live of the 

drug in the bloodstream, leading to less frequent 

dosing. PEGylated NPs become hydrophilic and attain 

near-zero zeta potential. PEGylation minimizes the 

attachment of serum proteins such as opsonins that 

confers an increased likelihood of NPs phagocytosis by 

the mononuclear phagocyte system
29

. However, PEG 

immunogenicity is a potential drawback. The anti-PEG 

immune response and formation of anti-PEG 

antibodies not only limits the efficacy of PEGylated 

treatment strategies
63

 but hypersensitivity reaction to 

them, can be life threatening in some cases. This is 

driving the development of PEG alternatives
36

, such as; 

poly (N-vinyl-2-pyrrolidone) (PVP)
64

, poly (glycerols), 

poly (acrylic acid) (PAA)
65

. Modifications of PEG with 

bottle brush architecture/POEGMA are being evaluated 

to overcome PEG-associated accelerated blood 

clearance (ABC) phenomenon
66,67

. 

Polymer-small molecule conjugate 
Polymer-small molecule conjugate used in 

nanomedicines include; N-(2-hydroxypropyl) 

methacrylamide copolymer, poly (glutamic acid), 

dextran, polybutadiene (a bilayer-forming polymer 

that can be cross-linked for enhanced vesicle 

stability)
68

 and cyclodextrin (CD)-based polymers
69,32

. 

The drug is (i) covalently bound to the polymer 

carrier by chemical conjugation (e.g., by hydrazone 

bond) or (ii) non-covalently entrapped using 

physical interaction, solubilisation, or polyionic 

complexation
60

 or via metal-ligand coordination 

interactions
70

. The bio adhesive property of CD may 

facilitate in the drug permeability by increasing contact 

time of drug at surface of the mucosa. It is therefore 

being used for pulmonary, oral, ocular drug delivery 

and theranostics
71

. 

Polymeric vesicle 
Polymeric vesicle also known as polymersomes, 

are self-assembled from amphiphilic block or graft 

copolymers to form hollow structures surrounded by a 

polymeric bilayer membrane or complicated 

interdigitated and amphiphilic membrane structures
72

. 

Ye, 2014 developed biodegradable polymeric vesicles 

as a nanocarrier system for multimodal bio-imaging 

and anticancer drug delivery. They fabricated 

poly(lactic-co-glycolic acid) (PLGA) vesicles 

encapsulated with inorganic imaging agents of 

superparamagnetic iron oxide nanoparticles (SPION), 

manganese-doped zinc sulfide (Mn:ZnS) quantum 

dots (QDs) and the anticancer drug busulfan
73

. 
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Dendrimer 
Dendrimer are synthetic polymeric macromolecules, 

composed of branched monomers that are 

characterized by low polydispersity and good 

biocompatibility
74

. These are spherical, well-designed 

branching polymers with interior cavities and abundant 

terminal groups on the surface which can form stable 

complexes with drugs, plasmid DNA, oligonucleotides, 

and antibodies
75

. Dendrimers are made from several 

different polymers, including polyamidoamines 

(PAMAMs), Poly (amidoamine-organosilicon) 

dendrimers (PAMAMOS), Poly(propylene imine) 

dendrimers (PPI), chiral dendrimers, liquid crystalline 

dendrimers, – tectodendrimers, hybrid dendrimers 

(Table 4 & Fig. 4), multilingual dendrimers, micellar 

dendrimers
35

. Poly (amidoamine) (PAMAM) dendrimers 

is most commonly used dendrimers. The modifiable 

surface of the dendrimers allows conjugation with 

different molecules, like targeting ligands or drugs. 

Previously, modified PAMAM dendrimers with 

surface amino groups conjugated to folic acids have 

been used for the delivery of methotrexate. 

Lipid Polymer hybrid 

Lipid Polymer hybrid (LPHNP), are hybrid 

nanoparticles, composed of shell and polymer core 

which reduce outward diffusion of the encapsulated 

drug and are emerging in popularity as for drug 

delivery. Their advantages include controllable  

ultra-small particle size
48

, surface functionality, 

extremely high surface area to volume ratio, high drug 

loading, multiple therapeutic drugs, tunable drug 

release and good serum stability
76

. LPHNP are 

commonly formulated using-polymers-PLGA, PCL and  

zwitterionic lipids such as, 1,2-dipalmitoyl-sn- 

glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl- 

3-trimethylammonium-propane (DPTAP), (DOTAP)  

or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine 

(DOPE)
74-76

. Dave et al., 2017 prepared LPHNP of 

Norfloxacin with polylactic acid and soya lecithin which 

exhibited an average particle size from 178.6 ±  

3.7 nm to 220.8 ± 2.3 nm, and a surface charge 

ranging from +23.4 ± 1.5 mV to +41.5 ± 3.4 mV
80

.  

Characterization of polymeric nanoparticles based 

on electron microscopy techniques 

Scanning electron microscope (SEM) 

SEM analyzes the size, shape and surface 

morphology of the nanoparticles (Table 3 & Fig. 4). 

SEM provides finer surface structure images by 

operating at lower accelerating voltages and is 

advantageous when compared to TEM and cryo-TEM. 

Since the penetration and diffusion area of incident 

electrons is shallow, the number of secondary electrons 

emitted from the surface is maximized compared to 

backscattered electrons generated from within the 

specimen and the surface structures are clearly 

gained
81

. Ethyl acetate (EA), acetone (ACE), and 

dichloromethane (DCM) are organic solvents used to 

produce stable nanoparticles. NPs prepared using these 

solvents have discrete, spherical morphology with 

smooth surface and low porosity on SEM imaging
82

. 

Recent study by Rades et al., 2014, has proven that 

combination of complementary techniques as SEM, 

T-SEM, EDX and scanning Auger microscopy (SAM) 

can be a powerful strategy for comprehensive 

morphological and chemical evaluation of the 

properties of nanoparticles
83

. 

Transmission electron microscopy (TEM) 

TEM analyzes the morphologies of polymeric 

nanoparticles at low-to-medium magnifications 

(Table 3). TEM produces high-resolution, detailed 

images of 1 nanometer in size by using high voltages to 

increase the acceleration speed of electrons, which, pass 

through the sample and increase the image resolution. 

TEM resolution is hampered by spherical and chromatic 

aberrations. TEM investigations are mostly conventional 

and make use of mass-thickness contrast of selectively 

stained polymer samples for image formation. These 

stains include or provide better structural differentiation. 

Special techniques used for polymer imaging, including 

electron diffraction, high-resolution TEM, phase contrast 

transmission electron microscopy, low/high-voltage 

TEM, and scanning- TEM
84

.  

Generally, polymeric NPs smaller than about 

200 nm diameters, are dispersed onto a carbon-coated 

grid for TEM inspection. These are composed of only 

low atomic number elements with similar density. 

Mass-thickness contrast in chemically untreated 

polymers can be caused by varying specimen 

thickness, alternatively, the selective staining of one (or 

more) of the components by a heavy metal oxide is 

required for the TEM examination of block copolymer 

systems. Since the aggregation of NPs can change their 

physical properties, therefore, TEM has been applied to 

characterize the dispersion of NPs after their 

internalization. An additional advantage of TEM is that 

it allows the assessment of the changes of subcellular 

structures caused by the NPs
85

. 
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The main disadvantages of TEM are difficulty in 

quantifying large number of particles, difficulty in 

characterizing very homogenous samples, researcher 

training and image artifacts resulting from specimen 

preparation
85

. Furthermore, traditional TEM cannot be 

used to study the growth of NPs in solution. It is not 

possible to directly correlate diameters by TEM in the 

dry state with hydrodynamic diameters in solution. 

Therefore, the TEM diameters need close correlation 

with DLS
6
. 

High-resolution TEM (HRTEM) 

HRTEM uses phase-contrast imaging, and 

combines both transmitted and scattered electrons to 

produce the image
86

. HRTEM has become the most 

common technique to characterize the internal 

structure of NPs. For e.g., HRTEM has been used to 

study the effect of ligands in the final structure of 

NPs. HRTEM can give information regarding NP 

growth and structure-related properties. However, 

characterization of NPs is not always feasible by this 

technique. This is caused by the random orientation of 

the crystals relative to the electron source, resulting in 

poor alignment and formation of complex images that 

cannot be directly used to define the structure
87

.  

Cryo-TEM 
Cryo transmission allows for the specimen of interest 

to be viewed at cryogenic temperatures (Table 3). 

Cryo-TEM assesses the morphology, two-dimensional 

fluidity, lipid shell in nanoparticles in near-unaltered 

samples in their frozen-native environment by vitrifying 

them at cryogenic temperatures
88

. The morphology and 

volume transitions of thermo-responsive core–shell 

NPs can be imaged by cryo-TEM. cryo-TEM achieves 

sub-nanomolar resolutions of morphology of the 

thermosensitive shell without staining
89

.  

Liquid TEM 
In 2003, Williamson et al., developed a TEM liquid 

cell using epoxy-sealed silicon nitride (SiN) 

membranes
90

. Liquid TEM allows the characterization 

of NPs within fluids is under constant movement. It 

allows for the tracking of the nanoparticle trajectory 

while this is growing, providing direct observation of the 

Table 3 — Electron microscopy of polymeric nanoparticles 

Technique Information obtained Limitations of Technique References 

SEM Widely used method to (i) detect and define size and size 

distribution of NPs, (ii) To visualize NPs in 3D, their 

dispersion in matrices/supports 

conventional SEM imaging mode cannot 

detect NPs on the back side of the support film 

The lateral resolution of T-SEM is limited to 

NP sizes down to 5–10 nm. 

[85] 

T-SEM-EDX (i) By using transmission in SEM (T-SEM) surface as well as

in depth analysis of NPs is performed, (ii)SEM-EDX/SAM

Energy Dispersive X-ray Spectroscopy (EDX), and Scanning

Auger Microscopy (SAM) characterizes the elemental-

chemical composition of NPs and size of NPs, (iii) It gives

precision in lateral dimensions of NPs

Needs a very high-sensitivity EDS detector 

with a very large active area for 

unambiguous detection of core-shell 

characteristics of silica based NPs. 

[126] 

HRSEM High-resolution SEM(HRSEM) images the morphology of

Au NPs and their dispersion in cells and tissues

It can scale down and study the specific spatial arrangements 

of nanometric elements in their biological context and 

examine the possible interactions between the two 

In biological specimens, metal coating is 

necessary to decrease charging artefacts. 

This increases the risk of radiation damage 

to the samples. 

[85,127] 

TEM Most common technique to (i) define NP size, shape, 

interparticle distance-aggregation state, monodispersity of 

NPs, (ii) characterize nanocomposites (eg. Quantum dots, 

metals and magnetic NPs) and change in their structure by 

change in surface charge, (iii) Characterizes Growth kinetics 

of NPs 

difficulty in quantifying a large number of 

particles or misleading images due to 

orientation effects, aggregation of NPs 

during the drying of the colloid suspension 

[128-130] 

HRTEM High-resolution TEM (HRTEM) additionally (i) characterizes 

the crystal structure of nanoparticles, (ii) It distinguishes 

monocrystalline, polycrystalline and amorphous NPs, (iii) 

characterize polymer nanocomposites (PNCs), (iv) used to 

study NP defects 

HETEM needs high voltage, the resultant 

increased temperature, affects the surface 

quality of the PNC. Therefore, for imaging 

PNCs- SEM provides 3D image and is 

preferred 

[131,132] 

Liquid TEM Depicts NP growth in real time, Characterises Growth 

kinetics of NPs 

studies single particle motion, super lattice 

formation 

[133] 

Cryo-TEM Characterises Growth kinetics of NPs, their mechanisms, 
aggregation pathways 

It avoids the development of artefacts or 
destroyed samples 

[134]
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nanoparticle evolution. However, it suffers from lower 

image resolution, due to the SiN membrane and liquid 

layer thickness, which scatters the electron beam
91

.  

Conclusion 

The polymeric nanoparticles are biodegradable and 

have half-life based on its interaction with biological 

system. This interaction is defined by their size, 

morphology and unique set of physical (optical, 

magnetic, electronic and catalytic) and chemical 

properties (pH, surface charge)
92-97

. These properties 

significantly contribute to their pharmacological 

targeting, their pharmacokinetics in the body, by 

influencing various physicochemical mechanisms 

such as their diffusivity, interactions with biological 

materials, internalization by cells, functionalization 

etc. Thus emphasizing, the need for a meticulous 

characterization of newly synthesized polymeric 

nanoparticles by advanced electron microscopy 

techniques such as scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), 

Transmission scanning electron microscopy (T-SEM), 

High-resolution SEM (HRSEM), High-resolution 

TEM (HRTEM), scanning TEM (STEM), liquid 

TEM, cryo-TEM.  
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