

Indian Journal of Biochemistry & Biophysics Vol. 60, January 2023, pp. 7-25 DOI: 10.56042/ijbb.v60i1.56987



# A comparative computational approach on the most deleterious missense variant in Connexin 43 protein and its potent inhibitor analysis

Ramkumar Katturajan<sup>1</sup>, Tamma Medha<sup>1</sup>, Sakshi Karra<sup>1</sup>, Vidya R<sup>2</sup> & Sabina Evan Prince<sup>1</sup>\*

<sup>1</sup>Department of Biomedical Sciences, School of Biosciences and Technology; & <sup>2</sup>VIT School of Agri innovations and Advance Learning (VAIAL), VIT Vellore-632 014, Tamil Nadu, India

Received 09 November 2021; revised 09 December 2022

Intercellular communication between the cell plays an essential role in cell growth and cell formation, including migration, metabolism, and cell differentiation. Cell function and tissue homeostasis are maintained through gap junction intercellular communication (GJIC), thus regulating connexin hemichannels. Mis regulation of such connexin, especially connexin (Cx) 43, affects a comprehensive process, including cell differentiation, inflammation, and cell death. Mis regulation may be due to the missense variant in Cx43. Thus, we screened the complete set of mutations from public mutational databases and obtained 219 missense variants, which were then classified based on their pathogenicity, functional impact, stability, conservation, and physiochemical properties. Variant L214P was scrutinized to have the most deleterious, which was then modelled using the I-TASSER server and performed molecular docking analysis to screen potent inhibitors. The compound Kanamycin, Ginsenoside, and Astragaloside IV have better interactions with Cx43 mutant with a maximum of 5 hydrogen bonds. Ginsenoside is a compound that follows a Lipinski rule of five. Thus, the result obtained from this study suggests that Ginsenoside would be a better potent inhibitor for native and mutant Cx43.

Keywords: Cx43, L214P, Virtual screening, Variant classification, Molecular docking

Connexins (Cxs) are a multi-gene family of proteins that regulate the intercellular hole intersection of gap junction (GJ) channels to coordinate communication amongst cells<sup>1</sup>. GJ channels are shaped by the docking of two hemichannels, one from each of the two reaching cells. It is presently well established that each hemichannel can work with the nonappearance of docking and subsequently intervening signaling across the plasma film<sup>2</sup>. GJ channels of Hemi channels play an essential role in many aspects of tissue homeostasis within the brain, heart, and other tissues, as evidenced by the link between a growing list of human illnesses and changes in connexin characteristics<sup>3</sup>. It is fundamental for some physiological cycles, like coordinated depolarization of cardiac muscle, proper embryonic development, and the conducted response in the microvasculature.

Consequently, transformations in connexinencoding qualities can prompt functional and formative anomalies. Twenty-one different Cxs have been identified and studied, which consist of four transmembrane helices (TM1-TM4), two extracellular

\*Correspondence:

Phone: 91-416-2202324; +91-9080494445 (Mob)

loops (ECL1 and ECL2), an N-terminal helix, and a large carboxy-terminal domain<sup>4</sup>. Among all the Cxs, Cx43 is widely distributed in almost all the cell types in most organs and is significantly expressed under disease conditions<sup>5</sup>.

Under stress situations, the activity of the hemi channels changes that are entailing moving molecules such as  $Ca2^+$ , ATP, NAD<sup>+</sup>, and glutamate to another cell and inducing numerous physiological responses<sup>5</sup>. Mutations in 10 different human Cxs have been related to 28 hereditary disorders. Cx43 mutations were responsible for more than six illnesses<sup>3</sup>. As a result, many mechanistic studies have been conducted on this Cx43. Concerning the importance of Cxs mutations, connexinopathies have been identified, termed diseases related to the Cxs mutations. Mutations in Cx43 were reported to have several including genetic disorders, oculodentodigital dysplasia, palmoplantar keratoderma, congenital alopecia, hyperkeratosis, leukonychia, erythronkeratodermia variabilis et progressive and linear verrucous epidermal nevus<sup>6-8</sup>. In addition, Cx43 mutations are also associated with several heart diseases where the principal role of Cx43 in the myocardium is to regulate the rapid and coordinated excitation-contraction coupling mechanisms<sup>9</sup>.

E-mail: eps674@gmail.com; epsabina@vit.ac.in

Moreover, several reports have suggested that Cx43 mutants lack a C-terminal tail which results in inhibited cell division and failure to form GJ shown to have down regulated cell growth<sup>10</sup>. Nonetheless, there is literature to assist in identifying the most harmful or significant mutations responsible for disease causation and development<sup>11</sup>. Rangasamy *et al.*, 2021 has recently reported that computational approach to predict mutations are essential in scrutinizing the most significant disease-causing mutation<sup>12</sup>.

The computational design approach comprises virtual screening and molecular docking that has manifested trustable evidence in drug developments and definite outcomes<sup>13,14</sup>. Cx43 has been of foremost importance in various disease conditions, and the significance of the related mutations has been analyzed using various web-based tools. The present study examines the first analysis of the mutational landscape of Cx43 in association with a virtual screening of Cxs inhibitors on most pathogenic mutation L214P. Primarily, we screened the complete set of mutations from mutational databases and classified them based on their pathogenicity, functional impact, stability, conservation, and physiochemical properties. A native and mutant model with the desired variation was modeled using the I-TASSER server, and the Cx inhibitor was screened based on the literature survey (Table 4). Molecular docking was performed to find the potent desired Cx43 mutant inhibitor. This computational strategy for discovering harmful mutations and screening for effective inhibitors of those mutations may soon contribute to the creation of tailored medicine.

# **Materials and Methods**

### **Collection of data**

The mutations and their combined information for the Cx43 Missense variant were retrieved from databases like COSMIC (https://cancer.sanger.ac.uk/cosmic), HGMD (http://www.hgmd.cf.ac.uk/ac/index.php), and literature survey. Sequence information of Cx43 in FASTA format was retrieved from Uniport KB (https://www.uniprot.org/).

## Pathogenicity analysis of missense variant

Calculation methods were used to understand the impact of variations on proteins which is vital for classifying and prioritizing pathogenic in neutral single-nucleotidevariations<sup>15</sup>.

Meta-SNP (http://snps.biofold.org/meta-snp/) is a web-based server for many genome-related studies,

which improves the ability to detect more heterogeneity of associations and investigate the consistency from different data sets and research populations. It integrates the best performance prediction algorithms to classify the pathogenicity of protein variants. In addition, the algorithm integrates with various other algorithms, including SNAP prediction. PhD SNP prediction, PANTHER prediction, and SIFT prediction. The predictor outputs the probability that the specified variant is associated with the disease. Here a score of > 0.5 establishes that a particular mutation induces the disease.

Functional impact analysis of the missense variant was done with the help of the Mutation Assessor (http://mutationassessor.org/r3/). It is a server network-dependent application that leverages diseaserelated Online Mendelian Inheritance in Man (OMIM) and polymorphism information to assess the effects of changes in a single-point amino acid change. The mutation assessor uses the Uniport protein sequence to generate its Multiple sequence alignment (MSA). It then splits based on the boundaries of the Uniport and Pfam domains to generate a 3D structure using a sorted product set and subfamily set. The segmented MSA was created to identify evolutionarily conserved locations that contribute to the specificity of protein function. Conservation scores are combined with specificity assessments to determine functional impact. As an outcome, mutants classified as "neutral" or "low" are not expected to affect protein function, whereas mutants classified as "medium" or "high" are functional and are expected to bring about changes.

#### Structure stability analysis

Structure stability analysis helps determine whether a protein will be in a native folded conformation or a denatured state. It refers to physical stability (thermodynamic) and not chemical stability. Mutations in the protein frequently change the stability of the protein<sup>16</sup>. Here, the difference in free energy ( $\Delta\Delta G$ ) between the mutant ( $\Delta Gm$ ) and the wild-type protein ( $\Delta Gw$ ) is a measure of how a particular mutation affects the stability ofthe protein. A positive  $\Delta\Delta G$  value shows a stabilizing mutation. We used different computational methods like DUET, MUpro, INPS-MD, i-Mutant 2.0, and Dyna Mut.

DUET (http://biosig.unimelb.edu.au/duet/stability) is a web server for integrated computer access to study missense mutations in proteins. It combines two

complementary approaches (mCSM and SDM) of consensus prediction obtained by blending results of particular methods in prediction optimized using SVM (Support Vector Machines). DUET improves the overall accuracy of the forecast compared to either technique by itself. By selectively combining the two methods, it far surpasses another integrated approach that combines the seven methods.

Mupro (http://mupro.proteomics.ics.uci.edu/) is a set of machine learning programs for predicting the effects of single-site amino acid mutations on protein stability. Two machine learning methods were developed, which are SVM and Neural Networks. An advantage of the method is that it does not require a tertiary structure to predict changes in protein stability.

INPS-MD (https://inpsmd.biocomp.unibo.it/inpsSuite/ default/index3D) (Impact of Nonsynonymous mutations on Protein Stability Multi Dimension) is a web server designed to predict changes in protein stability duringa single point mutation. Currently, two versions of predictive variables are used. INPS prediction variable from the sequence: Prediction of the impact of nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) on protein stability on protein stability sequence. INPS Predictor of protein 3D structure: Predicting the impact of asynchronous ns SNP for protein stability, starting with protein Structure.

I-Mutant2.0 (https://folding.biofold.org/cgi-bin/i-SVM-based mutant2.0.cgi) is an tool for automatically predicting changes in protein stability due to single-point mutations. These predictions are performed starting from the structure of the protein or, more importantly, the protein's sequence. IMutant2.0 is a classifier that predicts signs of changes in the stability of a protein upon mutation, which can be used as a regression estimator to predict the relevant  $\Delta\Delta G$  values. The web server passes the protein array into its raw format.

Dyna Mut(http://biosig.unimelb.edu.au/dynamut/ prediction) implements two well-established, normalmode approaches to web servers that sample structures, analyze and visualize protein dynamics, and determine protein dynamics and stability due to vibrational entropy changes. It accommodates graphbased signatures with normal mode dynamics to achieve consensus predictions about the effects of mutations on protein stability. It also offers a comprehensive suite for protein motility, flexibility analysis, and visualization via a free, user-friendly web server<sup>17</sup>.

#### Predicted binding site

COACH-D (https://yanglab.nankai.edu.cn/COACH-D/) is a method for accessing the meta server for predicting protein-ligand binding sites. It starts with a specific target protein structure and uses two comparative methods, TMSITE and SSITE, to generate a prediction of the complementary ligandbinding site. This method recognizes ligand binding templates in the functional database of BioLiP proteins by comparing binding-specific sub structures and sequence profiles. Initially, five separate ways are used to predict the ligand-binding pockets and residues. The template is then docked in the binding pocket. One of the significant improvements of COACH-D over COACH is that it uses Auto Dock Vina, an efficient molecular docking algorithm, to improve the ligand binding pose and make it physically and more realistic. The major conclusion is:Predicted 3D structural model submitted with a protein sequence, Top 5 protein-ligand binding pockets and binding residues in each pocket, top 5 protein-ligand complexes, submitted ligand docking structures, ligand docking from template structures, top 5 protein-ligand complex structures<sup>18</sup>.

## Modelling native and variant protein

I-TASSER (https://zhanglab.dcmb.med.umich.edu/ I-TASSER/) (Iterative Threading Assembly Refinement) is a progressive way to deal with protein structure forecast and structure-based function annotation. First, structural templates in the PDB by a multithreaded approach were identified using LOMETS full-length atomic models built by iterative templatebased fragment assembly simulations. Next, the 3D model is re-threaded through the protein function database BioLiP to derive insight into the target function. It was recently ranked as the No.1 server for protein structure prediction in CASP7, CASP8, CASP9, CASP10, CASP11, CASP12, CASP13, and CASP14 experiments throughout society. It has also been evaluated with CASP9 for functional prediction. The server is under dynamic improvement, fully intent on giving the most exact protein design and capacity forecasts utilizing modern algorithms.

Loop refined was done using the HADDOCK server (https://wenmr.science.uu.nl/haddock2.4/refinement/1). High Ambiguity Driven Protein Docking) is an information-driven, flexible docking approach for the modelling of biomolecular complexes. HADDOCK differs from the abiniteo docking method in that it encodes information at a protein interface identified or predicted in ambiguous interaction inhibition (AIR) to drive the docking process. It is also possible to define specific, clear distance limits(suchas MS crosslinks),NMR residual dipole coupled pseudo-contact shifts, frozen EM maps, and many other experimental data supports. HADDOCK Proteins can deal with a massive class of displaying issues, including proteins, protein-nucleic acids, protein-ligand buildings, and multi-body (n>2) gatherings. HADDOCK is one of the flagship software for biomolecular research at the EU H2020 Bio excel center of excellence<sup>19</sup>.

Structures were validated by the Ramachandran plot server (https://zlab.umassmed.edu/bu/rama/ index.pl). This server displays Ramachandran plots against the background of whiplash probabilities, and the method server display color Ramachandran Plot. According to DSSP, blue means helix, red means strand, and green means turn-and-loop. The plotline shows the priority area. The outline surrounds the area where 90% of crosses of the same color are found. Lines inside show 50% area.

#### Conservative sequence analysis

ConSurf server (https://consurf.tau.ac.il/) is a bioinformatics tool for estimating the evolutionary of amino/nucleic positions storage acid of protein/DNA/RNA molecules according to phylogenetic relationships between homologous sequences. The extent to which the position of an amino acid (or nucleic acid) is evolutionarily conserved (i.e., its rate of evolution) is highly dependent on the structural and functional significance. Therefore, analysis of position storage between members of the same family often clarifies the importance of each position to the structure or function of a protein (or nucleic acid). ConSurf estimates evolutionary rates by considering the similarities between amino acids (nucleic acids) that are reflected in alternative matrices according to the evolutionary relevance between proteins (DNA/RNA) and their homologs. One of the upsides of ConSurf over different techniques is that it precisely computes the pace of development utilizing either the exact Bayes strategy or the most extreme probability (ML) strategy $^{20}$ .

## **Preparation of ligands**

Thirty-six compounds were scrutinized by a literature survey based on the inhibitory effect on  $Cx43^{4,5}$ . The information and SDF format of the 3D structure of the compounds were obtained from the

PubChem database (https://pubchem.ncbi.nlm.nih.gov/). SDF formatted compounds were further converted to PDBQT format by Open Babel software which was used for docking<sup>21</sup>.

## Molecular docking

Molecular docking was performed by using the Autodock Vina software. Water from the native and L214P mutated proteins was removed, and polar hydrogen, solvation, and charges were added to the proteins. Affinity maps with grid points were fixed for the active binding sites of the proteins by using the Auto Grid program. A Lamarckian genetic algorithm was used to perform protein-ligand docking in Autodock vina. The results obtained from 10 different runs for each docking complex, among the highest binding energy complexes, were visualized by Pymol and Discovery studio software.

# Results

#### Metadata and disease-causing missense

A list of 249 missense variants for Cx43 was retrieved from public databases and literature review, followed by missense repetition removed and finalized to 219 missense variants. These missenses were then screened for pathogenicity analysis using a meta-SNP web-based server which includes PANTHER, PhD-SNP, SIFT, SNAP, and meta-SNP server (Fig. 1). As a result, among 219 missense, 52 missense variants were found to have deleterious in all the servers, which were taken to functional impact analysis (Table 1).

## Function impact analysis of selected Cx43 mutations

The functional impact of the selected 52 missenses was examined using a mutation assessor server. As a result, 24 mutations were predicted to have a significant impact, and 22 missenses were shown to



Fig. 1 — Deleterious and neutral mutation screening of Cx43 missense

|          |                | — Cx43 mt<br>Pant |       | PhD-       |       | SIF       | -     | g the meta-S |       | Meta       | SNP           |
|----------|----------------|-------------------|-------|------------|-------|-----------|-------|--------------|-------|------------|---------------|
| Sl.no    | Mutations (AA) | Disease           | score | Disease    | score | Disease   | score | Disease      | score | Disease    | score         |
| 1        | P363L          | YES               | 0.603 | NO         | 0.233 | NO        | 0.37  | NO           | 0.465 | NO         | 0.344         |
| 2        | S369N          | NO                | 0.437 | NO         | 0.123 | NO        | 0.56  | NO           | 0.29  | NO         | 0.145         |
| 3        | R370S          | NO                | 0.294 | NO         | 0.12  | NO        | 0.74  | NO           | 0.315 | NO         | 0.104         |
| 4        | R370H          | NO                | 0.229 | NO         | 0.087 | NO        | 0.12  | NO           | 0.45  | NO         | 0.07          |
| 5        | E381K          | NO                | 0.239 | NO         | 0.047 | NO        | 0.85  | NO           | 0.19  | NO         | 0.057         |
| 6        | W4C            | YES               | 0.829 | YES        | 0.66  | YES       | 0     | YES          | 0.765 | YES        | 0.747         |
| 7        | A6T            | NO                | 0.364 | NO         | 0.079 | NO        | 0.07  | NO           | 0.145 | NO         | 0.275         |
| 8        | K13N           | NO                | 0.459 | YES        | 0.5   | NO        | 0.27  | NO           | 0.225 | NO         | 0.446         |
| 9        | Y17C           | YES               | 0.774 | YES        | 0.855 | YES       | 0     | YES          | 0.725 | YES        | 0.811         |
| 10       | G21E           | NO                | 0.29  | YES        | 0.683 | YES       | 0     | YES          | 0.645 | YES        | 0.749         |
| 11       | W25R           | YES               | 0.639 | YES        | 0.978 | YES       | 0     | YES          | 0.795 | YES        | 0.91          |
| 12       | R33Q           | YES               | 0.997 | YES        | 0.935 | YES       | 0     | YES          | 0.815 | YES        | 0.952         |
| 13       | L37P           | YES               | 0.716 | YES        | 0.962 | YES       | 0     | YES          | 0.61  | YES        | 0.817         |
| 14       | S43T           | NO                | 0.318 | NO         | 0.275 | NO        | 0.25  | NO           | 0.235 | NO         | 0.458         |
| 15       | S43L           | NO                | 0.469 | YES        | 0.626 | NO        | 0.09  | NO           | 0.405 | YES        | 0.516         |
| 16       | Q49K           | NO                | 0.262 | YES        | 0.721 | YES       | 0.02  | YES          | 0.665 | YES        | 0.561         |
| 17       | R53G           | NO                | 0.202 | NO         | 0.323 | NO        | 0.06  | NO           | 0.48  | NO         | 0.469         |
| 18       | R53C           | YES               | 0.556 | NO         | 0.494 | YES       | 0.01  | YES          | 0.56  | YES        | 0.696         |
| 19       | R53H           | NO                | 0.284 | NO         | 0.169 | YES       | 0.05  | NO           | 0.4   | NO         | 0.302         |
| 20       | R53L           | NO                | 0.204 | NO         | 0.337 | NO        | 0.05  | NO           | 0.425 | NO         | 0.302         |
| 20       | G60C           | YES               | 0.207 | YES        | 0.945 | YES       | 0.1   | YES          | 0.705 | YES        | 0.921         |
| 21       | C61S           | NO                | 0.999 | YES        | 0.945 | YES       | 0.03  | YES          | 0.703 | YES        | 0.785         |
| 22       | K68N           | NO                | 0.408 | NO         | 0.323 | NO        | 0.03  | NO           | 0.32  | NO         | 0.785         |
| 23<br>24 | P71T           | YES               | 0.405 | YES        | 0.923 | YES       | 0.59  | YES          | 0.32  | YES        | 0.400         |
| 25       | R76C           | YES               | 0.812 | YES        | 0.932 | YES       | 0     | YES          | 0.835 | YES        | 0.890         |
| 25<br>26 | V79F           | YES               | 0.812 | YES        | 0.942 | YES       | 0.02  | YES          | 0.835 | YES        | 0.924         |
| 20<br>27 | F84C           | YES               | 0.324 | YES        | 0.9   | YES       | 0.02  | YES          | 0.59  | YES        | 0.019         |
| 28       | V85G           | YES               | 0.785 | YES        | 0.951 | YES       | 0.04  | YES          | 0.745 | YES        | 0.749         |
| 28<br>29 | P88L           | YES               | 0.570 | YES        | 0.952 | YES       | 0     | YES          | 0.745 | YES        | 0.898         |
| 29<br>30 | A94D           | YES               | 0.552 | YES        | 0.97  | YES       | 0.01  | YES          | 0.733 | YES        | 0.877         |
| 30<br>31 | A94D<br>A94V   | NO                | 0.332 | YES        | 0.831 | NO        | 0.01  | NO           | 0.8   | NO         | 0.814         |
| 32       | Y98S           | YES               | 0.408 | YES        | 0.332 | YES       | 0.20  | YES          | 0.27  | YES        | 0.433         |
| 32<br>33 |                | NO                |       | YES        | 0.668 |           |       | NO           | 0.023 | YES        |               |
| 33<br>34 | R101Q          |                   | 0.478 |            |       | NO        | 0.13  |              |       |            | 0.529         |
| 34<br>35 | E103K<br>E104D | NO                | 0.362 | YES<br>YES | 0.706 | NO<br>YES | 0.11  | YES<br>NO    | 0.54  | YES<br>YES | 0.584<br>0.52 |
|          |                | NO                | 0.276 |            | 0.562 |           | 0.03  |              | 0.475 |            |               |
| 36       | E110K          | NO                | 0.417 | NO         | 0.219 | NO        | 0.42  | NO           | 0.49  | NO         | 0.411         |
| 37       | E112K          | NO                | 0.417 | NO         | 0.276 | NO        | 0.69  | NO           | 0.325 | NO         | 0.443         |
| 38       | K114N          | NO                | 0.439 | NO         | 0.212 | NO        | 0.49  | NO           | 0.34  | NO         | 0.37          |
| 39<br>40 | A116V          | NO                | 0.054 | NO         | 0.136 | NO        | 0.28  | NO           | 0.415 | NO         | 0.302         |
| 40       | G120A          | NO                | 0.423 | NO         | 0.39  | NO        | 0.5   | NO           | 0.46  | NO         | 0.45          |
| 41       | V123A          | NO                | 0.34  | NO         | 0.141 | NO        | 0.55  | NO           | 0.38  | NO         | 0.168         |
| 42       | M125I          | NO                | 0.126 | NO         | 0.16  | NO        | 0.13  | NO           | 0.385 | NO         | 0.228         |
| 43       | L127W          | YES               | 0.831 | YES        | 0.505 | NO        | 0.13  | NO           | 0.405 | YES        | 0552          |
| 44       | L127F          | NO                | 0.45  | NO         | 0.254 | NO        | 0.48  | NO           | 0.205 | NO         | 0.429         |
| 45       | Q129E          | NO                | 0.159 | NO         | 0.19  | NO        | 1     | NO           | 0.185 | NO         | 0.301         |
| 46       | K133N          | NO                | 0.431 | NO         | 0.39  | NO        | 0.37  | NO           | 0.205 | NO         | 0.463         |
| 47       | G138C          | YES               | 0.805 | NO         | 0.418 | NO        | 0.05  | NO           | 0.48  | YES        | 0.625         |
| 48       | E141K          | NO                | 0.411 | YES        | 0.545 | NO        | 0.76  | NO           | 0.28  | NO         | 0.459         |
| 49       | V145L          | NO                | 0.223 | NO         | 0.361 | NO        | 0.35  | NO           | 0.175 | NO         | 0.433         |
| 50       | G149E          | YES               | 0.996 | YES        | 0.872 | NO        | 0.12  | YES          | 0.59  | YES        | 0.866         |
|          |                |                   |       |            |       |           |       |              |       |            | (Conta        |

| NO       0.126       NO       0.317       NO       0.311       NO       0.322       NO       0         02       S314R       NO       0.494       NO       0.337       NO       0.41       NO       0.325       NO       0.232         04       R319Q       NO       0.423       NO       0.299       NO       0.41       NO       0.325       NO       0.20         05       A1232V       NO       0.423       NO       0.332       NO       0.46       NO       0.26         056       G324E       YES       0.583       YES       0.58       NO       1       NO       0.44       NO       0.60         077       S323P       YES       0.547       YES       0.572       NO       0.77       NO       0.34       NO       0.02         08       S330F       YES       0.547       NO       0.58       NO       0.325       NO       0.04         10       D346V       YES       0.619       YES       0.617       NO       1.8       NO       0.33       NO       0.26       NO       0.11         12       D340V       YES       0.619       NO <th></th> <th></th> <th>Pant</th> <th>her</th> <th>PhD-</th> <th>SNP</th> <th>SII</th> <th>Τ</th> <th colspan="2">SNAP</th> <th>Meta</th> <th>SNP</th>                                                                                                                                    |      |                | Pant | her   | PhD- | SNP   | SII | Τ    | SNAP |       | Meta | SNP          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|------|-------|------|-------|-----|------|------|-------|------|--------------|
| D2         S314R         NO         0.494         NO         0.387         NO         0.41         NO         0.325         NO         0.2           03         Q317R         NO         0.324         NO         0.332         NO         0.5         NO         0.375         NO         0.3           05         A323V         NO         0.302         NO         0.325         NO         0.29         NO         0.417         NO         0.3           06         G324E         YES         0.525         YES         0.62         NO         0.7         NO         0.344         NO         0.0           08         S330F         YES         0.525         YES         0.62         NO         0.78         NO         0.344         NO         0.0           10         D360F         YES         0.633         NO         0.266         NO         0.35         NO         0.28         NO         0.48         NO         0.21           11         D340Y         YES         0.619         YES         0.673         NO         1         NO         0.25         NO         0.21           12         D340Y         YES <td< th=""><th>l.no</th><th>Mutations (AA)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>score</th></td<>                                                  | l.no | Mutations (AA) |      |       |      |       |     |      |      |       |      | score        |
| No         0.324         NO         0.229         NO         0.5         NO         0.475         NO         0.6           04         R3190         NO         0.432         NO         0.322         NO         0.29         NO         0.475         NO         0.3           05         A323V         NO         0.302         NO         0.195         NO         0.3         NO         0.4475         NO         0.2           06         G324E         YES         0.552         YES         0.562         NO         0.2         NO         0.447         NO         0.458         NO         0.325         NO         0.45         NO         0.351         NO         0.325         NO         0.63           11         D340N         NO         0.22         NO         0.468         NO         0.25         NO         0.435         NO         0.25         NO                                                                                                                                                                       | 101  | S306N          |      | 0.126 |      | 0.317 | NO  | 0.31 |      | 0.32  |      | 0.3          |
| bit         R319Q         NO         0.423         NO         0.332         NO         0.29         NO         0.475         NO         0.2           05         A323V         NO         0.302         NO         0.195         NO         0.3         NO         0.475         NO         0.2           06         G324E         YES         0.583         YES         0.572         NO         0.29         NO         0.44         NO         0.4           07         S328P         YES         0.544         YES         0.572         NO         0.58         NO         0.325         NO         0.50           010         D336V         YES         0.619         YES         0.673         NO         1         NO         0.25         YES         0.51           12         D340Y         YES         0.619         YES         0.673         NO         1         NO         0.25         YES         0.51           13         Q342R         NO         0.17         NO         0.318         NO         0.435         NO         0.21           14         N343H         NO         0.242         NO         0.108         NO                                                                                                                                                                                                 | 02   |                | NO   |       | NO   |       | NO  |      |      |       |      | 0.29         |
| 55       A323V       NO       0.302       NO       0.195       NO       0.3       NO       0.46       NO       0.40         07       S328P       YES       0.525       YES       0.52       NO       0.27       NO       0.24       NO       0.41       NO       0.42         08       S330F       YES       0.525       YES       0.522       NO       0.7       NO       0.34       NO       0.48         09       A332T       NO       0.347       NO       0.258       NO       0.58       NO       0.328       NO       0.348       NO       0.26       NO       0.612         12       D340V       YES       0.619       YES       0.673       NO       1       NO       0.256       NO       0.613         13       Q342R       NO       0.107       NO       0.18       NO       0.27       NO       0.435       NO       0.61         14       N341H       NO       0.274       NO       0.19       NO       0.27       NO       0.43       NO       0.45         15       K348R       NO       0.642       YES       0.653       NO       0.27                                                                                                                                                                                                                                                                                      | 03   |                |      |       |      |       |     |      |      |       |      | 0.29         |
| b6         G324E         YES         0.525         YES         0.62         NO         1         NO         0.41         NO         0.40           07         S328P         YES         0.525         YES         0.62         NO         0.29         NO         0.34         NO         0.4           08         S330F         YES         0.533         NO         0.27         NO         0.7         NO         0.34         NO         0.6           10         D336V         YES         0.633         NO         0.26         NO         0.45         NO         0.26         NO         0.25           11         D340V         YES         0.619         YES         0.673         NO         1         NO         0.26         NO         0.12           12         D340Y         YES         0.612         NO         0.13         NO         0.215         NO         0.215         NO         0.215         NO         0.23         NO         0.61           13         G438T         NO         0.223         NO         0.127         NO         0.435         NO         0.24           14         N434H         NO         0                                                                                                                                                                                               | 04   | R319Q          | NO   |       |      | 0.332 | NO  |      | NO   | 0.475 |      | 0.31         |
| 77       S328P       YES       0.525       YES       0.62       NO       0.29       NO       0.21       NO       0.4         08       S330F       YES       0.574       NO       0.77       NO       0.34       NO       0.46         09       A332T       NO       0.347       NO       0.269       NO       0.58       NO       0.324       NO       0.48       NO       0.107         10       D340V       YES       0.619       YES       0.673       NO       1       NO       0.25       YES       0.613         12       D340Y       YES       0.619       YES       0.673       NO       1       NO       0.25       YES       0.613         13       Q342R       NO       0.107       NO       0.118       NO       0.23       NO       0.116         14       N343H       NO       0.242       NO       0.108       NO       0.49       NO       0.435       NO       0.011         15       K345R       NO       0.242       YES       0.633       NO       0.23       NO       0.117       NO       0.59       NO       0.23       NO       0.123 </td <td>105</td> <td>A323V</td> <td>NO</td> <td></td> <td></td> <td></td> <td>NO</td> <td>0.3</td> <td>NO</td> <td>0.46</td> <td></td> <td>0.24</td>                                                                                                                           | 105  | A323V          | NO   |       |      |       | NO  | 0.3  | NO   | 0.46  |      | 0.24         |
| 88       S330F       YES       0.594       YES       0.572       NO       0.7       NO       0.345       NO       0.269         00       A332T       NO       0.347       NO       0.269       NO       0.58       NO       0.325       NO       0.261         10       D336V       YES       0.619       YES       0.619       NO       0.258       NO       0.426       NO       0.25       VES       0.613         11       D340Y       YES       0.619       YES       0.673       NO       0.33       YES       0.505       NO       0.27         13       Q342R       NO       0.107       NO       0.18       NO       0.27       NO       0.435       NO       0.010         16       I.347P       YES       0.623       YES       0.623       NO       0.27       NO       0.23       NO       0.016         18       G350E       YES       0.574       NO       0.444       NO       1       NO       0.32       NO       0.023       NO       0.023       NO       0.021       NO       0.32       NO       0.021       NO       0.32       NO       0.223                                                                                                                                                                                                                                                                         | 106  | G324E          | YES  |       |      | 0.58  | NO  | 1    | NO   |       | NO   | 0.44         |
| 99         A322T         NO         0.347         NO         0.269         NO         0.58         NO         0.325         NO         0.2           10         D336V         YES         0.633         NO         0.368         NO         0.28         NO         0.48         NO         0.2           11         D340V         YES         0.619         YES         0.673         NO         1         NO         0.25         YES         0.63           12         D340Y         YES         0.619         YES         0.673         NO         1         NO         0.25         YES         0.63           13         Q342R         NO         0.107         NO         0.18         NO         0.33         YES         0.505         NO         0.21           14         N343H         NO         0.242         NO         0.127         NO         0.435         NO         0.23         NO         0.01           15         K345R         NO         0.022         NO         0.127         NO         0.423         NO         0.42           19         L356R         YES         0.574         NO         0.427         NO                                                                                                                                                                                                  | 07   | S328P          |      |       |      | 0.62  | NO  |      | NO   | 0.2   |      | 0.44         |
| 10         D336V         YES         0.633         NO         0.368         NO         0.28         NO         0.48         NO         0.0           11         D340N         NO         0.225         NO         0.456         NO         0.35         NO         0.25         YES         0.613           12         D340Y         YES         0.619         YES         0.673         NO         0.33         YES         0.505         NO         0.7           13         Q342R         NO         0.107         NO         0.318         NO         0.333         YES         0.505         NO         0.215         NO         0.435         NO         0.7           15         K345R         NO         0.242         NO         0.108         NO         0.27         NO         0.435         NO         0.0           16         L347P         YES         0.623         YES         0.712         NO         0.52         NO         0.32         NO         0.60           18         G350E         YES         0.673         NO         0.74         NO         0.32         NO         0.60           20         V35L         NO                                                                                                                                                                                              | 08   | S330F          | YES  | 0.594 | YES  | 0.572 | NO  | 0.7  | NO   | 0.34  | NO   | 0.46         |
| 11         D340Y         NO         0.225         NO         0.456         NO         0.35         NO         0.26         NO         0.31           12         D340Y         YES         0.619         YES         0.673         NO         1         NO         0.255         YES         0.55           13         Q342R         NO         0.174         NO         0.18         NO         0.435         NO         0.215         NO         0.435         NO         0.435         NO         0.642           15         K345R         NO         0.242         NO         0.108         NO         0.49         NO         0.435         NO         0.215         NO         0.642           16         L347P         VES         0.642         VES         0.653         NO         0.23         NO         0.625         NO         0.235         NO         0.225         NO <t< td=""><td>09</td><td>A332T</td><td>NO</td><td>0.347</td><td>NO</td><td>0.269</td><td>NO</td><td>0.58</td><td>NO</td><td>0.325</td><td>NO</td><td>0.26</td></t<> | 09   | A332T          | NO   | 0.347 | NO   | 0.269 | NO  | 0.58 | NO   | 0.325 | NO   | 0.26         |
| 12         D340Y         YES         0.619         YES         0.673         NO         1         NO         0.25         YES         0.5           13         Q342R         NO         0.107         NO         0.318         NO         0.33         YES         0.505         NO         0.435         NO         0.5           15         K345R         NO         0.242         NO         0.108         NO         0.49         NO         0.215         NO         0.435         NO         0.6           16         L347P         YES         0.642         YES         0.653         NO         0.27         NO         0.435         NO         0.0           17         A348T         NO         0.022         NO         0.127         NO         0.315         NO         0.4           19         L356R         YES         0.623         YES         0.712         NO         0.32         NO         0.0           20         V359L         NO         0.142         YES         0.853         YES         0         YES         0.77         YES         0.70         VES         0.611         NO         0.225         NO         0.2                                                                                                                                                                                      | 10   | D336V          | YES  | 0.633 | NO   | 0.368 | NO  | 0.28 | NO   | 0.48  | NO   | 0.45         |
| 13         Q342R         NO         0.107         NO         0.318         NO         0.33         YES         0.505         NO         0.23           14         N343H         NO         0.374         NO         0.19         NO         0.15         NO         0.435         NO         0.215         NO         0.016           15         K345R         NO         0.022         NO         0.127         NO         0.435         NO         0.435           16         L347P         YES         0.642         YES         0.653         NO         0.27         NO         0.315         NO         0.40           18         G350E         YES         0.623         YES         0.712         NO         0.52         NO         0.32         NO         0.021           20         V359L         NO         0.111         NO         0.073         NO         0.74         NO         0.322         NO         0.62           21         D360E         NO         0.142         YES         0.853         YES         0         74         NO         0.32         NO         0.62           22         T19A         NO         0.166                                                                                                                                                                                            | 111  | D340N          | NO   | 0.225 | NO   | 0.456 | NO  | 0.35 | NO   | 0.26  | NO   | 0.342        |
| 14       N343H       NO       0.374       NO       0.19       NO       0.15       NO       0.435       NO       0.2         15       K345R       NO       0.242       NO       0.108       NO       0.49       NO       0.215       NO       0.016         16       L347P       YES       0.642       YES       0.653       NO       0.27       NO       0.435       NO       0.435         17       A348T       NO       0.092       NO       0.127       NO       0.59       NO       0.23       NO       0.435         18       G350E       YES       0.574       NO       0.44       NO       1       NO       0.315       NO       0.42         20       V359L       NO       0.111       NO       0.073       NO       0.74       NO       0.32       NO       0.23       NO       0.42         21       D360E       NO       0.127       NO       0.24       YES       0.51       NO       0.24       YES       0.51       NO       0.22       NO       0.52       NO       0.32       NO       0.4       YES       0.51       NO       0.24       YES                                                                                                                                                                                                                                                                                 | 12   | D340Y          | YES  | 0.619 | YES  | 0.673 | NO  | 1    | NO   | 0.25  | YES  | 0.532        |
| 15         K345R         NO         0.242         NO         0.108         NO         0.49         NO         0.215         NO         0.0           16         L347P         YES         0.642         YES         0.653         NO         0.27         NO         0.433         NO         0.43           17         A348T         NO         0.022         NO         0.127         NO         0.59         NO         0.23         NO         0.43           18         G350E         YES         0.574         NO         0.44         NO         1         NO         0.32         NO         0.4           19         L356R         YES         0.623         YES         0.712         NO         0.52         NO         0.32         NO         0.4           20         V359L         NO         0.111         NO         0.302         NO         1         NO         0.322         NO         0.4           21         D360E         NO         0.142         YES         0.833         YES         0.24         YES         0.51         NO         0.429           22         T19A         NO         0.166         NO <td< td=""><td>13</td><td>Q342R</td><td>NO</td><td>0.107</td><td>NO</td><td>0.318</td><td>NO</td><td>0.33</td><td>YES</td><td>0.505</td><td>NO</td><td>0.294</td></td<>                               | 13   | Q342R          | NO   | 0.107 | NO   | 0.318 | NO  | 0.33 | YES  | 0.505 | NO   | 0.294        |
| 16       L347P       YES       0.642       YES       0.653       NO       0.27       NO       0.435       NO       0.435         17       A348T       NO       0.092       NO       0.127       NO       0.59       NO       0.23       NO       0.         18       G350E       YES       0.623       YES       0.712       NO       0.52       NO       0.33       YES       0.72         20       V359L       NO       0.111       NO       0.073       NO       0.74       NO       0.22       NO       0.22         21       D360E       NO       0.274       NO       0.302       NO       1       NO       0.225       NO       0.22         22       T19A       NO       0.166       NO       0.498       NO       0.24       NO       0.25       NO       0.23       NO       0.42         24       A44V       NO       0.367       NO       0.498       NO       0.42       NO       0.215       NO       0.25       NO <t< td=""><td>14</td><td>N343H</td><td>NO</td><td>0.374</td><td>NO</td><td>0.19</td><td>NO</td><td>0.15</td><td>NO</td><td>0.435</td><td>NO</td><td>0.24</td></t<>                                                                                                                  | 14   | N343H          | NO   | 0.374 | NO   | 0.19  | NO  | 0.15 | NO   | 0.435 | NO   | 0.24         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115  | K345R          | NO   | 0.242 | NO   | 0.108 | NO  | 0.49 | NO   | 0.215 | NO   | 0.08         |
| 18       G350E       YES       0.574       NO       0.44       NO       1       NO       0.315       NO       0.4         19       L356R       YES       0.623       YES       0.712       NO       0.52       NO       0.3       YES       0.5         20       V359L       NO       0.111       NO       0.073       NO       0.74       NO       0.32       NO       0.0         21       D360E       NO       0.274       NO       0.302       NO       1       NO       0.225       NO       0.2         22       T19A       NO       0.166       NO       0.498       NO       0.24       YES       0.51       NO       0.24         23       V281       NO       0.367       NO       0.08       NO       1       NO       0.25       NO       0.25       NO       0.25       NO       0.65       YES       0.65       YES       0.65       YES       0.66       Y                                                                                                                                                                                                                                                                        | 116  | L347P          | YES  | 0.642 | YES  | 0.653 | NO  | 0.27 | NO   | 0.435 | NO   | 0.45         |
| 19         L356R         YES         0.623         YES         0.712         NO         0.52         NO         0.3         YES         0.5           20         V359L         NO         0.111         NO         0.073         NO         0.74         NO         0.32         NO         0.0           21         D360E         NO         0.274         NO         0.322         NO         0.0         1         NO         0.225         NO         0.2           22         T19A         NO         0.166         NO         0.498         NO         0.24         YES         0.51         NO         0.7           23         V281         NO         0.367         NO         0.08         NO         1         NO         0.215         NO         0.2           25         E227D         YES         0.933         YES         0.883         YES         0.429         NO         0.05         YES         0.645         YES         0.5           26         P283L         YES         0.515         NO         0.429         NO         0.25         NO         0.405         NO         0.429           26         G1338 <td< td=""><td>117</td><td>A348T</td><td>NO</td><td>0.092</td><td>NO</td><td>0.127</td><td>NO</td><td>0.59</td><td>NO</td><td>0.23</td><td>NO</td><td>0.11</td></td<>                                 | 117  | A348T          | NO   | 0.092 | NO   | 0.127 | NO  | 0.59 | NO   | 0.23  | NO   | 0.11         |
| 20         V359L         NO         0.111         NO         0.073         NO         0.74         NO         0.32         NO         0.0           21         D360E         NO         0.274         NO         0.302         NO         1         NO         0.225         NO         0.22           22         T19A         NO         0.142         YES         0.853         YES         0         YES         0.51         NO         0.42           23         V28I         NO         0.166         NO         0.498         NO         0.24         YES         0.51         NO         0.21           24         A44V         NO         0.367         NO         0.08         NO         1         NO         0.215         NO         0.2           26         P231         YES         0.637         YES         0.564         NO         0.055         NO         0.25         NO         0.66         YES         0.66         YES         0.66         YES         0.66         YES         0.66         YES         0.67         NO         0.2           29         G143S         NO         0.455         YES         0.711                                                                                                                                                                                                | 118  | G350E          | YES  | 0.574 | NO   | 0.44  | NO  | 1    | NO   | 0.315 | NO   | 0.45         |
| 21         D360E         NO         0.274         NO         0.302         NO         1         NO         0.225         NO         0.22           22         T19A         NO         0.142         YES         0.853         YES         0         YES         0.77         YES         0.73           23         V281         NO         0.166         NO         0.498         NO         0.24         YES         0.51         NO         0.42           24         A4V         NO         0.367         NO         0.08         NO         1         NO         0.215         NO         0.42           25         E227D         YES         0.637         YES         0.564         NO         0.05         YES         0.65         YES         0.72           26         P283L         YES         0.515         NO         0.429         NO         0.66         YES         0.66         YES         0.67         YES         0.66         YES         0.67         YES         0.72         NO         0.43         0.43         NO         0.43         NO         0.42         NO         0.21         NO         0.43         NO         0.45                                                                                                                                                                                   | 119  | L356R          | YES  | 0.623 | YES  | 0.712 | NO  | 0.52 | NO   | 0.3   | YES  | 0.53         |
| 21         D360E         NO         0.274         NO         0.302         NO         1         NO         0.225         NO         0.22           21         T19A         NO         0.142         YES         0.853         YES         0         YES         0.77         YES         0.73           23         V281         NO         0.166         NO         0.498         NO         0.24         YES         0.51         NO         0.42           24         A44V         NO         0.367         NO         0.08         NO         1         NO         0.215         NO         0.42           25         E227D         YES         0.637         YES         0.544         NO         0.05         YES         0.65         YES         0.72           28         Y17S         YES         0.515         NO         0.429         NO         0.28         NO         0.405         NO         0.43           29         G143S         NO         0.455         YES         0.724         NO         0.2         NO         0.37         NO         0.43           31         S18P         YES         0.735         NO                                                                                                                                                                                                        | 120  | V359L          | NO   | 0.111 | NO   | 0.073 | NO  | 0.74 | NO   | 0.32  | NO   | 0.06         |
| 22         T19A         NO         0.142         YES         0.853         YES         0         YES         0.77         YES         0.77           23         V281         NO         0.166         NO         0.498         NO         0.24         YES         0.51         NO         0.424           24         A44V         NO         0.367         NO         0.08         NO         1         NO         0.215         NO         0.2           25         E227D         YES         0.637         YES         0.883         YES         0.40         YES         0.65         YES         0.65           26         P283L         YES         0.515         NO         0.429         NO         0.66         YES         0.65         NO         0.3           28         Y17S         YES         0.515         NO         0.294         NO         0.2         NO         0.37         NO         0.43           30         G1381         YES         0.785         NO         0.294         NO         0.2         NO         0.37         NO         0.43           32         G21R         NO         0.351         YES <t< td=""><td>21</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.25</td></t<>                                                                    | 21   |                |      |       |      |       |     |      |      |       |      | 0.25         |
| 23         V28I         NO         0.166         NO         0.498         NO         0.24         YES         0.51         NO         0.42           24         A44V         NO         0.367         NO         0.08         NO         1         NO         0.215         NO         0.52           25         E227D         YES         0.993         YES         0.883         YES         0.04         YES         0.65         YES         0.6           26         P283L         YES         0.637         YES         0.564         NO         0.05         YES         0.66         YES         0.66         YES         0.66         YES         0.66         YES         0.66         YES         0.66         YES         0.63         NO         0.405         NO         0.429         NO         0.21         NO         0.37         NO         0.405         NO         0.435         NO         0.429         NO         0.21         NO         0.21         NO         0.21         N                                                                                                                                                      | 22   |                | NO   |       |      |       |     |      |      |       |      | 0.78         |
| 24         A44V         NO         0.367         NO         0.08         NO         1         NO         0.215         NO         0.225           25         E227D         YES         0.993         YES         0.883         YES         0.04         YES         0.65         YES         0.55           26         P283L         YES         0.637         YES         0.564         NO         0.05         YES         0.645         YES         0.5           27         T290D         YES         0.515         NO         0.429         NO         0.66         YES         0.66         YES         0.62           28         Y17S         YES         0.531         YES         0.722         YES         0         YES         0.66         YES         0.62           29         G143S         NO         0.455         YES         0.722         NO         0.37         NO         0.43           30         G138I         YES         0.785         NO         0.24         NO         0.22         NO         0.37         NO         0.43           31         S18P         YES         0.731         YES         0.741         YES <td>123</td> <td></td> <td>NO</td> <td></td> <td></td> <td></td> <td></td> <td>0.24</td> <td></td> <td></td> <td></td> <td>0.42</td>                                                    | 123  |                | NO   |       |      |       |     | 0.24 |      |       |      | 0.42         |
| 225       E227D       YES       0.993       YES       0.883       YES       0.04       YES       0.65       YES       0.52         26       P231L       YES       0.637       YES       0.564       NO       0.05       YES       0.645       YES       0.6         27       T290D       YES       0.515       NO       0.429       NO       0.66       YES       0.56       NO       0.2         28       Y17S       YES       0.531       YES       0.792       YES       0       YES       0.66       YES       0.60         29       G143S       NO       0.455       YES       0.626       NO       0.2       NO       0.37       NO       0.4         30       G1381       YES       0.994       YES       0.913       YES       0       YES       0.805       YES       0.65         33       G22E       YES       0.565       YES       0.913       YES       0       YES       0.845       YES       0.53         34       G60S       YES       0.997       YES       0.913       YES       0       YES       0.845       YES       0.545                                                                                                                                                                                                                                                                                            | 124  |                |      |       |      |       |     |      |      |       |      | 0.26         |
| 226         P283L         YES         0.637         YES         0.564         NO         0.05         YES         0.645         YES         0.           27         T290D         YES         0.515         NO         0.429         NO         0.66         YES         0.56         NO         0.3           28         Y17S         YES         0.531         YES         0.792         YES         0         YES         0.66         YES         0.           29         G143S         NO         0.455         YES         0.626         NO         0.58         NO         0.405         NO         0.437         NO         0.433           30         G138I         YES         0.785         NO         0.294         NO         0.2         NO         0.37         NO         0.405           31         S18P         YES         0.994         YES         0.913         YES         0         YES         0.805         YES         0.53         NO         0.435         YES         0.645         YES         0.53         NO         0.435         YES         0.645         YES         0.645         YES         0.645         YES         0.645                                                                                                                                                                           | 25   |                |      |       |      |       |     | 0.04 |      |       |      | 0.57         |
| 27       T290D       YES       0.515       NO       0.429       NO       0.66       YES       0.56       NO       0.52         28       Y17S       YES       0.531       YES       0.792       YES       0       YES       0.66       YES       0.63         29       G143S       NO       0.455       YES       0.626       NO       0.58       NO       0.405       NO       0.43         30       G138I       YES       0.794       YES       0.913       YES       0       YES       0.37       NO       0.43         31       S18P       YES       0.794       YES       0.913       YES       0       YES       0.805       YES       0.73         32       G21R       NO       0.351       YES       0.962       YES       0       YES       0.845       YES       0.53         33       G22E       YES       0.997       YES       0.913       YES       0       YES       0.685       YES       0.53         34       G60S       YES       0.716       NO       0.435       NO       0.53       NO       0.435       YES       0.66       YES       0.                                                                                                                                                                                                                                                                               | 126  |                |      |       |      |       |     |      |      |       |      | 0.51         |
| 28         Y17S         YES         0.531         YES         0.792         YES         0         YES         0.66         YES         0.           29         G143S         NO         0.455         YES         0.626         NO         0.58         NO         0.405         NO         0.43           30         G138I         YES         0.785         NO         0.294         NO         0.2         NO         0.37         NO         0.43           31         S18P         YES         0.994         YES         0.913         YES         0         YES         0.805         YES         0.737         NO         0.43           32         G21R         NO         0.351         YES         0.741         YES         0         YES         0.845         YES         0.533         G22E         YES         0.565         YES         0.913         YES         0         YES         0.785         0.685         YES         0.53         NO         0.435         YES         0.53         NO         0.435         YES         0.53         NO         0.435         YES         0.53         NO         0.435         YES         0.56         YES <td< td=""><td>27</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.37</td></td<>                                  | 27   |                |      |       |      |       |     |      |      |       |      | 0.37         |
| 229         G143S         NO         0.455         YES         0.626         NO         0.58         NO         0.405         NO         0.435           30         G138I         YES         0.785         NO         0.294         NO         0.2         NO         0.37         NO         0.433           31         S18P         YES         0.994         YES         0.913         YES         0         YES         0.805         YES         0.433           32         G21R         NO         0.351         YES         0.741         YES         0         YES         0.655         YES         0.53           33         G22E         YES         0.565         YES         0.913         YES         0         YES         0.845         YES         0.53           34         G60S         YES         0.716         NO         0.435         NO         0.53         NO         0.435         YES         0.53           35         G138R         YES         0.716         NO         0.435         NO         0.53         NO         0.435         YES         0.645         YES         0.66           37         131M         NO<                                                                                                                                                                                      | 28   |                |      |       |      |       |     |      |      |       |      | 0.76         |
| 30         G138I         YES         0.785         NO         0.294         NO         0.2         NO         0.37         NO         0.4           31         S18P         YES         0.994         YES         0.913         YES         0         YES         0.805         YES         0.4           32         G21R         NO         0.351         YES         0.741         YES         0         YES         0.655         YES         0.5           33         G22E         YES         0.565         YES         0.962         YES         0         YES         0.845         YES         0.5           34         G608         YES         0.997         YES         0.913         YES         0         YES         0.685         YES         0.5           35         G138R         YES         0.716         NO         0.435         NO         0.53         NO         0.435         YES         0.6         0.6         YES         0.6         0.6         YES                                                                                                                                                                                   | 129  |                |      |       |      |       |     |      |      |       |      | 0.47         |
| 31       S18P       YES       0.994       YES       0.913       YES       0       YES       0.805       YES       0.32         32       G21R       NO       0.351       YES       0.741       YES       0       YES       0.655       YES       0.733         33       G22E       YES       0.565       YES       0.962       YES       0       YES       0.845       YES       0.53         34       G60S       YES       0.997       YES       0.913       YES       0       YES       0.845       YES       0.565         35       G138R       YES       0.716       NO       0.435       NO       0.53       NO       0.435       YES       0.53         36       V96M       NO       0.451       YES       0.73       YES       0.03       YES       0.665       YES       0.66         37       I31M       NO       0.407       YES       0.814       YES       0       YES       0.66       YES       0.66         38       G8V       NO       0.348       YES       0.62       YES       0.59       NO       0.447       YES       0       YES       0.                                                                                                                                                                                                                                                                               | 130  |                |      |       |      |       |     |      |      |       |      | 0.464        |
| 32       G21R       NO       0.351       YES       0.741       YES       0       YES       0.655       YES       0.733         33       G22E       YES       0.565       YES       0.962       YES       0       YES       0.845       YES       0.934         34       G60S       YES       0.997       YES       0.913       YES       0       YES       0.845       YES       0.835         35       G138R       YES       0.716       NO       0.435       NO       0.53       NO       0.435       YES       0.53         36       V96M       NO       0.451       YES       0.73       YES       0.03       YES       0.665       YES       0.63         37       I31M       NO       0.407       YES       0.814       YES       0       YES       0.66       YES       0.63         38       G8V       NO       0.348       YES       0.628       YES       0.04       YES       0.645       NO       0.435         40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.44                                                                                                                                                                                                                                                                                                | 131  |                |      |       |      |       |     |      |      |       |      | 0.92         |
| 33       G22E       YES       0.565       YES       0.962       YES       0       YES       0.845       YES       0.93         34       G60S       YES       0.997       YES       0.913       YES       0       YES       0.685       YES       0.8         35       G138R       YES       0.716       NO       0.435       NO       0.53       NO       0.435       YES       0.6         36       V96M       NO       0.451       YES       0.73       YES       0.03       YES       0.66       YES       0.6         37       I31M       NO       0.407       YES       0.814       YES       0       YES       0.66       YES       0.6         38       G8V       NO       0.348       YES       0.628       YES       0.04       YES       0.645       NO       0.4         39       G2V       YES       0.59       NO       0.447       YES       0       YES       0.62       YES       0.5         40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.4        42 <td< td=""><td>132</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.75</td></td<>                                                                                                                                                                | 132  |                |      |       |      |       |     |      |      |       |      | 0.75         |
| 34       G60S       YES       0.997       YES       0.913       YES       0       YES       0.685       YES       0.85         35       G138R       YES       0.716       NO       0.435       NO       0.53       NO       0.435       YES       0.53         36       V96M       NO       0.451       YES       0.73       YES       0.03       YES       0.645       YES       0.66         37       I31M       NO       0.407       YES       0.814       YES       0       YES       0.66       YES       0.66         38       G8V       NO       0.348       YES       0.628       YES       0.04       YES       0.62       YES       0.53         40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.25         41       S5C       YES       0.648       NO       0.335       YES       0       NO       0.25       NO       0.25         42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.645       NO       0.424         44                                                                                                                                                                                                                                                                                               | 133  |                |      |       |      |       |     |      |      |       |      | 0.93         |
| 35       G138R       YES       0.716       NO       0.435       NO       0.53       NO       0.435       YES       0.53         36       V96M       NO       0.451       YES       0.73       YES       0.03       YES       0.645       YES       0.645         37       I31M       NO       0.407       YES       0.814       YES       0       YES       0.666       YES       0.66         38       G8V       NO       0.348       YES       0.628       YES       0.04       YES       0.645       NO       0.435         39       G2V       YES       0.59       NO       0.447       YES       0       YES       0.62       YES       0.54         40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.42         41       S5C       YES       0.648       NO       0.335       YES       0       NO       0.455       NO       0.43         42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.645       NO       0.43         43                                                                                                                                                                                                                                                                                                | 134  |                |      |       |      |       |     |      |      |       |      | 0.87         |
| 36         V96M         NO         0.451         YES         0.73         YES         0.03         YES         0.645         YES         0.645           37         I31M         NO         0.407         YES         0.814         YES         0         YES         0.666         YES         0.66           38         G8V         NO         0.348         YES         0.628         YES         0.04         YES         0.645         NO         0.43           39         G2V         YES         0.59         NO         0.447         YES         0         YES         0.62         YES         0.54           40         D3N         NO         0.257         NO         0.113         NO         0.15         NO         0.25         NO         0.2           41         S5C         YES         0.648         NO         0.335         YES         0         NO         0.465         YES         0.5           42         L7V         NO         0.3         NO         0.483         YES         0.01         YES         0.77         YES         0.5           43         L111         NO         0.274         YES         0                                                                                                                                                                                               | 135  |                |      |       |      |       |     |      |      |       |      | 0.560        |
| 37       I31M       NO       0.407       YES       0.814       YES       0       YES       0.66       YES       0.63         38       G8V       NO       0.348       YES       0.628       YES       0.04       YES       0.645       NO       0.43         39       G2V       YES       0.59       NO       0.447       YES       0       YES       0.62       YES       0.53         40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.24         41       S5C       YES       0.648       NO       0.335       YES       0       NO       0.465       YES       0.54         42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.77       YES       0.54         43       L111       NO       0.274       YES       0.518       YES       0.04       YES       0.645       NO       0.44         44       L11P       YES       0.743       YES       0.907       YES       0       YES       0.675       YES       0.64       YES       0.64                                                                                                                                                                                                                                                                                         | 136  |                |      |       |      |       |     |      |      |       |      | 0.682        |
| 38       G8V       NO       0.348       YES       0.628       YES       0.04       YES       0.645       NO       0.439         39       G2V       YES       0.59       NO       0.447       YES       0       YES       0.62       YES       0.53         40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.24         41       S5C       YES       0.648       NO       0.335       YES       0       NO       0.465       YES       0.54         42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.77       YES       0.54         43       L111       NO       0.274       YES       0.518       YES       0.04       YES       0.645       NO       0.44         44       L11P       YES       0.743       YES       0.907       YES       0       YES       0.675       YES       0.645         45       L11F       NO       0.426       YES       0.734       YES       0.01       YES       0.675       YES       0.64         46                                                                                                                                                                                                                                                                                             | 137  |                |      |       |      |       |     |      |      |       |      | 0.68         |
| 39       G2V       YES       0.59       NO       0.447       YES       0       YES       0.62       YES       0.53         40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.2         41       S5C       YES       0.648       NO       0.335       YES       0       NO       0.465       YES       0.5         42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.77       YES       0.5         43       L111       NO       0.274       YES       0.518       YES       0.04       YES       0.645       NO       0.445         44       L11P       YES       0.743       YES       0.907       YES       0       YES       0.645       NO       0.445         45       L11F       NO       0.426       YES       0.734       YES       0.01       YES       0.675       YES       0.64         46       G22R       YES       0.652       YES       0.962       YES       0.02       YES       0.84       YES       0.64         47                                                                                                                                                                                                                                                                                               | 138  |                |      |       |      |       |     |      |      |       |      | 0.454        |
| 40       D3N       NO       0.257       NO       0.113       NO       0.15       NO       0.25       NO       0.25         41       S5C       YES       0.648       NO       0.335       YES       0       NO       0.465       YES       0.5         42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.77       YES       0.5         43       L111       NO       0.274       YES       0.518       YES       0.04       YES       0.645       NO       0.445         44       L11P       YES       0.743       YES       0.907       YES       0       YES       0.645       NO       0.445         45       L11F       NO       0.426       YES       0.734       YES       0.01       YES       0.675       YES       0.645         46       G22R       YES       0.652       YES       0.962       YES       0.02       YES       0.84       YES       0.64         47       K23T       NO       0.437       YES       0.893       YES       0       YES       0.64       YES       0.75         48 <td></td> <td>0.59</td>                                                                                                                                                               |      |                |      |       |      |       |     |      |      |       |      | 0.59         |
| 41       S5C       YES       0.648       NO       0.335       YES       0       NO       0.465       YES       0.5         42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.77       YES       0.5         43       L111       NO       0.274       YES       0.518       YES       0.04       YES       0.645       NO       0.443         44       L11P       YES       0.743       YES       0.907       YES       0       YES       0.645       NO       0.444         45       L11F       NO       0.426       YES       0.734       YES       0.01       YES       0.675       YES       0.645         46       G22R       YES       0.652       YES       0.962       YES       0.02       YES       0.84       YES       0.645         47       K23T       NO       0.437       YES       0.893       YES       0       YES       0.735       YES       0.74         48       V24A       NO       0.327       YES       0.765       YES       0       YES       0.75       YES       0.75         49                                                                                                                                                                                                                                                                                       |      |                |      |       |      |       |     |      |      |       |      | 0.23         |
| 42       L7V       NO       0.3       NO       0.483       YES       0.01       YES       0.77       YES       0.543         43       L111       NO       0.274       YES       0.518       YES       0.04       YES       0.645       NO       0.444         L11P       YES       0.743       YES       0.907       YES       0       YES       0.775       YES       0.845         45       L11F       NO       0.426       YES       0.734       YES       0.01       YES       0.675       YES       0.645         46       G22R       YES       0.652       YES       0.734       YES       0.02       YES       0.84       YES       0.645         47       K23T       NO       0.437       YES       0.962       YES       0.02       YES       0.84       YES       0.64         48       V24A       NO       0.327       YES       0.893       YES       0       YES       0.755       YES       0.74         49       W25C       YES       0.806       YES       0.974       YES       0       YES       0.755       YES       0.64         50                                                                                                                                                                                                                                                                                      |      |                |      |       |      |       |     |      |      |       |      | 0.59         |
| 43       L111       NO       0.274       YES       0.518       YES       0.04       YES       0.645       NO       0.4         44       L11P       YES       0.743       YES       0.907       YES       0       YES       0.775       YES       0.84         45       L11F       NO       0.426       YES       0.734       YES       0.01       YES       0.675       YES       0.6         46       G22R       YES       0.652       YES       0.962       YES       0.02       YES       0.84       YES       0.6         47       K23T       NO       0.437       YES       0.893       YES       0       YES       0.64       YES       0.7         48       V24A       NO       0.327       YES       0.765       YES       0       YES       0.64       YES       0.7         49       W25C       YES       0.806       YES       0.974       YES       0       YES       0.755       YES       0.8         50       S27P       NO       0.442       YES       0.955       YES       0.04       YES       0.595       YES       0.6                                                                                                                                                                                                                                                                                                   |      |                |      |       |      |       |     |      |      |       |      | 0.57         |
| 44L11PYES0.743YES0.907YES0YES0.775YES0.845L11FNO0.426YES0.734YES0.01YES0.675YES0.646G22RYES0.652YES0.962YES0.02YES0.84YES0.47K23TNO0.437YES0.893YES0YES0.735YES0.848V24ANO0.327YES0.765YES0YES0.64YES0.749W25CYES0.806YES0.974YES0YES0.775YES0.850S27PNO0.442YES0.955YES0.04YES0.595YES0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                |      |       |      |       |     |      |      |       |      | 0.45         |
| 45L11FNO0.426YES0.734YES0.01YES0.675YES0.646G22RYES0.652YES0.962YES0.02YES0.84YES0.47K23TNO0.437YES0.893YES0YES0.735YES0.848V24ANO0.327YES0.765YES0YES0.64YES0.749W25CYES0.806YES0.974YES0YES0.775YES0.850S27PNO0.442YES0.955YES0.04YES0.595YES0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                |      |       |      |       |     |      |      |       |      | 0.45         |
| 46G22RYES0.652YES0.962YES0.02YES0.84YES0.47K23TNO0.437YES0.893YES0YES0.735YES0.848V24ANO0.327YES0.765YES0YES0.64YES0.749W25CYES0.806YES0.974YES0YES0.775YES0.850S27PNO0.442YES0.955YES0.04YES0.595YES0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                |      |       |      |       |     |      |      |       |      | 0.81         |
| 47K23TNO0.437YES0.893YES0YES0.735YES0.848V24ANO0.327YES0.765YES0YES0.64YES0.749W25CYES0.806YES0.974YES0YES0.775YES0.850S27PNO0.442YES0.955YES0.04YES0.595YES0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                |      |       |      |       |     |      |      |       |      | 0.04         |
| 48         V24A         NO         0.327         YES         0.765         YES         0         YES         0.64         YES         0.775           49         W25C         YES         0.806         YES         0.974         YES         0         YES         0.775         YES         0.8           50         S27P         NO         0.442         YES         0.955         YES         0.04         YES         0.595         YES         0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                |      |       |      |       |     |      |      |       |      |              |
| 49         W25C         YES         0.806         YES         0.974         YES         0         YES         0.775         YES         0.8           50         S27P         NO         0.442         YES         0.955         YES         0.04         YES         0.595         YES         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                |      |       |      |       |     |      |      |       |      | 0.80         |
| 50 S27P NO 0.442 YES 0.955 YES 0.04 YES 0.595 YES 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                |      |       |      |       |     |      |      |       |      | 0.70         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                |      |       |      |       |     |      |      |       |      | 0.89         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50   | 52/P           | NO   | 0.442 | YES  | 0.955 | YES | 0.04 | YES  | 0.595 | YES  | 0.62<br>(Con |

|       | Table 1 —      | - Cx43 mutatio | ons were c | lassified as | deleteriou | s or neutral | using the | meta-SNP | server (Co | ontd.)    |         |
|-------|----------------|----------------|------------|--------------|------------|--------------|-----------|----------|------------|-----------|---------|
|       |                | Pant           | ther       | PhD-         | SNP        | SII          | Τ         | SN       | AP         | Meta      | ·SNP    |
| Sl.no | Mutations (AA) | Disease        | score      | Disease      | score      | Disease      | score     | Disease  | score      | Disease   | score   |
| 151   | A40V           | NO             | 0.367      | YES          | 0.637      | NO           | 0.09      | YES      | 0.585      | YES       | 0.501   |
| 152   | V41L           | NO             | 0.177      | NO           | 0.437      | YES          | 0.02      | YES      | 0.51       | NO        | 0.497   |
| 153   | E42L           | YES            | 0.527      | YES          | 0.793      | YES          | 0.01      | YES      | 0.66       | YES       | 0.709   |
| 154   | E42Q           | NO             | 0.406      | YES          | 0.687      | YES          | 0.03      | YES      | 0.545      | YES       | 0.528   |
| 155   | D47H           | YES            | 0.998      | YES          | 0.878      | YES          | 0         | YES      | 0.75       | YES       | 0.889   |
| 156   | E48L           | YES            | 0.527      | YES          | 0.818      | YES          | 0         | YES      | 0.715      | YES       | 0.744   |
| 157   | Q49L           | NO             | 0.421      | YES          | 0.781      | YES          | 0         | YES      | 0.655      | YES       | 0.661   |
| 158   | Q49P           | YES            | 0.56       | YES          | 0.88       | YES          | 0         | YES      | 0.655      | YES       | 0.761   |
| 159   | Q49E           | NO             | 0.299      | YES          | 0.666      | YES          | 0.02      | YES      | 0.66       | YES       | 0.605   |
| 160   | N55D           | NO             | 0.344      | YES          | 0.615      | NO           | 0.15      | YES      | 0.62       | NO        | 0.441   |
| 161   | Q58H           | YES            | 0.588      | YES          | 0.845      | YES          | 0         | YES      | 0.71       | YES       | 0.779   |
| 162   | Р59Н           | YES            | 0.999      | YES          | 0.893      | YES          | 0         | YES      | 0.78       | YES       | 0.937   |
| 163   | P59A           | YES            | 0.997      | YES          | 0.796      | YES          | 0.02      | YES      | 0.7        | YES       | 0.851   |
| 164   | S69Y           | YES            | 0.626      | YES          | 0.706      | NO           | 1         | NO       | 0.28       | YES       | 0.578   |
| 165   | H74L           | YES            | 0.522      | YES          | 0.908      | NO           | 0.13      | YES      | 0.615      | YES       | 0.598   |
| 166   | R76S           | NO             | 0.491      | YES          | 0.926      | YES          | 0         | YES      | 0.78       | YES       | 0.817   |
| 167   | R76H           | YES            | 0.621      | YES          | 0.932      | YES          | 0.02      | YES      | 0.82       | YES       | 0.848   |
| 168   | V85M           | YES            | 0.506      | YES          | 0.882      | YES          | 0.01      | YES      | 0.73       | YES       | 0.779   |
| 169   | S86Y           | YES            | 0.683      | YES          | 0.954      | YES          | 0         | YES      | 0.725      | YES       | 0.886   |
| 170   | L90V           | NO             | 0.304      | YES          | 0.718      | NO           | 0.13      | NO       | 0.485      | YES       | 0.55    |
| 171   | H95R           | NO             | 0.468      | YES          | 0.909      | YES          | 0         | YES      | 0.79       | YES       | 0.836   |
| 172   | V96E           | YES            | 0.571      | YES          | 0.921      | YES          | 0.01      | YES      | 0.8        | YES       | 0.856   |
| 173   | V96A           | NO             | 0.312      | NO           | 0.322      | NO           | 0.83      | NO       | 0.42       | NO        | 0.45    |
| 174   | Y98C           | YES            | 0.802      | YES          | 0.904      | YES          | 0         | YES      | 0.67       | YES       | 0.791   |
| 175   | R101L          | YES            | 0.564      | YES          | 0.831      | NO           | 0.07      | NO       | 0.47       | YES       | 0.704   |
| 176   | K1012          | NO             | 0.439      | NO           | 0.42       | NO           | 0.36      | NO       | 0.47       | NO        | 0.475   |
| 177   | L106P          | YES            | 0.768      | YES          | 0.712      | NO           | 0.32      | NO       | 0.46       | YES       | 0.562   |
| 178   | L106R          | YES            | 0.683      | NO           | 0.383      | NO           | 1         | NO       | 0.27       | YES       | 0.576   |
| 179   | E110D          | NO             | 0.32       | NO           | 0.206      | NO           | 0.17      | YES      | 0.525      | NO        | 0.387   |
| 180   | L110D          | YES            | 0.768      | YES          | 0.638      | NO           | 0.33      | YES      | 0.62       | YES       | 0.596   |
| 181   | 1130T          | NO             | 0.432      | NO           | 0.402      | NO           | 0.56      | NO       | 0.475      | NO        | 0.439   |
| 182   | K134N          | NO             | 0.431      | NO           | 0.402      | NO           | 0.50      | NO       | 0.415      | NO        | 0.474   |
| 182   | K134E          | NO             | 0.347      | NO           | 0.496      | NO           | 1         | NO       | 0.415      | NO        | 0.46    |
| 185   | G138S          | YES            | 0.547      | NO           | 0.128      | NO           | 0.73      | NO       | 0.23       | NO        | 0.159   |
| 185   | G138D          | YES            | 0.643      | NO           | 0.128      | NO           | 0.62      | NO       | 0.23       | YES       | 0.546   |
| 185   | G138D<br>G143D | YES            | 0.582      | YES          | 0.478      | NO           | 0.02      | YES      | 0.49       | YES       | 0.340   |
| 187   | K144E          | NO             | 0.382      | YES          | 0.873      | NO           | 0.48      | YES      | 0.58       | YES       | 0.714   |
| 189   | V145G          | YES            | 0.547      | YES          | 0.651      | NO           | 0.03      | NO       | 0.38       | NO        | 0.0     |
|       |                |                |            |              | 0.031      |              |           |          |            |           |         |
| 190   | M147T          | NO             | 0.473      | YES          |            | NO           | 0.23      | YES      | 0.55       | YES       | 0.643   |
| 191   | R148Q          | NO<br>NO       | 0.222      | YES          | 0.608      | NO<br>NO     | 0.23      | YES      | 0.615      | NO<br>VES | 0.478   |
| 192   | R148G          | NO             | 0.413      | YES          | 0.824      | NO           | 0.14      | YES      | 0.72       | YES       | 0.765   |
| 193   | R153Q          | NO             | 0.416      | YES          | 0.651      | NO           | 0.32      | NO       | 0.465      | YES       | 0.513   |
| 194   | T154N          | YES            | 0.526      | YES          | 0.898      | YES          | 0.02      | YES      | 0.715      | YES       | 0.798   |
| 195   | T154A          | NO             | 0.292      | YES          | 0.687      | NO           | 0.14      | YES      | 0.51       | YES       | 0.531   |
| 196   | P193L          | YES            | 0.686      | YES          | 0.875      | YES          | 0.04      | YES      | 0.635      | YES       | 0.637   |
| 197   | H194P          | YES            | 0.657      | YES          | 0.868      | YES          | 0.01      | YES      | 0.705      | YES       | 0.806   |
| 198   | S201Y          | YES            | 0.719      | YES          | 0.914      | YES          | 0         | YES      | 0.78       | YES       | 0.829   |
| 199   | S201F          | YES            | 0.701      | YES          | 0.899      | YES          | 0         | YES      | 0.785      | YES       | 0.831   |
| 200   | R202H          | YES            | 0.66       | YES          | 0.862      | YES          | 0.01      | YES      | 0.755      | YES       | 0.672   |
| 201   | K206R          | YES            | 0.992      | YES          | 0.879      | YES          | 0         | YES      | 0.69       | YES       | 0.858   |
|       |                |                |            |              |            |              |           |          |            |           | (Contd. |

|          | Та             | ible $1 - 0$   |              |            | lassified as d   |            | s or ne  |                | g the met     |              | -           |           |              |
|----------|----------------|----------------|--------------|------------|------------------|------------|----------|----------------|---------------|--------------|-------------|-----------|--------------|
|          |                |                | Par          | ther       | PhD-S            | SNP        |          | SIFT           |               | SNAP         | )           | Meta      | -SNP         |
| Sl.no    | Mutation       | s (AA)         | Disease      | score      | Disease          | score      | Dise     | ase sc         | ore Di        | sease        | score       | Disease   | score        |
| 202      | V210           | 5L             | NO           | 0.272      | YES              | 0.778      | YE       | ES 0           | .03           | YES          | 0.66        | YES       | 0.605        |
| 203      | S220           | )Y             | YES          | 0.719      | YES              | 0.896      | YE       | ES 0           | .01           | YES          | 0.685       | YES       | 0.779        |
| 204      | R239           | Q              | NO           | 0.317      | NO               | 0.457      | N        | 0 C            | .36           | YES          | 0.58        | NO        | 0.451        |
| 205      | R239           | W              | YES          | 0.809      | YES              | 0.701      | N        | 0 C            | .18           | YES          | 0.6         | YES       | 0.733        |
| 206      | S251           |                | NO           | 0.122      | NO               | 0.084      | N        |                |               |              | 0.38        | NO        | 0.132        |
| 207      | A253           |                | NO           | 0.069      | NO               | 0.389      | N        |                |               |              | 0.36        | NO        | 0.348        |
| 208      | A253           |                | NO           | 0.161      | NO               | 0.207      | N        |                |               |              | 0.515       | NO        | 0.272        |
| 209      | G261           |                | YES          | 0.745      | YES              | 0.661      | YE       |                |               |              | 0.64        | YES       | 0.711        |
| 210      | S272           |                | YES          | 0.545      | YES              | 0.72       | N        |                |               |              | 0.25        | YES       | 0.503        |
| 210      | A270           |                | YES          | 0.568      | NO               | 0.482      | N        |                |               |              | 0.265       | NO        | 0.484        |
| 211      | T290           |                | NO           | 0.497      | NO               | 0.391      | N        |                |               |              | 0.335       | NO        | 0.311        |
| 212      | A323           |                | NO           | 0.497      | NO               | 0.391      | N        |                |               |              | 0.395       | NO        | 0.13         |
|          |                |                |              |            |                  |            |          |                |               |              |             |           |              |
| 214      | T320           |                | NO           | 0.429      | NO               | 0.278      | N        |                |               |              | 0.22        | NO        | 0.338        |
| 215      | E352           |                | NO           | 0.441      | NO               | 0.495      | N        |                |               |              | 0.61        | YES       | 0.682        |
| 216      | R362           |                | NO           | 0.416      | YES              | 0.567      | N        |                |               |              | 0.565       | YES       | 0.636        |
| 217      | S364           |                | NO           | 0.213      | NO               | 0.232      | N        |                |               |              | 0.41        | NO        | 0.264        |
| 218      | S365           |                | NO           | 0.437      | NO               | 0.377      | N        |                |               |              | 0.36        | NO        | 0.369        |
| 219      | R376           | 5Q             | NO           | 0.416      | YES              | 0.507      | N        | 0 C            | .51           | YES          | 0.595       | YES       | 0.611        |
|          |                |                | Table        | e 2 — Func | tional impac     | t of selec | ted mi   | ssense in      | Cx43 pro      | tein         |             |           |              |
| Sl no    | Mutations 1    | FI score       | VC score     | VS score F | Functional in    | mact S     | lno I    | Autations      | FI score      | VC score     | VS scot     | e Functio | nal impact   |
| 1        | W4C            | 3.81           | 5.14         | 2.48       | high             | •          | 27       | E205K          | 4.04          | 5.68         | 2.4         |           | nigh         |
| 2        | L11F           | 3.21           | 3.94         | 2.48       | medium           |            | 28       | D259Y          | 1.245         | 1.39         | 1.1         |           | low          |
| 3        | Y17C           | 2.35           | 4.01         | 0.69       | medium           |            | 29       | E227D          | 2.63          | 2.86         | 2.4         |           | edium        |
| 4        | G22E           | 3.83           | 5.18         | 2.48       | high             |            | 30       | Y17S           | 1.655         | 2.62         | 0.69        |           | ow           |
| 5        | W25R           | 3.815          | 5.15         | 2.48       | high             |            | 31       | S18P           | 3.805         | 5.13         | 2.48        |           | nigh         |
| 6        | R33Q           | 3.84           | 5.2          | 2.48       | high             |            | 32       | G60S           | 3.84          | 5.2          | 2.48        |           | nigh         |
| 7        | L37P           | 3.51           | 4.62         | 2.4        | high             |            | 33       | L11P           | 3.76          | 5.04         | 2.48        |           | nigh         |
| 8        | P71T           | 3.435          | 4.47         | 2.4        | medium           |            | 34       | G22R           | 3.83          | 5.18         | 2.48        |           | nigh         |
| 9        | G60C           | 3.84           | 5.2          | 2.48       | high             | -          | 35       | W25C           | 3.47          | 4.46         | 2.48        |           | edium        |
| 10       | R76C           | 3.785          | 5.17         | 2.4        | high             |            | 36       | E42L           | Neutral       | Neutral      | Neutra      | l Ne      | eutral       |
| 11       | R76H           | 2.885          | 4.07         | 1.7        | medium           |            | 37       | D47H           | 3.48          | 4.48         | 2.48        | me        | edium        |
| 12       | V79F           | 1.955          | 2.81         | 1.1        | medium           |            | 38       | E48L           | Neutral       | Neutral      |             |           | eutral       |
| 13       | F84C           | 2.725          | 3.84         | 1.61       | medium           |            | 39       | Q49P           | 3.65          | 5            | 2.3         |           | nigh         |
| 14       | V85M           | 3.61           | 5.02         | 2.2        | high             |            | 40       | Q58H           | 3.64          | 5.08         | 2.2         |           | nigh         |
| 15       | V85G           | 3.61           | 5.02         | 2.2        | high             |            | 41       | Р59Н           | 3.47          | 4.46         | 2.48        |           | edium        |
| 16       | P88L           | 3.835          | 5.19         | 2.48       | high             |            | 42       | P59A           | 3.815         | 5.15         | 2.48        |           | nigh         |
| 17       | A94D           | 1.495          | 2.3          | 0.69       | low              |            | 43       | S86Y           | 3.38          | 4.68         | 2.08        |           | edium        |
| 18       | Y98S           | 2.51           | 4.33         | 0.69       | medium           |            | 44       | V96E           | 3.48          | 4.66         | 2.3         |           | edium        |
| 19       | T154N          | 3.005          | 3.71         | 2.3        | medium           |            | 45<br>46 | Y98C           | 2.51          | 4.33         | 0.69        |           | edium        |
| 20       | Y177C          | 3.95           | 5.5          | 2.4        | high             |            | 46<br>47 | P193L          | 2.805         | 3.21         | 2.4         |           | edium        |
| 21       | G178E          | 3.97           | 5.54         | 2.4        | high             |            | 47<br>49 | H194P          | 3.385         | 4.47         | 2.3         |           | edium        |
| 22       | H194L          | 2.835          | 3.37         | 2.3        | medium           |            | 48<br>40 | S201Y          | 3.985         | 5.57         | 2.4         |           | nigh         |
| 23       | R202H          | 3.215          | 4.03         | 2.4        | medium           |            | 49<br>50 | S201F          | 3.985         | 5.57         | 2.4         |           | nigh<br>Nigh |
| 24<br>25 | T204K<br>T204M | 2.925<br>2.815 | 3.45<br>3.23 | 2.4<br>2.4 | medium<br>medium |            | 50<br>51 | K206R<br>S220Y | 4.045<br>3.67 | 5.69<br>4.94 | 2.4<br>2.4  |           | nigh<br>Nigh |
| 23       | L214P          | 2.815 3.405    | 3.23<br>4.51 | 2.4<br>2.3 | meanum           |            | 51<br>52 | SZZU I         | 3.07<br>1.59  | 4.94         | 2.4<br>1.39 | r         | nigh<br>Iow  |

have a medium impact on protein structure and functionality, which was calculated based on FI, VC, and VS scores. Furthermore, four mutations were found to have a low impact, and two mutations were predicted to have no impact on Cx43 protein functionality, respectively (Fig. 2 and Table 2). Thus, among 52 mutations, the functional impacts, including high and medium of 46 mutations, were taken to further analysis.

# Stability analysis of Selected Cx43 mutation

From the mutation functional impact analysis, 46 mutations in the Cx43 protein were predicted to have a high and medium impact on protein functions which

was selected for stability analysis. The selected Cx43 mutant stability was analyzed using  $\Delta\Delta G$  analysisbased servers such as DUET, Mupro, INPS-MD, I-Mutant2.0, and Dyna Mut (Table 3). As a result, the stability analysis servers, including mCSM, SDM, DUET, Mupro, INPS-MD, I MUTANT, I Stabilizing, ENCOM, and Dyna MUT predicted destabilizing mutations as 40, 30, 38, 42, 25, 39, 37, 25 and 22



Fig. 2 — Functional impact prediction of Cx43 protein mutations

respectively (Fig. 3). From the stability prediction, eight mutations (R76H, V79F, F84C, V85G, Y177C, L214P, G60S, and L11P) are commonly destabilizing in individual servers.

#### **Binding pocket prediction**

Ligand binding site prediction is important for protein regulation. Thus, modelled Cx43 native protein was subjected to predict binding pockets using the COACH-D server. COACH-D result analysis revealed native Cx43 shown to bind with ligands (FE, ZN, 0F1 and PTY) via 22 residues namely, ARG33, LEU37, VAL41, CYS54, CYS61, HIS74, ILE82, VAL166, PHE169, LEU170, GLN173, CYS187, CYS192, CYS198, ILE210, MET213, LEU214, SER217, LEU218, SER220, LEU221 and ALA222 which was considered for binding sites in native and mutant Cx43.

Of the selected eight mutations from stability analysis, a mutation cc was screened to have played a part in binding pockets. Thus, a mutation L214P was then selected for conservative structural analysis.

|        |           |                  |               |       |               |                  | Tab           | le 3 —           | Stability analys | is of Cx43 s     | elected misse | nses             |               |       |               |                  |               |                  |               |
|--------|-----------|------------------|---------------|-------|---------------|------------------|---------------|------------------|------------------|------------------|---------------|------------------|---------------|-------|---------------|------------------|---------------|------------------|---------------|
|        |           |                  |               |       | DUET          |                  |               |                  | Mupro            | INP              | S-MD          | I MUI            | ANT 2.0 SEQ   |       |               | Ι                | Oyna Mut      |                  |               |
|        |           | 1                | nCSM          |       | SDM           |                  | DUET          |                  | Mupro            | INP              | S-MD          | I MUT            | ANT 2.0 SEQ   | I     | Stabilizing   | E                | ENCOM         | D                | na Mut        |
| Sl. no | Mutations | $\Delta\Delta G$ | Stability     | ΔΔG   | Stability     | $\Delta\Delta G$ | Stability     | $\Delta\Delta G$ | Stability        | $\Delta\Delta G$ | Stability     | $\Delta\Delta G$ | Stability     | ΔΔG   | Stability     | $\Delta\Delta G$ | Stability     | $\Delta\Delta G$ | Stability     |
| 1      | W4C       | 0.254            | Stabilizing   | -0.15 | Destabilizing | 0.39             | Stabilizing   | -0.153           | Destabilizing    | -1.56725         | Destabilizing | g —1.55          | Destabilizing | 0.643 | Stabilizing   | 0.002            | Stabilizing   | 0.447            | Stabilizing   |
| 2      | L11F      | -0.77            | Destabilizing | -0.69 | Destabilizing | -0.844           | Destabilizing | -1.213           | Destabilizing-   | -1.1666655       | Destabilizing | g —1             | Destabilizing | 0.91  | Destabilizing | 0.379            | Stabilizing   | 0.556            | Stabilizing   |
| 3      | Y17C      | -0.46            | Destabilizing | -0.07 | Destabilizing | -0.29            | Destabilizing | -0.556           | Destabilizing    | -1.496945        | Destabilizing | g -0.82          | Stabilizing   | 0.55  | Destabilizing | -0.699           | Destabilizing | -0.546           | Destabilizing |
| 4      | G22E      | -2.031           | Destabilizing | 0.22  | Stabilizing   | -1.592           | Destabilizing | -0.677           | Destabilizing-   | -0.7547255       | Stabilizing   | -1.02            | Destabilizing | 0.83  | Destabilizing | 0.673            | Stabilizing   | 0.213            | Stabilizing   |
| 5      | W25R      | -0.932           | Destabilizing | 0.32  | Stabilizing   | -0.677           | Destabilizing | -0.784           | Destabilizing-   | -1.2714685       | Destabilizing | g –1.49          | Destabilizing | 0.87  | Destabilizing | -0.286           | Destabilizing | -0.759           | Destabilizing |
| 6      | R33Q      | -1.015           | Destabilizing | -1.97 | Destabilizing | -1.288           | Destabilizing | -0.799           | Destabilizing    | -1.47021         | Destabilizing | g -0.51          | Destabilizing | 0.741 | Destabilizing | -0.274           | Destabilizing | -1.494           | Destabilizing |
| 7      | L37P      | -0.992           | Destabilizing | -4.41 | Destabilizing | -1.669           | Destabilizing | -2.02            | Destabilizing    | -3.246535        | Destabilizing | g —1.78          | Destabilizing | 0.798 | Destabilizing | -0.519           | Destabilizing | -0.962           | Destabilizing |
| 8      | P71T      | -1.078           | Destabilizing | 0.16  | Stabilizing   | -0.704           | Destabilizing | -1.311           | Destabilizing-   | -1.0029515       | Destabilizing | g –1.56          | Destabilizing | 0.799 | Destabilizing | 0.284            | Stabilizing   | 0.743            | Stabilizing   |
| 9      | G60C      | -0.682           | Destabilizing | -2.37 | Destabilizing | -1.054           | Destabilizing | 0.064            | Stabilizing      | -1.683805        | Destabilizing | g —1.15          | Destabilizing | 0.53  | Destabilizing | -0.085           | Destabilizing | -1.339           | Destabilizing |
| 10     | R76C      | -0.995           | Destabilizing | -0.12 | Destabilizing | -0.827           | Destabilizing | -0.963           | Destabilizing-   | -0.2137374       | Stabilizing   | -1.12            | Destabilizing | 0.833 | Destabilizing | -0.568           | Destabilizing | -0.329           | Destabilizing |
| 11     | R76H      | -1.506           | Destabilizing | -0.56 | Destabilizing | -1.559           | Destabilizing | -1.285           | Destabilizing    | -0.795757        | Destabilizing | g −1.74          | Destabilizing | 0.845 | Destabilizing | -0.002           | Destabilizing | -0.222           | Destabilizing |
| 12     | V79F      | -0.62            | Destabilizing | -0.41 | Destabilizing | -0.611           | Destabilizing | -1.201           | Destabilizing    | -1.22595         | Destabilizing | g –1.39          | Destabilizing | 0.82  | Destabilizing | -0.001           | Destabilizing | -0.261           | Destabilizing |
| 13     | F84C      | -1.444           | Destabilizing | -0.2  | Destabilizing | -1.285           | Destabilizing | -1.399           | Destabilizing    | -2.00914         | Destabilizing | g –1.97          | Destabilizing | 0.66  | Destabilizing | -2.445           | Destabilizing | -1.137           | Destabilizing |
| 14     | V85M      | -0.654           | Destabilizing | -0.63 | Destabilizing | -0.59            | Destabilizing | -0.898           | Destabilizing    | -1.330545        | Destabilizing | g —1.67          | Destabilizing | 0.73  | Destabilizing | 0.206            | Stabilizing   | -0.056           | Destabilizing |
| 15     | V85G      | -2.703           | Destabilizing | -2.37 | Destabilizing | -3.095           | Destabilizing | -2.23            | Destabilizing    | -3.778675        | Destabilizing | g -3.04          | Destabilizing | 0.83  | Destabilizing | -0.887           | Destabilizing | -2.258           | Destabilizing |
| 16     | P88L      | 0.012            | Stabilizing   | 2.12  | Stabilizing   | 0.838            | Stabilizing   | 0.36             | Stabilizing -    | -0.1627065       | Stabilizing   | -0.86            | Destabilizing | 0.56  | Destabilizing | 0.321            | Stabilizing   | 1.439            | Stabilizing   |
| 17     | Y98S      | -1.096           | Destabilizing | -0.54 | Destabilizing | -0.902           | Destabilizing | -1.147           | Destabilizing    | -1.290914        | Destabilizing | g —1.51          | Destabilizing | 0.74  | Destabilizing | 0.042            | Stabilizing   | 0.412            | Stabilizing   |
| 18     | T154N     | -1.13            | Destabilizing | -0.15 | Destabilizing | -0.847           | Destabilizing | -1.141           | Destabilizing    | -1.261667        | Destabilizing | g –1.33          | Destabilizing | 0.76  | Destabilizing | -0.25            | Destabilizing | 0.572            | Stabilizing   |
| 19     | Y177C     | -1.423           | Destabilizing | -0.87 | Destabilizing | -1.336           | Destabilizing | -1.443           | Destabilizing    | -1.922375        | Destabilizing | g -1.26          | Destabilizing | 0.81  | Destabilizing | -1.43            | Destabilizing | -0.921           | Destabilizing |
| 20     | G178E     | 0.098            | Stabilizing   | -3.86 | Destabilizing | -0.407           | Destabilizing | -0.524           | Destabilizing-   | -1.0358325       | Destabilizing | g -0.71          | Destabilizing | 0.76  | Destabilizing | -0.061           | Destabilizing | -1.608           | Destabilizing |
| 21     | H194L     | 1.002            | Stabilizing   | 0.21  | Stabilizing   | 0.958            | Stabilizing   | 0.235            | Stabilizing      | -0.206911        | Stabilizing   | 0.6              | Stabilizing   | 0.7   | Stabilizing   | -0.084           | Destabilizing | 0.359            | Stabilizing   |
| 22     | R202H     | -1.236           | Destabilizing | 0.5   | Stabilizing   | -1.092           | Destabilizing | -1.162           | Destabilizing-   | -0.8287845       | Destabilizing | g −1.48          | Destabilizing | 0.73  | Destabilizing | -0.114           | Destabilizing | -0.362           | Destabilizing |
| 23     | T204K     | -0.521           | Destabilizing | 0.9   | Stabilizing   | 0.107            | Stabilizing   | -0.918           | Destabilizing-   | -0.5708325       | Stabilizing   | -1.12            | Destabilizing | 0.64  | Stabilizing   | -0.081           | Destabilizing | 0.041            | Stabilizing   |
| 24     | T204M     | 0.116            | Stabilizing   | 0.62  | Stabilizing   | 0.453            | Stabilizing   | -0.193           | Destabilizing -  | -0.4244125       | Stabilizing   | 0.02             | Destabilizing | 0.67  | Stabilizing   | -0.073           | Destabilizing | 0.3              | Stabilizing   |
| 25     | L214P     | -1.075           | Destabilizing | -3.14 | Destabilizing | -1.508           | Destabilizing | -2.303           | Destabilizing    | -3.150245        | Destabilizing | g –1.47          | Destabilizing | 0.83  | Destabilizing | -0.66            | Destabilizing | -1.133           | Destabilizing |
| 26     | E205K     | -0.457           | Destabilizing | -1    | Destabilizing | -0.282           | Destabilizing | -1.634           | Destabilizing-   | -0.4850575       | Stabilizing   | -0.68            | Destabilizing | 0.81  | Destabilizing | 0.026            | Stabilizing   | -0.302           | Destabilizing |
| 27     | E227D     | -1.289           | Destabilizing | -1.99 | Destabilizing | -1.477           | Destabilizing | -0.869           | Destabilizing    | -1.095409        | Destabilizing | g -0.19          | Destabilizing | 0.605 | Stabilizing   | -0.477           | Destabilizing | -1.291           | Destabilizing |
| 28     | S18P      | -0.521           | Destabilizing | -0.45 | Destabilizing | -0.415           | Destabilizing | -1.236           | Destabilizing-   | -0.9889335       | Stabilizing   | -0.01            | Stabilizing   | 0.81  | Stabilizing   | 0.013            | Stabilizing   | 0.349            | Stabilizing   |
| 29     | G60S      | -0.656           | Destabilizing | -3.84 | Destabilizing | -1.102           | Destabilizing | -0.242           | Destabilizing-   | -1.0329635       | Destabilizing | g -1.42          | Destabilizing | 0.53  | Destabilizing | -0.082           | Destabilizing | -1.37            | Destabilizing |
| 30     | L11P      | -0.728           | Destabilizing | -2.63 | Destabilizing | -1.015           | Destabilizing | -1.95            | Destabilizing    | -2.72524         | Destabilizing | g −1.54          | Destabilizing | 0.909 | Destabilizing | -0.427           | Destabilizing | -0.531           | Destabilizing |
| 31     | G22R      | -0.935           | Destabilizing | -0.46 | Destabilizing | -0.673           | Destabilizing | -0.704           | Destabilizing    | -0.365542        | Stabilizing   | -1.04            | Destabilizing | 0.79  | Destabilizing | 1.346            | Stabilizing   | 1.374            | Stabilizing   |
|        |           |                  |               |       |               |                  |               |                  |                  |                  |               |                  |               |       |               |                  |               |                  | (Contd.)      |

|        |           |                  |               |                  |               |                  | Table 3 -     | — Stabi          | ility analysis of | Cx43 selec       | ted missenses | (Conta           | d.)           |                  |               |                  |               |                  |               |
|--------|-----------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|-------------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|---------------|
|        |           |                  |               |                  | DUET          |                  |               | 1                | Mupro             | INP              | S-MD          | I MUT            | ANT 2.0 SEQ   |                  |               | Ľ                | yna Mut       |                  |               |
|        |           | m                | CSM           |                  | SDM           | I                | DUET          | I                | Mupro             | INP              | S-MD          | I MUT            | ANT 2.0 SEQ   | 15               | Stabilizing   | E                | ENCOM         | Dy               | na Mut        |
| Sl. no | Mutations | $\Delta\Delta G$ | Stability         | $\Delta\Delta G$ | Stability     | $\Delta\Delta G$ | Stability     | $\Delta\Delta G$ | Stability     | $\Delta\Delta G$ | Stability     | $\Delta\Delta G$ | Stability     |
| 32     | W25C      | -1.106 1         | Destabilizing | 0.38             | Stabilizing   | -0.692           | Destabilizing | -0.55            | Destabilizing -   | -1.441255        | Destabilizing | -2.1             | Destabilizing | 0.86             | Destabilizing | -0.32            | Destabilizing | -0.616           | Destabilizing |
| 33     | D47H      | -0.78            | Destabilizing | 0.53             | Stabilizing   | -0.6             | Destabilizing | -0.671           | Destabilizing -   | -0.596999        | Stabilizing   | -0.11            | Stabilizing   | 0.51             | Stabilizing   | 0.192            | Stabilizing   | 0.567            | Stabilizing   |
| 34     | Q49P      | -0.274           | Destabilizing | -1.12            | Destabilizing | -0.28            | Destabilizing | -0.896           | Destabilizing -   | -0.770067        | Stabilizing   | -0.41            | Destabilizing | 0.71             | Destabilizing | -0.162           | Destabilizing | -0.186           | Destabilizing |
| 35     | Q58H      | -0.495           | Destabilizing | 0.79             | Stabilizing   | -0.294           | Destabilizing | -0.677           | Destabilizing-    | 0.5396875        | Stabilizing   | -0.73            | Destabilizing | 0.808            | Destabilizing | -0.018           | Destabilizing | 0.03             | Stabilizing   |
| 36     | P59H      | -0.001           | Destabilizing | 0.16             | Stabilizing   | 0.041            | Stabilizing   | -0.738           | Destabilizing-    | 0.5029356        | Stabilizing   | -1.64            | Destabilizing | 0.86             | Destabilizing | 0.119            | Stabilizing   | 0.276            | Stabilizing   |
| 37     | P59A      | -0.239           | Destabilizing | -0.2             | Destabilizing | -0.06            | Destabilizing | -0.852           | Destabilizing-    | 0.7431565        | Stabilizing   | -1.86            | Destabilizing | 0.84             | Destabilizing | 0.117            | Stabilizing   | 0.073            | Stabilizing   |
| 38     | S86Y      | -0.358           | Destabilizing | 0.33             | Stabilizing   | -0.16            | Destabilizing | -0.592           | Destabilizing-    | 0.2277534        | Stabilizing   | 0.08             | Destabilizing | 0.84             | Destabilizing | 0.744            | Stabilizing   | 1.867            | Stabilizing   |
| 39     | V96E      | -2.489 1         | Destabilizing | -1.51            | Destabilizing | -2.518           | Destabilizing | -1.454           | Destabilizing -   | -2.522035        | Destabilizing | -1.86            | Destabilizing | 0.5              | Stabilizing   | -0.153           | Destabilizing | -0.499           | Destabilizing |
| 40     | Y98C      | -0.161           | Destabilizing | 0.12             | Stabilizing   | 0.121            | Stabilizing   | -0.885           | Destabilizing -   | -1.150707        | Destabilizing | -1.03            | Destabilizing | 0.7              | Destabilizing | 0.109            | Stabilizing   | 0.393            | Stabilizing   |
| 41     | P193L     | -0.872           | Destabilizing | -0.07            | Destabilizing | -0.599           | Destabilizing | -0.126           | Destabilizing-    | 0.9917315        | Stabilizing   | -0.73            | Destabilizing | 0.83             | Destabilizing | 0.088            | Stabilizing   | 0.225            | Stabilizing   |
| 42     | H194P     | 0.854            | Stabilizing   | -0.32            | Destabilizing | 0.749            | Stabilizing   | -0.614           | Destabilizing-    | 0.5732749        | Stabilizing   | 0.42             | Stabilizing   | 0.61             | Destabilizing | 0.461            | Stabilizing   | 1.045            | Stabilizing   |
| 43     | S201Y     | -0.41            | Destabilizing | -0.28            | Destabilizing | -0.418           | Destabilizing | -0.803           | Destabilizing-    | 0.5128665        | Stabilizing   | 0.12             | Stabilizing   | 0.58             | Destabilizing | 1.093            | Stabilizing   | 1.378            | Stabilizing   |
| 44     | S201F     | -0.636 1         | Destabilizing | 0.6              | Stabilizing   | -0.37            | Destabilizing | -0.558           | Destabilizing -   | -0.829358        | Stabilizing   | 0.43             | Stabilizing   | 0.61             | Destabilizing | 0.584            | Stabilizing   | 0.83             | Stabilizing   |
| 45     | K206R     | -0.934 1         | Destabilizing | -0.78            | Destabilizing | -0.769           | Destabilizing | -0.384           | Destabilizing-    | 0.9249555        | Stabilizing   | -0.14            | Destabilizing | 0.74             | Destabilizing | 0.129            | Stabilizing   | 0.458            | Stabilizing   |
| 46     | S220Y     | -0.656 1         | Destabilizing | 0.3              | Stabilizing   | -0.444           | Destabilizing | 0.123            | Stabilizing       | -0.378394        | Stabilizing   | -0.37            | Destabilizing | 0.7              | Stabilizing   | 1.269            | Stabilizing   | 1.86             | Stabilizing   |



Fig. 3 — Server-based mutation stability analysis in Cx43 protein

#### **Conservation analysis of Cx43**

ConSurf server was used to analyze the conservative sites in the Cx43 protein. A mutation L214P was screened for conservative analysis, and the conSurf result revealed that the L214 position is subject to have more conserved at a scale of 7 (Fig. 4). From this analysis, L214P mutation was testimony for modelling and was a potent inhibitor analysis.

#### Structure modelling and validation

A crystal structure of Cx43 was not completely available in RCSB PDB; thus, a sequence of the Cx43 gene was retrieved from the Uniport database (Uniport ID: P17302) and submitted to I-TASSER web-based server. It generally retrieves template structure from the RCSB PDB library based on similar folds via a threading approach, and I-TASSER then utilizes the SPICKER program to cluster the confirmations through pairwise sequence alignment (PSA). As a result, five models generated with a confidence score from that model 1 with the best score were selected for further analysis. Cx43 was mutated by replacing the LEU at the 214<sup>th</sup> position



Fig. 4 — Conservative analysis of LEU at 214<sup>th</sup> position in native Cx43 protein

with PRO and submitted in I-TASSER (Fig. 5A & B). The native and mutant Cx43 structure was validated by the Ramachandran plot server, which obtained 94.97% and 94.362% of residues distributed in the highly preferred region of favored regions (Fig. 6).

#### Molecular docking and inhibitor analysis

In the present study, 36 compounds of interest docked with L214P mutated Cx43 protein (Table 4), which revealed the compounds Kanamycin, Ginsenoside, and Astragaloside IV shown to interact with mutated Cx43 with a maximum of 5 hydrogen bonds (Fig. 7A-C). The residues involved in the interaction are TYR155, GLY22, SER27, ASN302, ASN300, ARG293, ASN309, ARG148, LYS13 and

TYR286. Glycyrrhetinic acid, Halothane, Heptanol, Ketamine, Propofol, Quinine, pentachlorophenol, Rutaecarpine, Ascorbic acid 6-palmitate, Boldine, and Terbinafine doesn't have any hydrogen bond interactions. Other compounds showed an interaction between 1 to 4 hydrogen bonds.

AMDE result analysis revealed that high-affinity compounds Kanamycin and Astragaloside IV violated from Lipinski rule by three violations (Table 4). Ginsenoside has no violations and has high-affinity interactions of 5 hydrogen bonds with mutated Cx43 (Fig. 7B). Thus, Ginsenoside would be



Fig. 5 — (A) 3D structure of native and mutant Cx43 protein; and (B) Secondary structural confirmation of LEU replaced with PRO at  $214^{th}$  position



Fig. 6 — Ramachandran plot analysis of native and mutant Cx43 structure with residues distribution

| 1. no | Inhibitors                 | Class                               | Structure | PCID     | MW               | Binding energy      | Н          | Lipinski                                |
|-------|----------------------------|-------------------------------------|-----------|----------|------------------|---------------------|------------|-----------------------------------------|
| 1     | 18α-glycyrrhetinic<br>acid |                                     |           | 73398    | (g/mol)<br>470.7 | (kCal/mole)<br>-9.5 | Bonds<br>2 |                                         |
| 2     | 18β-glycyrrhetinic<br>acid | Bioactive<br>compound<br>derivative |           | 44435791 | 470.7            | -9.8                | 1          | 1<br>(MLOGP>4.15                        |
| 4     | Arachidonic acid           | Fatty acid                          |           | 444899   | 304.5            | -5.5                | 1          | 1<br>(MLOGP>4.15)                       |
| 5     | Carbenoxolone              | Chemical compound                   |           | 636403   | 570.8            | -8.9                | 4          | 2 (MW>500,<br>MLOGP>4.15)               |
| 6     | Cyclodextrins              | Polysaccharide                      |           | 444041   | 1135.0           | -6.9                | 4          | 3 (MW>500,<br>N or O>10,<br>NH or OH>5) |
| 7     | Danegaptide                | Peptide                             |           | 16656685 | 291.30           | -6.6                | 4          | 0                                       |
| 8     | Flufenamic acid            | NSAID                               | H N       | 3371     | 281.23           | -7.9                | 2          | 0                                       |
| 9     | Gentamicin                 | Antibiotic                          |           | 3467     | 477.6            | -7.1                | 4          | 2 (N or O>10,<br>NH or OH>5)            |

|        |                                 |                                      | able 4 — Docking analysis and Lip |           |               |                               |       |                              |
|--------|---------------------------------|--------------------------------------|-----------------------------------|-----------|---------------|-------------------------------|-------|------------------------------|
| Sl. no | Inhibitors                      | Class                                | Structure                         | PCID      | MW<br>(g/mol) | Binding energy<br>(kCal/mole) | Bonds | Lipinski<br>violation        |
| 10     | Glycyrrhetinic<br>acid          | Bioactive<br>compound                | H.o.H                             | 3230      | 470.7         | -9.8                          | 0     | 1<br>(MLOGP>4.15)            |
| 11     | Halothane                       | Anesthetic                           | F<br>F<br>F                       | 3562      | 197.38        | -4.4                          | 0     | 0                            |
| 12     | Heptanol                        | Chemical compound                    | H                                 | 8129      | 116.20        | -4.1                          | 0     | 0                            |
| 13     | Kanamycin                       | Antibiotic                           |                                   | 6032      | 484.5         | -6.0                          | 5     | 2 (N or O>10,<br>NH or OH>5) |
| 14     | Ketamine                        | Anesthetic                           |                                   | 3821      | 237.72        | -6.9                          | 0     | 0                            |
| 15     | Linoleic acid                   | Fatty acid                           | н •                               | 5280450   | 280.4         | -5.5                          | 1     | 1<br>(MLOGP>4.15)            |
| 16     | Magnesium<br>isoglycyrrhizinate | Synthesized<br>bioactive<br>compound |                                   | 139032961 | 1712.7        | -9.5                          | 3     | NA                           |
|        |                                 |                                      |                                   |           |               |                               |       | (Contd)                      |

(Contd.)

|       |            | ~                     | <i>a</i> .   | <b>D</b> |               | <b>D</b> · · · ·              |            |                           |
|-------|------------|-----------------------|--------------|----------|---------------|-------------------------------|------------|---------------------------|
| l. no | Inhibitors | Class                 | Structure    | PCID     | MW<br>(g/mol) | Binding energy<br>(kCal/mole) | H<br>Bonds | Lipinski<br>violation     |
| 17    | Mefloquine | Quinolines            |              | 4046     | 378.31        | -8.7                          | 2          | 0                         |
| 18    | Modafinil  | Chemical<br>compound  |              | 4236     | 273.4         | -5.1                          | 2          | 0                         |
| 19    | Octanol    | Chemical compound     | <b>0</b> , h | 957      | 130.23        | -4.5                          | 1          | 0                         |
| 20    | Oleic acid | Fatty acid            | HO           | 445639   | 282.5         | -4.6                          | 1          | 1 (MLOGP>4.1              |
| 21    | Propofol   | Chemical<br>compound  |              | 4943     | 178.27        | -6.2                          | 0          | 0                         |
| 22    | Quinine    | Quinolines            |              | 3034034  | 324.4         | -8.1                          | 0          | 0                         |
| 23    | Spermine   | Polyamines            |              | 1103     | 202.34        | -4.0                          | 1          | 0                         |
| 24    | Gossypol   | Bioactive<br>compound |              | 3503     | 518.6         | -8.5                          | 3          | 2 (MW>500,<br>NH or OH>5) |

(Contd.)







Fig. 7 — Docking analysis of (A) Kanamycin; (B) Ginsenoside; and (C) Astragaloside IV with mutated Cx43

the better compound to inhibit the L214P mutated Cx43 protein.

# Discussion

In the present study, we collected missense variants of Cx43 from different databases and literature and then identified the pathogenic mutations using five different algorithms from 219 variants. The prediction from the pathogenicity determinations server has 52 as deleterious (Table 1). Pathogenic mutations are often proven to affect protein function<sup>22</sup>. The deleterious mutations are analyzed for functional impact using a mutation assessor prediction server from those 46 mutations found to impact protein functions (Table 2). The protein stability of mutations was further confirmed by nine different servers, which obtained eight destabilizing mutations (Table 3). Impacts in the protein functions are primarily due to the destabilization of the protein structure<sup>23-25</sup>.

Further, these mutations were compared with the binding pocket of Cx43, which shows L214 has been observed in the binding pocket. Which was then analyzed for a conserved position that revealed L214 kepta significant position in structural changes

(Figs 4 & 6). The studies reported that an amino acid substitution at the ligand-binding site significantly alters the ligand specificity and binding affinity. Thus, inhibitors with the best binding affinity, even at mutated conditions, are important<sup>26</sup>. With the evidence of pathogenicity, functional impact, and structural changes, a Cx43 protein was mutated with L214P and analyzed for a potent inhibitor.

Several studies have proven that mutation at the atomic level has a severe impact on structural changes, stability, and functions of the protein<sup>14,27</sup>.

A comparative computational approach anticipated the effect of disease-mediating missense variants in the protein structural and functional impacts<sup>28</sup>. In our study, the mutations such as R76H; V79F; F84C; V85G; Y177C; L214P; G60S; L11P are obtained as disease-causing and structural changes mutations in Cx43. Thus, these insights let us understand the genotype-phenotype correlation of genetic diseases related to Cx43 and assisted in scrutinizing the prioritized pathogenic mutations<sup>29</sup>. Based on the structural stability and binding pocket analysis, it was found that mutations at the binding pocket result to be a significant structural change. As evidence, in (Fig. 6B), a secondary Cx43 structure (red pipeline diagram) shows two beta-strands, 18 helices, 26 helix-helix interactions, 42 beta turns, and 14 gamma turns. Three disulfides from native Cx43 were changed to 3 beta-strands, 17 helices, 19 helixhelix interactions, 50 beta turns, 23 gamma turns, and three disulfides. Research also reported that single point mutation leads to protein-misfolding or structural changes and aggregation, which is the primary cause of various diseases<sup>30-32</sup>. Because of mutations in Cx43, which cause various diseases, the need for drugs targeted for mutated Cx43 is recommended. A computational approach is one of cost-efficient, time-saving and scrutinizing the platforms in the field of drug discovery due to hungry for unravelling the drugs for targeted mutations in various diseases, predominantly genetic disorders.

Several studies have aimed to discover a potent drug to inhibit Cx43 protein, which Refs reports<sup>4,5</sup> is also depicted in (Table 4). However, no studies have yet to corroborate the inhibitors for mutated Cx43, and we aimed to analyze the interactions of Cx43 inhibitors with the native Cx43 (data not shown) and L214P mutant Cx43 protein. This analysis was obtained using the list of Cx43 inhibitors retrieved from the literature survey (Table 4). After that, Autodock vina software was used to do a virtual screening analysis on 36 Cx43 inhibitors. Among them, 30 followed the Lipinski rule of 5, from which the compound ginsenoside showed the strongest affinity (hydrogen bond: 5; binding energy: -8.5 kcal/ mol) with L214P mutant Cx43 protein compared to other inhibitors (Table 4 and Fig. 7b).

Ginsenoside is a primary active compound of *Panax ginseng*, a Korean traditional medicine for longevity. There are numerous clinical studies have been conducted on various chronic diseases<sup>33</sup>. Also, it has been reported that ginsenosides can bind with targeted proteins in the cells, leading to beneficial effects<sup>34</sup>. A study reported that ginsenosides downregulated the expression of Cx43 in Bisphenol A-induced testicular toxicity<sup>35</sup>. In our research, ginsenosides interacted efficiently with the L214P mutant Cx43 protein. Thus, it might be a better inhibitor of native Cx43 and mutated Cx43 with a potential drug as personalized medicine.

## Conclusion

This is the first study reporting that substituting leucine at the 214<sup>th</sup> position with proline could be the most pathogenic mutation in disease-causing role in

Cx43 protein based on the computational method. Pathogenicity of the variant was confirmed by deleterious, functional, and structural assessment of mutations. A COACH-D and CornSurf server results revealed that a residue LEU 214 significantly participated in ligand binding sites and was the most conserved residue. Further, a structure-modelled mutant with the desired variation was observed as the entire protein structure changed (Fig. 6b), which was then performed molecular docking analysis to screen potent inhibitors. The compound Kanamycin, Ginsenoside, and Astragaloside IV are better interactions with Cx43 mutants with a maximum of 5 hydrogen bonds. Ginsenoside is the only compound that follows a Lipinski rule of five. Thus, the result obtained from this study suggests that Ginsenoside would be a better potent inhibitor for native and mutant Cx43 in most genetic diseases and could therefore be a candidate for personalized medicine.

#### Acknowledgement

The authors are grateful to the Vellore Institute of Technology, Vellore, for providing the facility and opportunity to carry out this work.

## **Conflict of interest**

All authors declare no conflict of interest.

#### References

- 1 Sinyuk M, Mulkearns-Hubert EE, Reizes O & Lathia J, Cancer Connectors: Connexins, Gap Junctions, and Communication. *Front Oncol*, 8 (2018) 646.
- 2 Burendei B, Shinozaki R, Watanabe M, Terada T, Tani K & Fujiyoshi Y, Cryo-EM structures of undocked innexin-6 hemichannels in phospholipids. *Sci Adv*, 6 (2020) 3157.
- 3 Srinivas M, Verselis VK & White TW, Human diseases associated with connexin mutations. *Biochim Biophys Acta*, 1860 (2018) 192.
- 4 Natha CM, Vemulapalli V, Fiori MC, Chang CWT & Altenberg GA, Connexin hemichannel inhibitors with a focus on aminoglycosides. *Biochim Biophys Acta Mol Basis Dis*, 1867 (2021) 166115.
- 5 Katturajan R & Price SE, A role of connexin 43 on the drug-induced liver, kidney, and gastrointestinal tract toxicity with associated signaling pathways. *Life Sci*, 280 (2021) 119629.
- 6 Ishida-Yamamoto A, Erythrokeratodermia variabilis et progressiva. *J Dermatol*, 43 (2016) 280.
- 7 Umegaki-Arao N, Sasaki T, Fujita H, Aoki S, Kameyama K & Amagai M, Inflammatory Linear Verrucous Epidermal Nevus with a Postzygotic GJA1 Mutation Is a Mosaic Erythrokeratodermia Variabilis et Progressiva. J Invest Dermatol, 137 (2017) 967.
- 8 Wang H, Cao X, Lin Z, Lee M, Jia X & Ren Y, Exome sequencing reveals mutation in GJA1 as a cause of keratoderma-hypotrichosis-leukonychia totalis syndrome. *Hum Mol Genet*, 24 (2015) 243.

- 9 García IE, Prado P, Pupo A, Jara O, Rojas-Gómez D & Mujica P,Connexinopathies: a structural and functional glimpse. *BMC Cell Biol*, 17 (2016) 17.
- 10 Gago-Fuentes R, Fernández-Puente P, Megias D, Carpintero-Fernández P, Mateos J & Acea B, Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. *Mol Cell Proteomics MCP*, 14 (2015) 1831.
- 11 Panchal NK, Bhale A, Verma VK & Beevi SS, Computational and molecular dynamics simulation approach to analyze the impactof XPD gene mutation on protein stability and function. *Mol Simul*, 46 (2020) 1200.
- 12 Rangasamy N, Kumar NS & Santhy KS, Computational analysis of missense variants in MMP2 gene linked with Winchester syndrome and Nodulosis-Arthropathy-Osteolysis reveals structural shift in protein-protein and protein-ligand complexes. *Meta Gene*, 29 (2021) 100931.
- 13 Mosaeilhy A, Mohamed MM, C GPD, El Abd HSA, Gamal R & Zaki OK, Genotype-phenotype correlation in 18 Egyptian patients with glutaric acidemia type I. *Metab Brain Dis*, 32 (2017) 417.
- 14 Thirumal Kumar D, Jain N, Evangeline J, Kamaraj B, Siva R & Zayed H, A computational approach for investigating the mutational landscape of RAC-alpha serine/threonine-protein kinase (AKT1) and screening inhibitors against the oncogenic E17K mutation causing breast cancer. *Comput Biol Med*, 115 (2019) 103513.
- 15 Katsonis P, Koire A, Wilson SJ, Hsu TK, Lua RC & Wilkins AD, Single nucleotide variations: Biological impact and theoretical interpretation. *Protein Sci Publ Protein Soc*, 23 (2014) 1650.
- 16 Deller MC, Kong L & Rupp B, Protein stability: a crystallographer's perspective. Acta Crystallogr Sect F Struct Biol Commun, 72 (2016) 72.
- 17 Rodrigues CH, Pires DE & Ascher DB, DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. *Nucleic Acids Res*, 2018.
- 18 Wu Q, Peng Z, Zhang Y & Yang J, COACH-D: improved protein–ligand binding sites prediction with refined ligandbinding poses through molecular docking. *Nucleic Acids Res*, 46 (2018) 438.
- 19 Honorato RV, Koukos PI, Jiménez-García B, Tsaregorodtsev A, Verlato M & Giachetti A, Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. *Front Mol Biosci*, 8 (2021) 708.
- 20 Ben Chorin A, Masrati G, Kessel A, Narunsky A, Sprinzak J & Lahav S, ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. *Protein Sci Publ Protein Soc*, 29 (2020) 258.
- 21 Ha EJ, Lwin CT & Durrant JD, LigGrep: a tool for filtering docked poses to improve virtual-screening hit rates. *J Cheminformatics*, 12 (2020) 69.

- 22 Sun H & Yu G, New insights into the pathogenicity of nonsynonymous variants through multi-level analysis. *Sci Rep*, 9 (2019) 1667.
- 23 Shi Z & Moult J, Structural and Functional Impact of Cancer Related Missense Somatic Mutations. *J Mol Biol*, 413 (2011) 495.
- 24 Saffari-Chaleshtori J, Mohammad Shafiee S & Heidarian E, The effect of bilirubin on Bad, Bak, and Bim pro-apoptotic factors: A molecular dynamic simulation study. *Indian J Biochem Biophys*, 58 (2021) 236.
- 25 Agrawal A, Awasthi R & Kulkarni GT, A bioinformatic approach to establish P38α MAPK inhibitory mechanism of selected natural products in psoriasis. *Indian J Biochem Biophys*, 59 (2022) 165.
- 26 Ricatti J, Acquasaliente L, Ribaudo G, De Filippis V, Bellini M, Llovera RE, Barollo S, Pezzani R, Zagotto G, Persaud KC & Mucignat-Caretta C, Effects of point mutations in the binding pocket of the mouse major urinary protein MUP20 on ligand affinity and specificity. *Sci Rep*, 9 (2019) 300.
- 27 Kumar A & Purohit R, Cancer Associated E17K Mutation Causes Rapid Conformational Drift in AKT1 Pleckstrin Homology (PH) Domain. *PLoS One*, 8 (2013) 64364.
- 28 Agrahari AK, Sneha P, George Priya Doss C, Siva R & Zayed H, A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. *Metab Brain Dis*, 33 (2018) 589.
- 29 Tanwar H, Kumar DT, Doss CGP & Zayed H, Bioinformatics classification of mutations in patients with Mucopolysaccharidosis IIIA. *Metab Brain Dis*, 34 (2019) 1577.
- 30 Wang F, Orioli S, Ianeselli A, Spagnolli G, A Beccara S & Gershenson A, All-Atom Simulations Reveal How Single-Point Mutations Promote Serpin Misfolding. *Biophys J*, 114 (2018) 2083.
- 31 Singh P, Yadav M, Niveria K & Verma AK, Versatility of berberine as an effective immunomodulator and chemo sensitizer against p53 mutant cell. *Indian J Biochem Biophys*, 59 (2022) 509.
- 32 Janani DM & Usha B, *In silico* analysis of functional nonsynonymous and intronic variants found in a polycystic ovarian syndrome (PCOS) candidate gene: DENND1A. *Indian J Biochem Biophys*, 57 (2020) 584.
- 33 Yu SE, Mwesige B, Yi YS & Yoo BC, Ginsenosides: the need to move forward from bench to clinical trials. *J Ginseng Res*, 43 (2019) 361.
- 34 Kim KH, Lee D, Lee HL, Kim CE, Jung K & Kang KS, Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. *J Ginseng Res*, 42 (2018) 23.
- 35 Wang L, Hao J, Hu J, Pu J, Lü Z & Zhao L, Protective Effects of Ginsenosides against Bisphenol A-Induced Cytotoxicity in 15P-1 Sertoli Cells via Extracellular Signal-Regulated Kinase 1/2 Signalling and Antioxidant Mechanisms. *Basic Clin Pharmacol Toxicol*, 111 (2012) 42.