Supplementary Information

Synthesis, structural, spectral and molecular docking of Ni(II) and Pd(II) complexes with isatin moiety and their DNA cleavage activity

Amna Q Ali^{*a}, Abdusalam M Hamil^a, Naser E Eltayeb^{*b,c}, Siang G Teoh^d, Saied M Soliman^e, Jamal Lasri^b & Mostafa A Hussien^{f,g}

^a Chemistry Department, Faculty of Science, Sebha University, Sebha, Libya

^b Department of Chemistry, Rabigh College of Science and Arts, P.O. Box 344, King Abdulaziz University, Jeddah, Saudi Arabia

^c Department of Chemistry, Faculty of Pure and Applied Science, International University of Africa, Khartoum, Sudan

^d School of Chemical Sciences, University Sains Malaysia, Minden-11800, Pulau Pinang, Malaysia

^e Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt

^f Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia

^g Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt

E-mail: amn.abdalhafid@sebhau.edu.ly (AQA), netaha@kau.edu.sa (NEA)

S. No.	Contents	Page No.		
1	Fig. S1 —FT-IR spectrum of [(Z)-2-(5-nitro-2-oxoindolin-3-ylidene)- <i>N</i> -	2		
	phenylhydrazin- ecarbothioamide] in KBr			
2	Fig. S2 — FT-IR spectrum of Bis[2-(5-nitro-2-oxoindolin-3-ylidene)- <i>N</i> -	2		
	phenylhydrazinecarbo-thioamidato- $\kappa^3 O, N^2, S$]nickel(II) dihydrate in KBr			
3	Fig. S3— FT-IR spectrum of chloro $\{N'-[5-chloro-2-(\infty x O)-1, 2-1\}$	3		
	dihydro-3H-indol-3-ylidene]-N-phenylcarbamohydrazonothioato-			
	$\kappa^2 N', S$ palladium(II) in KBr			
4	Fig. S4— Electronic spectrum of [(Z)-2-(5-nitro-2-oxoindolin-3-	3		
	ylidene)-N-phenylhydrazi-necarbothioamide] in DMSO			
5	Fig. S5— Electronic spectrum of Bis[2-(5-nitro-2-oxoindolin-3-	4		
	ylidene)- <i>N</i> -phenylhydrazinecarbothioamidato- $\kappa^3 O$, N^2 , <i>S</i>]nickel(II)			
	dihydrate in DMSO			
6	Fig. S6 — Electronic spectrum of chloro{ N' -[5-chloro-2-(oxo- κO)-1,2-	4		
	dihydro-3 <i>H</i> -indol-3-ylidene]- <i>N</i> -phenylcarbamohydrazonothioato- $\kappa^2 N'$,			
	S}palladium(II) in DMSO			
7	Fig. S7 — ¹ H NMR spectrum of $[(Z)-2-(5-nitro-2-oxoindolin-3-ylidene)-$	5		
	N-phenylhydrazinecarb-thioamide]			
8	Table S1— Percentages of the different intermolecular contacts in the	5		
	studied crystal			
9	Table S2 — The calculated bond distances (R) and angles (Å) of $[(Z)-2-$			
	(5-nitro-2-oxoindolin-3-ylidene)-N-phenylhydrazinecarbothioamide]			
10	Table S3— Cartesian coordinates of the optimized structure of the	6-7		
	studied compound			

Received 18 January 2022; accepted (revised) 18 July 2022

Fig. S1—FT-IR spectrum of [(*Z*)-2-(5-nitro-2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbothioamide] in KBr

Fig. S2— FT-IR spectrum of Bis[2-(5-nitro-2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbo-thioamidato- $\kappa^3 O$, N^2 , *S*]nickel(II) dihydrate in KBr

Fig. S3— FT-IR spectrum of chloro {N'-[5-chloro-2-(oxo- κO)-1, 2-dihydro-3H-indol-3-ylidene]-N-phenylcarbamohydrazonothioato- $\kappa^2 N'$, S}-palladium(II) in KBr

Fig. S4— Electronic spectrum of [(*Z*)-2-(5-nitro-2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbothioamide] in DMSO

Fig. S5— Electronic spectrum of Bis[2-(5-nitro-2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbothioamidato- $\kappa^3 O$, N^2 , *S*]nickel(II) di hydrate in DMSO

Fig. S6— Electronic spectrum of chloro {N'-[5-chloro-2-(oxo- κO)-1, 2-dihydro-3H-indol-3-ylidene]-N-phenylcarbamohydrazonothioato- $\kappa^2 N'$, S} palladium(II) in DMSO

Fig. S7—¹H NMR spectrum of [(*Z*)-2-(5-nitro-2-oxoindolin-3-ylidene)-*N*-phenylhydrazinecarbthioamide]

Table S1 — Percentages of the different								
intermolecular contacts in the studied crystal								
structure								
	Α	В	С					
SS	0.2	0.5	0.2					
SH	9.8	8.8	9.8					
S0	0	1	0.8					
SN	0.2	0.8	0.6					
SC	1.7	1.9	0.3					
00	0.4	0.5	0.4					
0N	2.6	1.3	2.8					
C0	1.7	2.2	2.2					
ОН	24.7	21.1	25.1					
NN	1.5	1	1.4					
CN	4.1	4.5	2.8					
NH	4	5.4	3.4					
CC	12.3	8.4	9.6					
НС	7.7	13.3	11.7					
НН	29.1	29.4	28.9					

Bond(s)	Calc.	Exp.	Bond(s)	Calc.	Exp.
R(1-21)	1.669	1.662	A(4-9-15)	117.601	118.104
R(2-20)	1.225	1.236	A(10-5-20)	111.727	111.006
R(3-9)	1.231	1.232	A(5-10-11)	129.045	128.235
R(4-9)	1.232	1.232	A(5-10-18)	109.119	109.582
R(5-10)	1.394	1.402	A(5-20-19)	105.375	106.351
R(5-20)	1.389	1.366	A(7-6-19)	119.247	117.579
R(6-7)	1.327	1.342	A(6-7-21)	121.594	120.965
R(6-19)	1.302	1.298	A(6-19-18)	126.468	125.122
R(7-21)	1.403	1.392	A(6-19-20)	126.433	128.366
R(8-21)	1.35	1.337	A(7-21-8)	112.517	114.155
R(8-22)	1.412	1.422	A(21-8-22)	132.968	129.749
R(9-15)	1.467	1.457	A(8-22-23)	115.592	116.333
R(10-11)	1.391	1.382	A(8-22-31)	124.861	125.078
R(10-18)	1.418	1.408	A(9-15-13)	118.715	118.732
R(11-13)	1.395	1.39	A(9-15-16)	118.613	118.334
R(13-15)	1.398	1.392	A(11-10-18)	121.837	122.171
R(15-16)	1.397	1.397	A(10-11-13)	117.895	117.575
R(16-18)	1.387	1.377	A(10-18-16)	120.141	120.591
R(18-19)	1.456	1.453	A(10-18-19)	106.68	106.564
R(19-20)	1.494	1.498	A(11-13-15)	119.967	119.911
R(22-23)	1.406	1.381	A(13-15-16)	122.672	122.931
R(22-31)	1.401	1.374	A(15-16-18)	117.488	116.799
R(23-25)	1.39	1.388	A(16-18-19)	133.179	132.834
R(25-27)	1.397	1.362	A(18-19-20)	107.099	106.477
R(27-29)	1.394	1.361	A(23-22-31)	119.547	118.585
R(29-31)	1.395	1.396	A(22-23-25)	120.487	121.316
A(1-21-7)	116.77	116.351	A(22-31-29)	119.221	118.887
A(1-21-8)	130.713	129.485	A(22-31-32)	119.934	120.571
A(2-20-5)	126.635	126.712	A(23-25-27)	120.174	120.225
A(2-20-19)	127.989	126.929	A(25-27-29)	119.22	118.437
A(3-9-4)	124.589	123.332	A(28-27-29)	120.444	120.777
A(3-9-15)	117.81	118.563	A(27-29-31)	121.35	122.502
			A(30-29-31)	118.684	118.757

Table S2 — The calculated bond distances (R, Å) and angles (A,°) of [(Z)-2-(5-nitro-2-oxoindolin-3-ylidene)-Nphenylhydrazinecarbothioamide]

Table S3 —Cartesian coordinates of the optimized structure of the studied compound					
S	-3.534372000	-2.579213000	-0.000238000		
0	0.929240000	-3.747710000	-0.000025000		
0	5.334009000	3.155922000	-0.000155000		
0	3.184442000	3.524707000	0.000095000		
Ν	3.013510000	-2.691459000	0.000533000		
Ν	-0.050711000	-0.888864000	-0.000068000		
Ν	-1.041801000	-1.771627000	-0.000197000		
Ν	-2.522108000	-0.025153000	-0.001193000		
Ν	4.162645000	2.775871000	-0.000020000		
С	3.483968000	-1.379756000	0.000214000		
С	4.796965000	-0.919603000	0.000313000		
Н	5.637328000	-1.605552000	0.000528000		
С	5.005116000	0.459689000	0.000178000		
Н	6.004262000	0.876053000	0.000183000		
С	3.912123000	1.330607000	0.000075000		
С	2.589511000	0.880884000	0.000061000		
Н	1.774261000	1.592603000	-0.000038000		
С	2.379492000	-0.490158000	0.000116000		
С	1.179519000	-1.313950000	0.000087000		
С	1.625567000	-2.739821000	0.000152000		
С	-2.385652000	-1.368068000	-0.000473000		
С	-3.647683000	0.828158000	-0.000428000		
С	-3.365654000	2.205240000	-0.001030000		
Н	-2.331858000	2.543419000	-0.001960000		
С	-4.397628000	3.136440000	-0.000406000		
Н	-4.159993000	4.195854000	-0.000803000		
С	-5.727560000	2.710364000	0.000758000		
Н	-6.535466000	3.435264000	0.001108000		
С	-6.004452000	1.344018000	0.001343000		
Н	-7.034261000	0.999263000	0.002311000		
С	-4.980652000	0.395757000	0.000759000		
Н	-5.204556000	-0.661157000	0.001279000		
Н	-0.846350000	-2.776459000	-0.000269000		
Н	3.584280000	-3.524229000	-0.000494000		
Н	-1.627835000	0.458817000	-0.001044000		