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Drug repurposing is a major approach used by researchers to tackle the COVID-19 pandemic which has been worsened 
by the current surge of delta variant in many countries. Though drugs like Remdesivir and Hydroxychloroquine have been 
repurposed, studies prove these drugs have insignificant effect in treatment. So, in this study, we use the already FDA 
approved database of 1615 drugs to apply semi-flexible and flexible molecular docking methods to calculate the docking 
scores and identify the best 20 potential inhibitors for our modelled delta variant spike protein RBD. Then, we calculate 
2325 1-D and 2-D molecular descriptors and use machine-learning algorithms like K-Nearest Neighbor, Random Forest, 
Support Vector Machine and ensemble stacking method to build regression-based prediction models. We identify 15 best 
descriptors for the dataset all of which were found to be inversely correlated with ligand binding. With only these few 
descriptors, the models performed excellently with an area under curve (AUC) value of 0.952 in Regression Error 
Characteristic curve for ensemble stacking. Therefore, we comment that these 15 descriptors are the most important features 
for the binding of inhibitors to the spike protein and hence these should be studied properly in terms of drug repurposing and 
drug discovery. 
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The recent outbreak of Coronavirus (COVID-19) is 
known to be caused by a recently discovered virus, 
Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2). COVID-19, a novel coronavirus 
disease, was declared as a pandemic on March 11, 
2020 by the World Health Organization (WHO). 
Globally, as of 19th September 2021, 221,648,869 
confirmed cases of COVID-19 have been reported, 
including 46,97,099 deaths, notified to the WHO1. 
These numbers are rapidly rising worldwide, thereby 
creating an evolving emergency situation. SARS-
CoV-2 virus undergoes mutation over time, like other 
viruses. The bulk of the changes have little to no 
impact on the virus's characteristics. Scientists keep 
track of all variants, but some may be classified as 
variants of interest (VOIs), concern, or high 
consequence because of how fast they spread, how 
severe their symptoms are, and how they all are cured. 
VOIs include the alpha (B.1.1.7), beta (B.1.351), 
gamma (P.1), and delta (B.1.617.2) strains2. 

According to reports, the Delta version is more than 
twice as infectious than previous variants.  

Some evidences show that the Delta form causes 
more serious illness in unvaccinated people than prior 
variants3.  

The delta variant is defined by (G142D), 19R, 
157del, 156del, R158G, T478K, L452R, D614G, 
D950N, P681R, mutations in the spike protein. Most 
of these mutations could have an effect on immune 
responses aimed towards the receptor binding 
protein's major antigenic areas (452 and 478), as well 
as the deletion of a portion of the N terminal domain 
(156 and 157). The P681R mutation alters an amino 
acid immediately next to the furin cleavage site, 
which is a crucial step in allowing the virus to enter 
human cells and therefore increasing viral 
infectivity4,5. 

The receptor-binding domain (RBD) of SARS-
spike CoV-2's protein interacts with the human 
angiotensin-converting enzyme 2 (ACE2) receptor to 
initiate SARS-CoV-2 infection6. The medications 
hydroxychloroquine (HCQ) and remdesivir (RDV), 
which were previously used for different reasons, are 
being repurposed to treat COVID-197. A recent study 
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established the use of drugs used against hepatitis C 
virus like velpatasvir, vitamin D derivatives like 
ergocalciferol, and drugs used to prevent asthma 
symptoms like zafirlukast as strong potential 
inhibitors of S-protein-hACE2-binding using rigid 
docking and molecular dynamics simulations8. 
Another study utilized the machine learning model 
based on the Naive Bayes algorithm for the 
repurposing of therapeutic agents for the treatment of 
COVID-199.  

Here, we have performed docking studies and 
virtual screening of 1615 FDA approved drugs in 
order to find potential inhibitors which can be 
repurposed for the treatment of COVID-19. The 
repurposed drug compounds discovered in this study 
may be investigated in the lab for their effectiveness 
against S-protein binding to hACE2 and could lead to 
a quick and effective COVID-19 treatment. We have 
also built a predictive model using machine learning 
regression algorithms and determined 15 features that 
are capable of defining the correlation with the 
calculated docking scores in the best manner. 

Materials and Methods 

Protein 3D model generation 
A partial surface glycoprotein of SARS-CoV-2 

(GenBank ID: QUX03821.1) delta variant (B.1.617.2 
lineage) was downloaded from the NCBI protein 
database10. This protein sequence was uploaded in six 
3D protein modelling servers which include HHpred, 
IntFOLD, RaptorX, SPARKS-X, PHYRE2, and 
PSIPRED (Fig. 1).  

HHpred server helps in detection of homology 
between protein sequences and prediction of protein 
structure by the implementation of pairwise 
comparison of profile hidden Markov models 
(HMMs)11. The FASTA sequence was first uploaded in 
the HHpred server12,13 where PDB_mmCIF70_13_Jul 
was selected as the structural/domain database, 
Vir_SARS-CoV-2_31_Mar_2020 was selected as the 
proteome, and the job was submitted. One model was 
generated by selecting the top 5 hits as a template while 
another model was generated by selecting all the hits 
which had 100% identity (top 9 hits) as a template. 

Next, the IntFOLD Integrated Protein Structure and 
Function Prediction Server (Version 5.0)14,15 was used 
for 3D model generation. In this server, the single 
letter code of the target protein sequence was simply 
entered in the query box and submitted for prediction. 
Five 3D protein models were generated using this 
server. 

The RaptorX16–18 web server predicts the 3D 
protein structure using an ultra-deep convolutional 
residual neural network either from a primary 
sequence or a multiple sequence alignment. This 
server also generated five tertiary structure models for 
the input protein sequence. 

SPARKS-X19 web server recognizes the protein 
fold of the input target sequence to generate tertiary 
structure models. This server generated four tertiary 
structure models for the SARS-CoV-2 protein 
sequence. 

Next, the Phyre2 Protein Homology/analog Y 
Recognition Engine V 2.020 was used for 3D model 

Fig. 1 — The overall scheme of work followed in this paper 



DASH et al.: DRUG REPURPOSING AGAINST DELTA VARIANT OF SARS-CoV-2 881

generation. Two models were generated through this 
server. For the first model, normal modelling mode 
was selected while extensive modelling mode was 
selected for the second model. 

Finally, the DMP fold 1.0 option was selected on 
the PSIPRED21,22 home page to generate tertiary 
structure models using the sequence data. DMP fold 
uses deep learning to predict interatomic distances 
bounds, torsion angles, and the network of hydrogen 
bonds on the main chain, which are used to construct 
models in an iterative manner. This server provided 
two tertiary structure models for the SARS-CoV-2 
protein sequence. 

Protein structure validation 
All the protein tertiary structure models generated 

from the above mentioned servers were further 
validated using the QMEAN423–25, PROCHECK26,27, 
ProSA28,29, and PROQ30 servers.  

Active site residue prediction 
The crystal structure of SARS-CoV-2 spike 

receptor-binding domain bound with human 
Angiotensin Converting Enzyme 2 (hACE2) was 
retrieved from RCSB PDB (PDB ID: 6M0J). This 
crystal structure was composed of two chains: the 
chain A consisting of the hACE2 protein and chain 
E consisting of the SARS-CoV-2 spike protein 

(Fig. 2A). The chain E of 6M0J was superimposed 
with the HHpred5 tertiary model predicted for the 
spike protein using PyMOL31.  

To find the interface residues in the PDB crystal 
structure of 6M0J, first the file obtained from RCSB 
PDB was processed by removing the water molecules 
and other unnecessary ligands. Then, interface 
Residues. py python script was run in PyMOL which 
provided us with a list of interface residues 
(Fig. 2B & C) on chain A and chain E of 6M0J.  

Preparation of drug molecules 
1615 available FDA approved drug molecules were 

retrieved from the ZINC1532 database in .sdf format. 
Two existing potential SARS-CoV-2 drug molecules 
namely, remdesivir and hydroxychloroquine were 
downloaded from DrugBank and included in our drug 
molecule set for comparison. Open babel 3.0.033 
software was used to convert all the drugs from .sdf 
format to .pdb files. These .pdb files were then 
converted into an Autodock-specific coordinate file 
format, known as PDBQT format. This conversion 
was carried out using a python script, 
prepare_ligand.py, which can be found in the MGL 
Tools package. PDBQT is identical to PDB, except it 
also contains AutoDock 4 (AD4) atom types ('T') and 
partial charges ('Q'). The atoms of the drug molecules 
must be given the proper AutoDock atom types, 

Fig 2 — (A) 3D structure of the best model (HHpred5 model) as concluded from the validation scores for the spike protein of delta
variant of SARS-CoV-2; and (B) List of interacting residues on chain A (hACE2) and chain E (spike) of crystal structure (6M0J)
determined using python script in PyMOL. C. Co-crystallised structure of hACE2 protein (chain A - red) and SARS-CoV-2 Spike protein 
(chain E - orange) (PDB ID: 6M0J). Interacting residues of the respective proteins are shown in stick representation and are colored in
green and cyan in hACE2 and SARS-CoV-2 Spike protein, respectively. 
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Gasteiger charges must be added if required, non-
polar hydrogens must be merged, aromatic carbons 
must be detected, and the 'torsion tree' must be set up. 

Preparation of target protein molecule 
To prepare the HHpred5 protein molecule, first the 

water molecules were removed from the tertiary 
structure of protein as the water molecules may interfere 
with the docking process. Further, polar hydrogens and 
6.0 Kollman charges were added to the protein structure, 
such that the charge was equally distributed across the 
protein using AutoDock Tools-1.5.634,35. To guarantee 
compatibility with Autodock vina while conducting 
molecular docking simulations, the generated protein 
structure was stored in .pdbqt format. 

Docking grid generation 
The interface residues of spike protein of 6M0J that 

interact with the hACE2 protein were chosen as the 
active binding site for drug molecules. A large grid 
box enclosing all the interface residues of the spike 
protein was created to cover all of the potential ligand 
binding sites in the protein structure. Grid option of 
AutoDock Tools was used to create a grid box of 56 × 
60 × 112 with a spacing of 0.375. The binding pocket 
was set at x = 78.999, y = −17.378, and z = −13.748 
(Suppl. Fig. 1B). The grid box defines a space which 
AutoDock explores to find the best possible 
conformation of any given ligand and determine the 
highest binding affinity. The values for 
exhaustiveness, number of modes and energy range 
were set at 12, 9 and 3, respectively. 

Semi-flexible and flexible docking 
First, semi-flexible docking was performed on all 

the drug molecules where the protein target was kept 
rigid and the drug molecules as flexible to attain a 
degree of freedom torsions bridged by the rotational 
parameter. Semi-flexible docking was performed 
three times for all drug molecules using AutoDock 
Vina36,37 and Dmean (mean of the docking values) 
values were calculated. Based on the Dmean values, 
top 20 drug molecules with the lowest binding energy 
and therefore the highest binding affinity, along with 
hydroxychloroquine and Remdesivir were chosen for 
flexible docking. In flexible docking, both the ligand 
and the receptor molecule are treated as flexible and 
allowed to attain different conformations while 
docking. For flexible docking, the previously 
determined interface residues of the spike protein 
were chosen as flexible residues for the HHpred5 
receptor molecule using AutoDock Tools. AutoDock 

Vina was used to perform flexible docking three times 
for the chosen drug molecules using docking 
parameters same as that used for semi-flexible 
docking. All the residues interacting with each of the 
top 20 drugs and the 2 potential drugs in the output 
complexes obtained from flexible docking, and the 
kind of interactions occurring between the ligand and 
the receptor molecule were determined using 
Discovery Studio Visualizer38. 

Protein-protein docking studies 
All the complexes obtained after flexible docking 

were further docked with hACE2 protein (chain A of 
6M0J) using the ZDOCK39 server, one by one. A 
similar protein-protein docking was also performed 
between hACE2 (chain A of 6M0J) and HHpred5 
protein in order to analyse the effect of the drug 
molecules on the binding efficiency of hACE2 and 
spike protein (Suppl. Fig. 2)40,41.  

Molecular descriptor calculation and dataset preparation 
Molecular descriptors are the defining 

mathematical representations of the transformed 
chemical properties of the molecules. With the help of 
PaDel (version 2.21) software42, all the 1D and 2D 
descriptors were calculated. PubChem fingerprinter 
was used to calculate the molecular fingerprints. All 
the calculated 2325 descriptors and fingerprints were 
then cleaned and processed by python (version 3.8.8) 
programming. A 90% cut-off was used to identify the 
useful descriptors for the dataset (i.e. the descriptors 
which showed zero or null values for more than 90% 
of the molecules were removed). Rescaling 
(whitening) of the dataset was done by scikit-learn 
object StandardScaler to standardize the distributions 
by following formulae:  

𝑧 ൌ  
ሺ𝑥 െ 𝜇 ሻ

𝜎

where, z is the standardized value of x. μ and σ are the 
mean and the standard deviation of the descriptor, 
respectively. This standardized data was fed as 
features to train the machine learning algorithms. 

Application of machine learning algorithms 
Three well established machine learning regression 

algorithms - K-nearest neighbour (KNN)43, Random 
Forest (RF)44 and Support Vector Machine (SVM)45 
were used to build up the predictive models. To detect 
the best hyperparameters that enhance the learning 
process, hyperparameter tuning was done for all the 
used algorithms by GridSearchCV46. For KNN, 
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‘n_neighbors’, ‘weights’ and ‘algorithm’ were the 
selected hyperparameters for tuning. ‘N_estimators’ 
and ‘max_features’ were used for Random Forest. 
‘C’, ‘gamma’ and ‘kernel’ were tuned for SVM. 
Train-test-split method was used for dividing the 
dataset into training and test set in 70:30 ratio. All the 
models were generated initially with 5-fold cross-
validation based on the scoring function of mean 
absolute error. The best detected parameters were 
used for training the model and making predictions on 
the test set.  

Ensemble method 
Ensemble learning (stacking) method was used to 

combine the three base models and generate a meta-
model that increases the model-score along with 
reducing the bias. Scikit-learn’s ‘Stacking Regressor’ 
API was used for ensemble learning. ‘Voting 
Regressor’ was used as an ensemble meta-estimator to 
build the stacked model based on the best 
hyperparameters of the three selected base models.  

Feature selection and new model generation 
To detect only the most important features out of the 

large set of descriptors (features) used for building the 
initial models, feature selection method of ‘Select K 
Best’ API was used. Top 15 features out of 1350 were 
selected by this method based on the feature-scores 
(F-scores) (Suppl. Fig. 3). With only these 15 features, 
we repeated the application of algorithms and ensemble 
stacking steps again to build new regression models 
and evaluate their performance with reduced features. 
However, 10-fold cross-validation was used at this 
stage to reduce further bias.  

Model evaluation 
For the assessment of the general merits of the 

regression models, Regression Error Characteristic 
(REC) curves were generated. The Area Under Curve 
(AUC) values calculated from the REC-curves can be 
used to study the overall performance of the models47. 
Briefly in our work, we used SlickML (version 0.1.3) 
machine learning library to plot the regression metrics 
from the test data predicted by the models48.  

Results and Discussions 

3D model generation and validation 
Due to the unavailability of a crystal structure of 

the delta variant of the spike protein, the tertiary 
protein structure was modelled using 5 web servers. 
In total, 20 models were generated using these servers 
which were further validated using 4 scoring schemes. 
The scores obtained from these servers for each of the 
20 models are given in (Table 1). 

The cut-off criteria used to evaluate a good quality 
model were: QMEAN4 value should be close to zero 
(Suppl. Table 1), more than 90% of the residues 
should be present in the most favourable region in the 
Ramachandran plot generated using PROCHECK 
(Suppl. Table 2), LG score should be greater than 4 
and MaxSub score less than −0.8 for the results 
obtained from PROQ server (Supplementary Table 3), 
and Z-Score values obtained from ProSA should be 
close to zero (Suppl. Table 4). 

Many models were able to qualify the cutoff 
criteria set for each of the validation scores, but only 
the results of HHpred5 and IntFOLD4 remain 
consistently good in all the validation servers. The 
structure of these two models were visualized using 
PyMOL and were found to be very similar. Also, the 
overall validation scores of HHpred5 are better than 
that of IntFOLD4. Therefore, based on these criteria 
the HHpred (5 hits) or HHpred5 model (Fig. 2A) was 
found to be the best and thereby, it was selected for 
subsequent analysis.  

Further, the RMSD value was obtained by 
superimposing the spike protein of the crystal 
structure (chain A) and the modelled spike protein. 
The RMSD value was found to be 0.592 which 
indicates that our model HHpred5 is very similar to 
the crystal structure of spike protein in 6M0J.  

Semiflexible and flexible docking 
1615 FDA approved drugs from ZINC15 database 

along with hydroxychloroquine and remdesivir from 
DrugBank database were docked with the HHpred5 
receptor molecule using AutoDock vina. A lower 
docking score represents stronger binding efficiency 

Table 1 — HHpred5 model validation results obtained from QMEAN4. PROCHECK, PROQ, and ProSA servers 

Model QMEAN4 PROCHECK Ramachandran Plot analysis 
% of residues in 

PROQ ProSA

Most Favoured 
Region 

Additional 
Allowed Region 

Generously 
Allowed Region 

Disallowed 
Regions 

LGscore MaxSub Z-Score

HHpred5 −1.62 90.7 9.3 0 0 11.177 −0.83 −1.69
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of the ligand with the spike protein. To validate the 
docking results, all the drugs were docked three times 
while keeping the parameters constant for all the 
trials. Any deviation in the docking scores across the 
three trials were noted (Fig. 3A). ZINC000169289388 
had the lowest Dmean score of −12.6 and no 
deviation was observed across the three trials. It was 
followed by ZINC000096006020 which had a Dmean 
score of −12.13333333 and a standard deviation of 
0.152752523. All our potential drugs have a Dmean 
score less than −10.4. Whereas, hydroxychloroquine 
and remdesivir have a Dmean score of −4.97 and 
−8.1, respectively, which are relatively higher than
any of our selected drugs (Table 2). This indicates
that hydroxychloroquine and remdesivir have a lower
binding efficiency to the spike protein when
compared to the top 20 drugs mentioned in the list37.

Next, flexible docking was performed for these 
top 20 drugs along with hydroxychloroquine and 
remdesivir using AutoDock vina. Again, to validate 
the results of flexible docking each drug molecule 
was docked three times. The deviation in the docking 
scores across the three trials were noted. The results 
of flexible docking and the ranking of the drugs based 
on FDmean remain consistent with that obtained from 

Fig. 3 — The scatter plot at the left represents percent change in the standard deviation of docking score with respect to mean score vs.
mean docking score. The red dots depict the value of top 20 drugs while the blue dots represent the values of the rest of the drugs. Red 
dots which are closer to zero represent drugs that have minimum deviation in their docking scores across the three trials; Heatmap 
(at the right) indicating the types and number of non-covalent interactions between the selected drug molecules and SARS-CoV-2 Spike 
protein residues. As a residue might have several interactions, and only the important residues for the hACE2 protein are displayed in 
Fig. B, the number of interactions per drug molecule can be greater than the number of residues shown in Fig. B 

Table 2 — Dmean (mean of rigid docking scores), Dstd  
(standard deviation in rigid docking scores), FDmean  

(mean of flexible docking scores), and FDstd (standard deviation 
in flexible docking scores) values obtained after performing rigid 

docking and flexible docking for the top 20 drugs 

ZINC_ID Dmean Dstd FDmean FDstd 

ZINC000169289388 −12.6 0 −12.5333 0.04714
ZINC000096006020 −12.133 0.153 −12.0667 0.329983
ZINC000085537053 −11.933 0.289 −11.6667 0.094281
ZINC000169621228 −11.567 0.058 −11.4667 0.124722
ZINC000052955754 −11.5 0 −11.4333 0.094281
ZINC000203757351 −11.5 0 −11.4 0.141421
ZINC000169621219 −11.3 0.346 −11.3667 0.169967
ZINC000169289767 −11.167 0.231 −11.3333 0.124722
ZINC000003978005 −11 0 −11.3 0.141421
ZINC000003932831 −11 0 −11.2667 0.188562
ZINC000085536932 −10.9 0.436 −11.2333 0.124722
ZINC000253630390 −10.7 2.18E-15 −11.0333 0.402768
ZINC000012503187 −10.6 0 −10.9 0.496655
ZINC000164528615 −10.6 0.436 −10.6333 0.094281
ZINC000169344691 −10.567 0.666 −10.5667 0.169967
ZINC000253387843 −10.5 1.039 −10.4667 0.04714
ZINC000242548690 −10.467 0.115 −10.4 0.08165
ZINC000169621220 −10.4 0 −10.4 0.08165
ZINC000053683151 −10.4 0 −10.3667 0.04714
ZINC000008220909 −10.4 0 −10.3 0.141421

HCQ −4.967 0.125 −5.1 0.294392
Remdesivir −8.1 0 −8.16667 0.169967
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Dmean scores. Here, ZINC000169289388 had the 
lowest FDmean score of −12.5333 with a small 
standard deviation of 0.04714. The second-best 
potential drug on our list was ZINC000096006020 
which had a FDmean score of −12.0667 and a 
standard deviation of 0.329983. Again, 
hydroxychloroquine and remdesivir which have a 
FDmean score of −5.1 and −8.17, respectively, have a 
poor binding efficiency to the spike protein when 
compared to the top 20 drugs in our list (Table 2). This 
conclusion is consistent with the results of some 
previous research studies which indicate that the 
repurposed drugs, Remdesivir and hydroxychloroquine, 
show no significant or non-significant impact on the 
survival of patients infected with SARS-CoV-249,50. 

The non-covalent bonds and interactions between 
the spike protein and the top 20 drugs with highest 
binding efficiency were visualized using Discovery 
Studio Visualizer (Suppl. Fig. 2A-P). All the drugs 
reported in the list had 1 or more hydrogen bonds and 
7 or more van der waals interactions (Fig. 3B). The 
top two drugs, ZINC000169289388 (Fig. 4A) and 
ZINC000096006020 (Fig. 4B), which had the highest 
binding efficiency with the spike protein based on 
Dmean and FDmean scores were observed to form a 
total of 18 bonds each with the spike protein receptor 
molecule. ZINC000169289767 which has the 8th best 
docking score was observed to form the maximum 
number of bonds with the spike protein. 
ZINC000169289767 formed 27 bonds which 
consisted of 3 conventional hydrogen bonds with the 
residues GLY-1, LEU-13, and VAL-98, 1 carbon 
hydrogen bond with ASP-13, 1 pi-pi T shaped 
interaction with TYR-39, 4 alkyl interactions with 
ILE-6, TYR-11, and VAL-21, 3 pi-alkyl interactions 
with the residues VAL-21, and LEU-13, 3 salt bridges 
with the residues GLY-1, ARG-54, and ARG-97, and 
12 van der waals interactions. The drugs 

hydroxychloroquine and remdesivir formed 15 and 22 
bonds, respectively, with the spike protein 
(Suppl. Fig. 2O & P). The bonds formed by 
hydroxychloroquine consisted of 0 hydrogen bonds, 2 
alkyl interactions with ILE-6 and PRO-95, 3 pi-alkyl 
interactions with the residues ILE-6, TYR-39, and 
PHE-85, 1 halogen bond with ASP-30, and 9 Van der 
Waals interactions. On the other hand, the bonds 
formed by remdesivir consisted of 1 conventional 
hydrogen bond with ARG-54, 1 carbon hydrogen 
bond with ARG-40, 1 pi-sigma interaction with TYR-
11, 3 alkyl interactions with the residues VAL-98, and 
LEU-80, 3 pi-alkyl interactions with the residues 
TYR-11, TYR-83, PHE-85, and 13 Van der Waals 
interactions. 

Protein-protein docking 

In order to determine if our reported potential drugs 
are capable of inhibiting the binding or reducing the 
binding efficiency between the spike protein and 
hACE2 protein, protein-protein docking was 
performed using ZDOCK. ZDOCK provides a score 
to indicate the binding efficiency between any two 
proteins. A higher ZDOCK score indicates better 
binding efficiency39,51. First, a protein-protein docking 
was performed between the hACE2 protein (chain A 
of 6M0J) and the modelled spike protein (HHpred5). 
This was performed to determine the binding 
efficiency of spike protein with hACE2 protein in the 
absence of any drug molecule. Then, the output 
complexes obtained after flexible docking of the 
ligands with the spike protein were docked 
individually keeping the hACE2 protein as receptor. 

Based on the results obtained after protein- 
protein docking (Table 3), we inferred that 
ZINC000169289388 which was observed to have the 
best binding efficiency with spike protein based on 
the docking scores, is in contrast playing a very minor 

Fig 4 — 2D interaction diagram of top 6 potential drugs that can inhibit the binding of spike protein and hACE2 protein. 
(A) ZINC000169289388, (B) ZINC000096006020, (C) ZINC000085537053, (D) ZINC000169621228, (E) ZINC000052955754,
(F) ZINC000203757351.
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role in inhibiting the interaction of spike protein with 
the hACE2 protein as it is able to reduce the binding 
affinity of spike protein and hACE2 protein from 
2003.497 to 2001.068, which is a minute change. On 
the other hand, ZINC000096006020 which has the 
second highest binding efficiency with spike protein, 
is also capable of inhibiting the interaction of spike 
protein and hACE2 protein to a great extent.  

It reduces the binding affinity of spike protein with 
hACE2 from 2003.497 to 1163.582. Also, 
ZINC000003978005 which ranks 9th on the list of 
drugs with highest binding efficiency with the spike 
protein is found to be capable of inhibiting the 
interaction between spike protein and hACE2 protein 
to the largest extent, that is, a reduction of 54.5% is 
observed in the binding score as it goes down from 
2003.497 to 1092.568. The ZDOCK score obtained 
for hydroxychloroquine and remdesivir are 1815.96 
and 1874.678 which indicates that these drugs 
are relatively less efficient in inhibiting the 
interaction between spike protein and hACE2 
protein when compared to most of the drugs listed in 
the (Table 3). 

Application of machine learning algorithms 
Regression based prediction models were built using 

the selected methods (KNN, RF, SVM, Ensemble 
stacking) on the docking scores generated by Autodock 
VINA and molecular descriptors calculated by PaDel. 
The cross-validated mean absolute errors (MAE) were 
used as the parameters for comparing the performance 
of each algorithm on the training set. When the entire 
dataset was used, all the algorithms were found to be 
performing well with MAE ranging from −0.3 to −0.4 
(Fig. 5A & B). Then the top 15 features were selected by 
Select K Best f-statistics for regression to evaluate the 
best features. Briefly, the F-score can be calculated by 
following formula:  

F-score = 
ቀ
ೃೄೄభషೃೄೄమ

ೖమషೖభ
ቁ

ቀ
ೃೄೄమ
೙షೖమ

ቁ

where, residual sum of squares of the two compared 
models are represented as RSS1 and RSS2, 
respectively. k1 and k2 are the number of free fitting 
parameters the first and second model have, and n is 
the total number of data samples.  

Table 3 — Scores obtained on Spike Protein docking with hACE2 protein in the presence and absence of the 
selected drugs performed using ZDOCK 

Protein 1 (Receptor) Protein 2 (Spike protein - Ligand complex) ZDOCK Score 

hACE2 (6M0J:A) HHPRED 2003.497 
hACE2 (6M0J:A) HHPRED + ZINC000085536932 2024.133 
hACE2 (6M0J:A) HHPRED + ZINC000169289388 2001.068 
hACE2 (6M0J:A) HHPRED + ZINC000203757351 1992.046 
hACE2 (6M0J:A) HHPRED + ZINC000012503187 1982.698 
hACE2 (6M0J:A) HHPRED + ZINC000003932831 1980.457 
hACE2 (6M0J:A) HHPRED + ZINC000169621219 1927.258 
hACE2 (6M0J:A) HHPRED + ZINC000053683151 1914.12 
hACE2 (6M0J:A) HHPRED + ZINC000169289767 1906.348 
hACE2 (6M0J:A) HHPRED + ZINC000169344691 1891.584 
hACE2 (6M0J:A) HHPRED + ZINC000242548690 1820.48 
hACE2 (6M0J:A) HHPRED + ZINC000008220909 1794.348 
hACE2 (6M0J:A) HHPRED + ZINC000085537053 1776.154 
hACE2 (6M0J:A) HHPRED + ZINC000052955754 1699.153 
hACE2 (6M0J:A) HHPRED + ZINC000253387843 1659.921 
hACE2 (6M0J:A) HHPRED + ZINC000169621228 1354.333 
hACE2 (6M0J:A) HHPRED + ZINC000169621220 1236.522 
hACE2 (6M0J:A) HHPRED + ZINC000164528615 1203.584 
hACE2 (6M0J:A) HHPRED + ZINC000096006020 1163.582 
hACE2 (6M0J:A) HHPRED + ZINC000253630390 1115.343 
hACE2 (6M0J:A) HHPRED + ZINC000003978005 1092.568 
hACE2 (6M0J:A) HHPRED + HCQ 1815.96 
hACE2 (6M0J:A) HHPRED + Remdesivir 1874.678 
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These 15 features are the most ‘important features’ 
for the regression analysis of our dataset. In other 
words, it can also be stated that these 15 features have 
the best-defined correlation with our calculated 
docking scores. The relative contribution of the top 15 
descriptors is given in the bar plot (Fig. 5C). The 
Pearson coefficient analysis of these features shows 
that there is a high correlation themselves. However, 
all of them are consistently negatively correlated with 
Dmean (Fig. 5D). 

From Table 4, it is clear that the KNN algorithm is 
least affected by feature reduction. Ensemble stacking 
method, as expected, performed better than the three 
algorithms used in the experiment having an R2 value 
of 0.915 with all the descriptors and 0.88 with only 
15 descriptors. 

Evaluation of the regression models 
Evaluation of the predicted models was done by 

REC curves which provide statistics similar to the 
receiver operating characteristic (ROC) curves for 
classification problems. It helps in understanding the 
performance of the generated models across a wide 
range of possible errors. The cumulative distribution 
function of the error of the models (Fig. 6), shows that 
all the regressors are excellent and almost equally fit 
on the dataset with ensemble stacking method 
performing comparatively better having an area under 
curve (AUC) value of 0.952. The other calculated 
statistics and detailed evaluation results from 

Fig. 6 — Evaluation of the models by Regression Error
Characteristic (REC) Curve 

Table 4 — Comparative evaluation of the algorithms between the 
use of all the descriptors and only top 15 descriptors 

KNN RF SVM  Ensemble 

With all the descriptors 
Mean absolute error 0.37034 0.30945 0.30575 0.30311 
Root Mean squared 
error 

0.51281 0.42915 0.45328 0.41888 

Median absolute error 0.26667 0.22325 0.20517 0.20864 
Explain variance score 0.87312 0.91173 0.90174 0.91567 

R2 score 0.87312 0.91114 0.90087 0.91534 
With the top 15 descriptors 

Mean absolute error 0.3893 0.38347 0.38412 0.36493 
Root Mean squared 
error 

0.5353 0.53466 0.52615 0.49783 

Median absolute error 0.26794 0.27463 0.27736 0.28044 
Explain variance score 0.86208 0.86227 0.86661 0.88047 
R2 score 0.86174 0.86207 0.86643 0.88042 

Fig. 5 — Performance analysis of the selected algorithms on the training set in presence of all the calculated descriptors (A) and in 
presence of only top 15 selected descriptors; (B) The bar plot in figure; (C) represents the top 15 selected features in terms of F-score. 
The heatmap in figure; and (D) represents the correlation between the descriptors and mean docking score (Dmean) 
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SlickML are documented in the (Suppl. Table 5 and 
Figs 4-7). 
 

Analysing top 15 descriptor properties 
An analysis of the molecular descriptors was done 

for all the drug molecules used in this study. Based on 
the values of these important descriptors for the top 
20 potential inhibitors in our list, we determined a 
possible range of values for which they can be 
associated with the inhibition property of the 
interaction between spike protein and hACE2 protein. 
Based on the boxplot (Suppl. Fig. 3), we can infer that 
a potential drug/inhibitor should have SP-3 value 
around 20, SP-4 value around 15, SP-5 value in the 
range of 115 to 140, MPC2, MPC3, MPC4, MWC3, 
MWC5, MWC6, SRW4, SRW6, SRW8 values 
around 10, piPC2 value in the range of 15-25, MWC2 
value in the range of 75-100, and MWC4 value in the 
range of 140-190. Here, SP-3, SP-4, SP-5 descriptors 

indicate the chi path (simple and valence chi chain 
descriptors of the order 3,4, and 5, respectively), and 
piPC2 is the conventional bond order ID number of 
order 2 that define the molecular connectivity as 
stated by Kier and Hall52. MPC2, MP3, MPC4 
descriptors represent the molecular path counts of the 
order 2,3, and 4, respectively, MWC2, MWC3, 
MWC4, MWC5, MWC6 indicate molecular walk 
count of the order 2,3,4,5, and 6, respectively, and 
SRW4, SRW6, SRW8 indicate the self-returning walk 
count of the order 4, 6, and 8, respectively53.  

We also analysed the distribution map for each of 
the important descriptors separately (Fig. 7). The best 
20 inhibitors were overlaid on top of the entire drug 
set. Surprisingly, a distinct distribution pattern is 
observed. All the predicted potential inhibitors belong 
to the higher end in the normal distribution of all the 
ligands. Moreover, almost all the values for these 

(contd.)
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inhibitors were found to be in the 90th percentile 
range of the distribution. This apparently means that 
there is a precise relation between the properties of 
these important descriptors that contribute to the 
efficient binding of these molecules to the targeted 
delta strain spike model.  

Conclusion 
In conclusion, we present a promising virtual 

screening technique for discovering compounds that 
may limit and/or inhibit interactions between the 
human host and the SARS-CoV-2 virus. The most 
effective ligands, according to our hypothesis, are 
those that bind strongly to the spike protein at its 
binding region with hACE2 protein or at the interface 
of Spike protein-human ACE2 complex. To uncover 
drug compounds with such high binding affinities, we 
used a combination of machine learning and rigorous 
docking experiments in our high-throughput screening 
technique. Based on the Dmean and FDmean scores 
obtained for the top 20 drug molecules, we employ 
the validated machine learning model, after training 
with K-nearest neighbour, Random Forest and 
Support Vector Machine models, to search for top 15 
‘most important’ descriptors (for e.g., SP-3, MPC2) 
that portray a strong correlation with the docking 
results. The range of values determined for these 
descriptors can be used to determine a potential 

inhibitor of spike-hACE2 protein complex by 
searching through drug libraries with the same 
chemical features. We also evaluate our predictive 
model, created from the combination of three base 
models, using regression models. With our statistical 
analysis, we propose calculation and close 
observation of these descriptors, while performing 
virtual screening and lead generation, which could be 
highly beneficial especially in terms of drug 
repurposing considering the SARS-CoV-2 spike 
proteins.  
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