Supplementary Information

Carboxyl functionalized graphene oxide based electrochemical sensor for detection of dopamine in presence of ascorbic acid, uric acid and synthetic cerebrospinal fluid

Priyakshi Bordoloi & Diganta Kumar Das*

Gauhati University, Department of Chemistry, Jalukbari, Guwahati 781 014, Assam, India *E-mail: diganta_chem@gauhati.ac.in Received 10 December 2021; revised and accepted 29 March 2022

S. No.	Contents	Pg. No.
1	UV-Visible absorption spectroscopy	2
2	FT-IR spectroscopy	2
3	Powder X-ray Diffraction studies	2
4	Thermogravimetric Analysis	2
5	Scanning Electron Microscopic studies	3
6	Fig. S1 — UV-Visible absorbance spectra of (a) aqueous GO dispersion, and (b) aqueous CGO dispersion	3
7	Fig. S2 - FT-IR spectra of (a) GO and (b) CGO, in KBr pellet	3
8	Fig. S3 – Powder X-ray diffractogram of (a) GO and (b) CGO	4
9	Fig. S4 – % Weight lossversus temperature curves obtained from thermogravimetric analyses of (a) GO and (b) CGO	4
10	Fig. S5 – FESEM images of (a) GO and (b) CGO	5

UV-Visible absorption spectroscopy:

The UV-Visible absorption spectrum of GO and CGO shows two peaks. In GO, λ_{max} peak is observed at 227 nm due to $\pi \rightarrow \pi^*$ transition of the atomic C-C bonds (conjugation) and a shoulder is observed at 310 nm due to $n \rightarrow \pi^*$ transition of the carbonyl groups. Similarly, in CGO, λ_{max} peak is observed at 234 nm ($\pi \rightarrow \pi^*$ transition of the atomic C-C bonds and carbonyl groups) and a shoulder is observed at 307 nm ($n \rightarrow \pi^*$ transition of the atomic C-C bonds and carbonyl groups) and a shoulder is observed at 307 nm ($n \rightarrow \pi^*$ transition of the $\pi \rightarrow \pi^*$ transition requires lesser energy, so it absorbs at a longer wavelength.

FT-IR spectroscopy:

The FT-IR spectrum of GO shows peaks at 3427 cm⁻¹ (O–H str.), 2925 cm⁻¹ and 2850 cm⁻¹ (asymmetric and symmetric str. of $-CH_2$), 1594 cm⁻¹ (C=C str.), 1388 cm⁻¹ (C–O str.), 678 cm⁻¹ (ar. C–H bending).The FT-IR spectrum of CGO shows peaks at 3447 cm⁻¹ (O–H str.), 2926 cm⁻¹ and 2850 cm⁻¹ (asymmetric and symmetric str. of $-CH_2$), 1686 cm⁻¹ (C=O), 1621 cm⁻¹ (C=C str.), 1379 cm⁻¹ (C–O str.), 750 cm⁻¹ (ar. C–H bending) (Fig. S2)

Powder X-ray Diffraction studies:

The powder X-ray diffractogram of GO shows the characteristic peak at $2\theta = 9.85^{\circ}$, corresponding to an interlayer spacing $d_{avg} = 8.97$ Å. This peak is observed for CGO at $2\theta = 8.88^{\circ}$. The interlayer spacing for CGO increases to $d_{avg} = 9.95$ Å, which indicates the presence of bulkier carboxyl groups in place of other oxygen functionalities (Fig. S3). The [002] reflection is attributed to the removal of stacking nature in GO, which is again established in CGO.

Thermogravimetric Analysis:

The thermal decomposition of GO and CGO was studied using TGA. In GO, the weight loss upto 100 °C is due to theremoval of water molecules bound to the surface. Major weight loss is observed from about 200 °C to 270 °C, due to the release of carbon monoxide, carbon dioxide and steam from the most labile functional groups. The further slow weight loss from 300 °C is due to the removal of more stable oxygen functionalities. The TGA curve of CGO shows weight loss up to 100 °C due to the release of surface bound water molecules. Further weight loss occurs from about 200 °C due to the removal of all the oxygen functionalities (Fig. S4).

Scanning Electron Microscopic studies:

The FESEM image of GO shows sheet-like surface morphology. 'Ripple' like morphology is observed for CGO, which hints the presence of carboxyl groups in between the ripples (Fig. S5).

Fig. S1 - UV-Visible absorbance spectra of (a) aqueous GO dispersion, and (b) aqueous CGO dispersion

Fig. S2 - FT-IR spectra of (a) GO and (b) CGO, in KBr pellet

Fig. S3 – Powder X-ray diffractogram of (a) GO and (b) CGO

Fig. S4 – % Weight lossversus temperature curves obtained from thermogravimetric analyses of (a) GO and (b) CGO

Fig. S5 – FESEM images of (a) GO and (b) CGO