DFT study for radical capture by mitochondria oxidotoxin protective ionic and non-ionic amphiphilic α-phenyl-N-*t*-butyl nitrone derivatives

Sutapa Mandal & Nivedita Acharjee*

Department of Chemistry, Durgapur Government College, Jawahar Lal Nehru Rd, Durgapur 713 214, Dist. Burdwan, West Bengal, India

Email: nivchem@gmail.com; nivedita_acharjee@rediffmail.com

Received 6 April 2016; revised and accepted 26 December 2016

DFT analysis for radical capture by a series of biologically active amphiphilic α -phenyl-N-*t*-butyl nitrone derivatives has been reported in the present study. A detailed analysis of global and local reactivity descriptors has been presented from both natural and electrostatic based charges. Reactivities of the investigated nitrones for radical capture have been compared by interaction energy calculations derived from a perturbative orbital independent theoretical model. The transition states for radical attacks have been located and the activation barriers for radical capture are calculated. The *cis* attack is found to be energetically favored in each case. Finally, the hyperfine splitting constants have been computed and compared with the reported experimental findings.

Keywords: Theoretical chemistry, Density functional calculations, Interaction energy, Transition state, Radical capture, Activation energy, Nitrones

The most critical pathophysical factor to consider in an aging brain is the decreasing efficiency of antioxidant systems due to progressive ageassociated cellular damage. Nitrone moiety can act as spin trap and therefore has potential in the treatment of neurogenerative diseases and prolongation of life span. C-phenyl-N-t-butyl nitrone (PBN) has been extensively investigated and numerous experimental neuroprotective effects have been ascribed to this compound¹⁻⁴. Despite the wide applicability of PBN in various animal models, several problems emerge with regard to its clinical administration⁵. One of these difficulties is related to its limited stability. It can decompose to N-t-butylhydroxylamine⁶ and also liberate NO. Moreover, PBN adducts can be additionally metabolized by P_{450} isoforms⁷. Modification of either the aromatic or N-terminal moieties of PBN to improve its bioavailability and change the hydrophilic-lipophilic balance has been reported⁸⁻¹⁰. Polidori et al.¹¹ developed new amphiphilic PBN derivative spin traps and concluded that the amphiphilic character is the most important parameter in terms of biological efficiency. The importance of amphiphilicity was further tuned by Durand and coworkers¹² by synthesis of new hydrophilic, amphiphilic and lipophilic analogues of PBN. Polidori *et al.*¹¹ have also reported the hyperfine splitting constants for methyl radical addition to these nitrones.

With this in view, the present report aims to investigate methyl radical addition to these ionic and non-ionic amphiphilic PBN derivatives in terms of DFT level of theory. Twelve nitrones have been selected for the present investigation including PBN designated as nitrone 1 throughout this report (Fig. 1). Nitrones 2, 3 and 4 involve a lactobionyl moiety attached to the aromatic ring of PBN with the hydroor perfluorocarbon chains containing a thioether or amide bond at the N-terminal. For nitrones 5, 6, 7 and 8, carboxylate and for 12, trimethylamine group is introduced in the aromatic ring. MitoPBN or nitrone 9 is a well known mitochondria targeted spin trap and has been discussed in several reports¹³⁻¹⁵ for the prevention of mitochondrial lipid peroxidation and oxidative damage. Carnitine-derivative nitrone 11 has been reported¹⁶ to prevent the oxidative stress associated with aging.

The present study has been sectioned into three theoretical aspects. DFT based reactivity descriptors¹⁷⁻²¹ have been successfully employed to interpret wide variety of reactions. Unfortunately, there are very limited reports which address their applicability for nitrone radical reactions to the best of our knowledge.

 $*Z = OC_6H_{12}COOCH(CH_2NMe_3)(CH_2COOC_8H_{17})$ for 11 and H for other nitrones

Fig. 1—Ionic and non-ionic amphiphilic α -phenyl-N-*t*-butyl nitrone derivatives (1-12).

In the present study, DFT based reactivity indices have been calculated both from NPA²² and MK²³ analyses. Subsequently, a critical analysis of whether these descriptors can be used to predict the reactivities in the radical reactions of the investigated nitrones has been attempted. In the second section, the interaction energies for nitrone-radical attack have been calculated from both NPA and MK calculations. The final phase of study is focused on locating the transition states for these reactions and determining the activation and reaction energies for both *cis* and *trans* attack. The extent of bond formation in the transition states and radical adducts have been predicted by analysis of wiberg bond indices and atom-atom overlap weighted NAO bond orders. The standard orientations and charges are collected in Tables S1-S96 (Supplementary Data)

Theory and Computational Methods

Electronic chemical potential $(\mu)^{17}$, chemical hardness $(\eta)^{20}$, ionization potential $(I)^{24}$, electron affinity $(A)^{24}$, global electrophilicity index $(\omega)^{21}$, global softness $(S)^{25}$, Fukui functions $(f_k^+, f_k^-, f_k^0)^{26, 27}$, local electrophilicity index $(\omega_k)^{25-27}$ and the local softnesses $(s^+, s^-, s^0)^{21}$ were calculated from the standard equations available in literature.

The interaction energies were calculated²⁸ from density functional theory (DFT) as:

$$\Delta E_{\rm int} = \Delta E_{\rm v} + \Delta E_{\mu} \qquad \dots (1)$$

where ΔE_{v} and ΔE_{μ} are the energy changes at constant external potential and constant chemical potential respectively and are written as:

$$\Delta E_{v} \approx -1/2 \left[\{ S_{A} S_{B} \left[\mu_{A} - \mu_{B} \right]^{2} \} / \{ S_{A} + S_{B} \} \right] \qquad \dots (2)$$

$$\Delta E_{\mu} \approx -1/2 \left[\lambda / \{ \mathbf{S}_{\mathrm{A}} + \mathbf{S}_{\mathrm{B}} \} \right] \qquad \dots (3)$$

When we invoke the local viewpoint of one reactant, ΔE_{v} , and ΔE_{μ} in terms of condensed Fukui function f_k become:

$$\Delta E_{v} \approx -1/2 \left[\{ S_{A} S_{B} f_{k} \left[\mu_{A} - \mu_{B} \right]^{2} \} / \{ S_{A} f_{k} + S_{B} \} \right] \qquad \dots (4)$$

$$\Delta E_{\mu} \approx -1/2 \left[\lambda / \{ f_{k} S_{A} + S_{B} \} \right] \qquad \dots (5)$$

The interaction energy $(\Delta E_{int})^{k}_{A}$ can be rewritten in shorthand notation as:

$$(\Delta E_{\rm int})^{\rm k}{}_{\rm A} \approx \Delta E_{\rm v} + \lambda \Delta E'_{\mu} \text{ with } \Delta E'_{\mu} = \Delta E_{\mu} (\lambda = 1) \quad \dots (6)$$

The parameter λ has been related to the deviation of total softness of interacting system AB from the sum of the softnesses of individual systems A and B. It has been defined somewhat arbitrarily in the literature²⁹⁻³¹. In the present study, following the work of Mendez *et al.*²⁸ it has been initially assumed here that λ is close to 1 and ΔE_{μ} is much more important than ΔE_{ν} .

The geometries have been optimized by Density Functional Theory with Becke's³² three-parameter hybrid exchange functional in combination with the gradient-corrected correlation functional of Lee, Yang, and Parr³³ (B3LYP) using 6-31G(d) basis set. This basis set has been reported to provide reliable results for nitrones. The stationary points were characterized through vibrational frequency analysis

done at 298.15 K at the DFT/B3LYP/6-31G(d) level. All the stationary points were definitely identified for minima (number of imaginary frequencies = 0) or transition states (number of imaginary frequencies = 1). Intrinsic reaction coordinate (IRC) calculations were performed to verify that the energy curve connecting the optimized reactants and the products passes through the correct and the lowest TS which must be a first-order saddle point. The electron affinity and ionization potential have been obtained at similar level using UB3LYP theory for the anion and cation. The geometries of the neutral species were used to calculate the electronic structure of the charged species in order to fulfill the demand for constant external potential. The electronic populations were computed from natural population analysis²² and also by the charges derived from the electrostatic potential according to Merz-Kollman²³ algorithm. Solvent effects in water were considered at PCM/DFT/B3LYP/6-31G(d) level of theory from single-point energy calculations at the optimized gas phase geometries. All calculations were carried out using Gaussian 2003³⁴ set of programs.

Results and Discussion

DFT based reactivity indices

DFT calculated global properties of nitrones 1-12 have been listed in Table 1. The optimized geometries of nitrones and the radical adducts are shown in Fig. 2. The electronic chemical potentials of nitrones 9 ($\mu = -0.215$ au) and 12 ($\mu = -0.226$ au) are least in the series. It is worth mentioning in this context that nitrones 9 and 12 contain PPh₃ and NMe₃ groups in the *C*- phenyl substituent chain of the nitrone which is

Table 1—DFT/B3LYP/6-31G(d) calculated global properties of nitrones (1-12)										
Nitrone	μ (au)	η (au)	S (au)	ω (eV)	IP (eV)					
1	-0.122	0.289	1.730	0.707	7.238					
2	-0.121	0.265	1.887	0.752	6.884					
3	-0.120	0.262	1.908	0.748	6.830					
4	-0.125	0.262	1.908	0.811	6.966					
5	-0.139	0.240	2.083	1.095	7.047					
6	-0.135	0.234	2.136	1.060	6.857					
7	-0.137	0.238	2.101	1.073	6.966					
8	-0.139	0.240	2.083	1.095	7.047					
9	-0.215	0.205	2.439	3.068	8.626					
10	-0.115	0.272	1.838	0.661	6.830					
11	-0.123	0.328	1.524	0.628	7.809					
12	-0.226	0.239	2.092	2.907	9.741					

influencing the electron demand character of the nitrone moiety. This is also reflected in their highest global electrophilicities (3.068 eV for 9 and 2.907 eV for 12) and the potential of ionization (I = 8.626 eV)for 9 and I = 9.741 eV for 12). Nitrones 1-8, 10 and 11 with ω values ranging from 0.628 eV to 1.095 eV can be classified as moderate electrophiles according to the absolute scale of electrophilicity index 35 . Nitrones 9 and 12 with ω values of 3.068 eV to 2.907 eV can be classified as strong electrophiles. The charge transfer directions are generally predicted by a comparative analysis of the electronic chemical potential values of the substrate and the radical. In the present study, the electronic chemical potentials of nitrones 1-8, 10 and 11 are greater than that of methyl radical ($\mu = -0.146$ au). This predicts the charge transfer direction from the nitrones to the radical. Contrary to the series, μ of methyl radical is greater than that of the nitrones 9 ($\mu = -0.215$ au) and 12 $(\mu = -0.226 \text{ au})$. This predicts the direction of charge transfer from the radical to the nitrones 9 and 12 direction. The global electrophilicity indices of all the nitrones are either comparable or greater than that of the radical. This is in contrast to the electronic chemical potential values. Therefore, analysis of the local properties is required to obtain a rationalized approach.

Table 2 lists the local properties of the investigated nitrones. The availability of DFT based reactivity descriptor reports for radical reactions are limited in literature³⁶. The local HSAB principle points out that bond formation is preferable between the atom pair with the closest softness. On the other hand, Ponti's procedure³⁷ predicts that the softest between the two sites should be the most preferred site of attack. For the present study, Fukui functions for radical attack, f_k^0 and the local softness for radical attack, s^o , have been calculated following NPA and Merz-Kollman (MK) procedures. Fukui function calculated for radical attack f_k^0 at O1 is greater than that of C3 for all the nitrones from NPA calculations. However, MK results indicate greater f_k^0 at C3 compared to O1 except nitrone **9**.

NPA calculations further predict greater s° at O1 compared to C3 of the nitrones. On the contrary, s° of C3 is more than O1 by MK analysis for each nitrone except **9**. Experimentally, radical attack to nitrones takes place at C3. This suggests that DFT based reactivity studies from MK calculations perform better than the NPA system for radical reactions.

Fig. 2-DFT/B3LYP/6-31G(d) optimized nitrones and adducts.

	Table 2—DFT/B3LYP/6-31G(d) calculated local properties of nitrones 1-12										
Nitrone	k	f_k^+	$f_{\rm k}^-$	$f_{ m k}{}^0$	<i>s</i> ⁺ (au)	<i>s</i> ⁻ (au)	s ⁰ (au)				
				NPA							
1	O ₁	0.125	0.284	0.205	0.216	0.491	0.355				
	C ₃	0.129	0.153	0.141	0.223	0.265	0.244				
2	O ₁	0.111	0.222	0.167	0.230	0.461	0.346				
	C ₃	0.110	0.124	0.117	0.223	0.257	0.240				
3	O_1	0.110	0.190	0.150	0.210	0.363	0.287				
	C_3	0.110	0.109	0.110	0.210	0.208	0.209				
4	01	0.099	0.205	0.152	0.189	0.391	0.290				
	C3	0.105	0.110	0.108	0.200	0.210	0.205				
5	O1	0.052	0.239	0.146	0.108	0.498	0.303				
	C3	0.021	0.115	0.068	0.044	0.240	0.142				
6	O1	0.042	0.234	0.138	0.090	0.500	0.295				
	C3	0.026	0.107	0.067	0.056	0.229	0.143				
7	01	0.042	0.245	0.144	0.088	0.515	0.302				
	C3	0.027	0.119	0.073	0.057	0.250	0.154				
8	01	0.050	0.234	0.142	0.104	0.487	0.296				
	C3	0.021	0.118	0.070	0.044	0.246	0.145				
9	O1	0.012	0.259	0.136	0.029	0.632	0.331				
	C3	0.008	0.141	0.075	0.020	0.344	0.182				
10	O1	0.115	0.237	0.176	0.211	0.436	0.324				
	C3	0.126	0.115	0.121	0.232	0.211	0.222				
11	O1	0.126	0.224	0.175	0.192	0.341	0.267				
	C3	0.215	0.098	0.157	0.328	0.149	0.239				
12	01	0.102	0.111	0.107	0.213	0.232	0.223				
	C3	0.042	0.106	0.074	0.088	0.222	0.155				
				МК							
1	O ₁	0.161	0.239	0.200	0.279	0.413	0.346				
	C_3	0.363	0.184	0.274	0.628	0.318	0.474				
2	O_1	0.143	0.190	0.167	0.297	0.394	0.346				
	C_3	0.308	0.169	0.239	0.639	0.351	0.495				
3	O_1	0.137	0.163	0.150	0.261	0.311	0.286				
	C_3	0.285	0.139	0.212	0.544	0.265	0.405				
4	O1	0.124	0.175	0.150	0.237	0.334	0.286				
	C3	0.267	0.144	0.206	0.509	0.275	0.392				
5	O1	0.103	0.199	0.151	0.215	0.415	0.315				
	C3	0.316	0.131	0.224	0.658	0.273	0.466				
6	O1	0.059	0.188	0.124	0.126	0.402	0.264				
	C3	0.295	0.093	0.194	0.630	0.199	0.415				
7	01	0.072	0.205	0.139	0.151	0.431	0.291				
_	C3	0.259	0.150	0.205	0.544	0.315	0.430				
8	01	0.095	0.194	0.145	0.198	0.404	0.301				
0	C3	0.231	0.143	0.187	0.481	0.298	0.390				
9	01	0.011	0.218	0.115	0.027	0.532	0.280				
10	C3	0.009	0.165	0.087	0.022	0.402	0.212				
10	01	0.145	0.202	0.174	0.267	0.371	0.319				
11	C3	0.319	0.131	0.225	0.586	0.241	0.414				
11	01 C2	0.136	0.173	0.155	0.207	0.264	0.236				
10	C3	0.363	0.128	0.246	0.553	0.195	0.374				
12	01 C2	0.126	0.087	0.107	0.264	0.182	0.223				
	C3	0.165	0.078	0.122	0.345	0.163	0.254				

In this context, it is worth mentioning that Chandra and Nguyen³⁶ critically analyzed the use of DFTbased reactivity descriptors for rationalizing radical reactions. The authors suggested that a particular difficulty in correlating the local softness for radical attack (s^0) likely arises from the fact that this quantity is not well defined. The local softness for nucleophilic (s^+) and electrophilic (s^-) attacks has a clear chemical meaning. However, the local softness for radical attack, defined as the average of s^+ and s^- values is ambiguous. With this in mind, it has been attempted in the present study to calculate the interaction energies of the methyl radical attack to the investigated nitrones and obtain a more accurate prediction.

Interaction energies

Mendez *et al.*³⁸ reported that the interaction energies calculated between alkenes and carbenes are most favorable with parameters that reflect mutual electron donation, reflecting the simultaneous acidity and basicity of carbenes and alkenes. In the present study, the interaction energies were calculated from both natural (NPA) and electrostatic (MK) charge based analyses. A perturbative orbital independent theoretical model has been utilized²⁸ for the present study in line with our previous investigations of dipolar cycloadditions^{39, 40}.

Let us invoke the global viewpoint initially. ΔE_{ν} and $\Delta E'_{\mu}$ values are calculated and listed in Table 3. The global interaction energies can be compared to predict the relative reactivities of different nitrones towards the radical attack. The interaction energy trend is as follows:

$9 << 5 \approx 6 \approx 7 \approx 8 < 12 < 2 \approx 3 \approx 4 < 1 < 10 << 11$

Nitrone **11** shows highest interaction energy of -486.126 kJ/mol and nitrone **9** shows the least interaction energy of -367.806 kJ/mol along the series. The interaction energies of nitrones **2**, **3** and **4** are -428.759, -425.898 and -425.673 kJ/mol respectively. These values are comparable to each other and lower than the interaction energy of **1** (= -451.802 kJ/mol). The calculated interaction energies for nitrones **5**, **6**, **7** and **8** are -402.485, -396.124, -400.309 and -402.485 kJ/mol respectively. It should be noted in this context that the calculated interaction energy trends show a definite pattern on the basis of substituent attached to the *C*-phenyl group of the reacting nitrone. Nitrones **2**, **3** and **4** involve a lactobionyl moiety attached to the aromatic ring of

PBN and they show comparable interaction energies. Nitrones 5, 6, 7 and 8 have the *p*-carboxylate group as the C-phenyl substituent and show comparable energies. Nitrones 9, 10, 11 and 12 have different aromatic substituents and therefore show different ranges of interaction energies. When we compare nitrones 9 and 11, it is evident that the presence of phosphorous substitution results in considerable lowering of 118.320 kJ/mol in the global interaction energy. Nitrones 9 and 12 with substituted phosphorous and nitrogen groups as the C-phenyl substituents show the highest values of ΔE_{ν} of -4.967 kJ/mol and -6.335 kJ/mol respectively. However, the other nitrones show ΔE_{v} values of less than 1 along the series. This further indicates greater energy changes at constant external potential for nitrones 9 and 12 during the radical attacks.

Now, let us analyze the calculations from local viewpoint. The interaction energy $(\Delta E_{int})^k_{dipole}$ will be dominated by the local properties of the carbon and oxygen atoms of the nitrone. ΔE_{ν} and $\Delta E'_{\mu}$ are negative in all cases and $\Delta E'_{\mu}$ larger in absolute value than the $\Delta E_{\rm p}$ terms. These are collected in Table 3. From the electronic chemical potential values (Table 1), the direction of charge transfer is predicted from nitrones 1-8, 10 and 11 to the radical. Therefore, electrophilic attack to the radical is considered. The calculated local interaction energies for electrophilic attack at C3of nitrones 1-8, 10 and 11 is greater than that at O1 of these nitrones (Table 3) from both NPA and MK analyses. The difference between these local interaction energies for electrophilic attack at C3 and O1 of the nitrones 1-8, 10 and 11 range from 94.742 to 150.461 kJ/mol from NPA analysis and 22.772 to 122.299 kJ/mol from MK analysis. The local interaction energy for electrophilic attack at C3 of nitrone 11 calculated as -988.743 kJ/mol is the highest value along the series. This is in conformity with the highest global interaction energy of nitrone 11. The electronic chemical potential values and global electrophilicity indices further indicate charge transfer from the radical to nitrones 9 and 12. Therefore, nucleophilic attack to the nitrone is to be considered. The calculated local interaction energies for nucleophilic attacks at C3 for nitrones 9 and 12 are greater than that at O1 of the nitrone (Table 3). Experimentally, radical attack to nitrones takes place at C3. This indicates that the local interaction energies provide correct interpretation for the radical attack at these nitrones.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ΔE	Global-global	Nat	tural populatio	n analysis (N	PA)		Merz-Kollman (MK)					
		interactions			-								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			01	C3	01	C3	01	C3	01	C3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 +CH ₃ ⁻												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ΔE_v	-0.530	-0.138	-0.142	-0.262	-0.163	-0.170	-0.310	-0.232	-0.190			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta E'_{\mu}$	-451.272	-941.039	-936.341	-786.078			-726.480	-824.592	-876.921			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Е	$\Delta E_{ m int}$				(2	$(\Delta E_{\rm int})^{\rm k}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										-0.190-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CII.	451.272λ	941.039λ	936.341λ	786.078λ	909.107λ	900.377λ	726.480λ	824.592λ	876.921λ			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.505	0.146	0.145	0.054	0.1(0	0.100	0.210	0.005	0.000			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•		-945./85	-946.467	-821.496			-/45.881	-853.544	-8/6.335			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E		0.146	0.145	0.054			0.210	0.225	0.000			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 +CH₃ [.]	120.10 1) 15.705N	910.10 <i>1</i> M	021.190%)2).052N	905.970K	715.0017	055.511	070.555M			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-0 647	-0.158	-0.158	-0.246	-0.157	-0 190	-0 330	-0.218	-0 192			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•		,	,									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-0.158-	-0.1580.158-				-0 330-	-0.218-	-0.192-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 +CH ₃ [−]												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ΔE_v	-0.422	-0.094	-0.099	-0.170	-0.103	-0.114	-0.206	-0.151	-0.129			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta E'_{\mu}$	-425.251	-959.613	-951.958	-836.146	-945.104	-927.083	-777.695	-867.647	-902.854			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IE	$\Delta E_{ m int}$				$(\Delta I$	$(\Xi_{int})^k$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										-0.129-			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		425.251λ	959.613λ	951.958λ	836.146λ	945.104λ	924.083λ	777.695λ	867.647λ	902.854λ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		-1020.008	-10/3.385	-782.797			-714.616	-823.557	-904.098			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IE		0.007	0.002	0.022			0.027	0.020	0.014			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6+CH3 ⁻	102.1377	1020.0000	1075.505%	102.1911)25.125N) II./ I IX	/11.010/0	025.55 m	901.090M			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	-0.121	-0.013	-0.008	-0.056	-0.030	-0.018	-0.065	-0.048	-0.027			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-0.013-	-0.008-	-0.056-			-0.065-	-0.048-	-0.027-			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \Delta E'_{\mu} = -400.229 - 1036.109 - 1062.095 - 774.941 - 918.649 - 987.030 - 761.898 - 815.373 - 878.681 \\ IE = \Delta E_{int} = (\Delta E_{int})^k = -0.080 - 0.009 - 0.006 - 0.038 - 0.022 - 0.014 - 0.040 - 0.034 - 0.026 - 400.229\lambda - 1036.109\lambda - 1062.095\lambda - 774.941\lambda - 918.649\lambda - 987.030\lambda - 761.898\lambda - 815.373\lambda - 878.681\lambda - 815.373\lambda - 815.3$	7 +CH ₃ ⁻												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ΔE_v	-0.080	-0.009	-0.006	-0.038	-0.022	-0.014	-0.040	-0.034	-0.026			
-0.080- 400.229λ -0.0090.0060.0380.0220.0140.0400.0340.026- 1036.109λ 1062.095λ 774.941λ 918.649λ 987.030λ 761.898λ 815.373λ 878.681λ	$\Delta E'_{\mu}$	-400.229	-1036.109	-1062.095	-774.941	-918.649	-987.030	-761.898	-815.373	-878.681			
400.229λ 1036.109λ 1062.095λ 774.941λ 918.649λ 987.030λ 761.898λ 815.373λ 878.681λ	IE	$\Delta E_{ m int}$				$(\Delta I$	$(\Xi_{int})^k$						
										-0.026-			
		400.229λ	1036.109λ	1062.095λ	774.941λ	918.649λ	987.030λ	761.898λ	815.373λ	878.681λ (Contd.			

ΔE Global	Global-global		atural populati	-	-	interactions of	nteractions of nitrones 1-12 to methyl radical (Contd.) Merz-Kollman (MK)					
	interactions	Nucleop at at	hilic attack om	Electroph at ato	iilic attack	Nucleop at at	hilic attack om	Electrop at at	hilic attack om			
		01	C3	01	C3	01	C3	01	C3			
8 +CH ₃ [·]												
ΔE_v	-0.048	-0.006	-0.003	-0.022	-0.013	-0.011	-0.022	-0.019	-0.015			
$\Delta E'_{\mu}$	-402.437	-1023.188	-1073.385	-787.965	-921.228	-953.341	-790.813	-829.280	-888.795			
IE	$\Delta E_{\rm int}$					$E_{\rm int})^{\rm k}$						
	-0.048-	-0.006-	-0.003-	-0.022-	-0.013-	-0.011-	-0.022-	-0.019-	-0.015-			
0.011	402.437λ	1023.188λ	1073.385λ	787.965λ	921.228λ	953.341λ	790.813λ	829.280λ	888.795λ			
9 +CH ₃		0.450						• • • • •	1			
ΔE_v	-4.967 -362.839	-0.179 -1086.714	-0.120 -1094.871	-2.570 -724.876	-1.664 -861.950	-0.164 -1088.516	-0.135 -1093.047	-2.290 -767.241	-1.876 -830.329			
$\Delta E'_{\mu}$ IE		-1060.714	-1094.071	-/24.8/0		$(E_{int})^k$	-1095.047	-707.241	-630.329			
IE	$\frac{\Delta E_{\rm int}}{-4.967-}$	-0.179-	-0.120-	-2.570-	-1.664-	-0.164-	-0.135-	-2.290-	-1.876-			
	-4.967- 362.839λ	-0.179- 1086.714λ	-0.120- 1094.871λ	-2.370- 724.876λ	-1.004- 861.950λ	-0.164- 1088.516λ	-0.135- 1093.047λ	-2.290- 767.241λ	-1.876- 830.329λ			
10 +CH ₃ ⁻	002100771	1000001100	107 1107 110	/2 110 / 011	0011/2011	1000101010	10,010 1.1.1	/ 0/12 111	000102011			
ΔE_v	-0.906	-0.226	-0.244	-0.401	-0.226	-0.274	-0.494	-0.356	-0.252			
$\Delta E'_{\mu}$	-435.118	-944.424	-930.369	-812.848	-944.424	-907.849	-743.768	-846.935	-924.472			
IE	$\Delta E_{\rm int}$					$E_{\rm int})^{\rm k}$						
	-0.906-	-0.226-	-0.244-	-0.401-	-0.226-	-0.274-	-0.494-	-0.356-	-0.252-			
	435.118λ	944.424λ	930.369λ	812.848λ	944.424λ	907.849λ	743.768λ	846.935λ	924.472λ			
11+ CH ₃ [·]												
ΔE_v	-0.462	-0.115	-0.178	-0.183	-0.092	-0.122	-0.262	-0.150	-0.116			
$\Delta E'_{\mu}$	-485.664	-957.513	-871.102	-863.651	-988.517	-947.150	-757.939	-909.737	-955.422			
IE	$\Delta E_{ m int}$				$(\Delta$	$E_{\rm int})^{\rm k}$						
	-0.462-	-0.115-	-0.178-	-0.183-	-0.092-	-0.122-	-0.262-	-0.150-	-0.116-			
	485.664λ	957.513λ	871.102λ	863.651λ	988.517λ	947.150λ	757.939λ	909.737λ	955.422λ			
12 + CH ₃												
ΔE_v	-6.335	-1.518	-0.687	-1.630	-1.568	-1.809	-2.244	-1.325	-1.204			
$\Delta E'_{\mu}$	-401.330	-943.068	-1036.109	-930.369	-937.009	-909.737	-991.385	-964.548	-978.204			
IE	$\Delta E_{\rm int}$					$E_{\rm int})^{\rm k}$						
	-6.335-	-1.518-	-0.687-	-1.630-	-1.568-	-1.809-	-2.244-	-1.325-	-1.204-			
	401.330λ	943.068λ	1036.109λ	930.369λ	937.009λ	909.737λ	991.385λ	964.548λ	978.204λ			

Reaction energies and hyperfine splitting constants of adducts

The reaction energies of *cis* and *trans* radical adducts of nitrones **1-12** have been listed in Table 4. To model these systems more accurately, computational solution models are needed. Therefore, solvent effects (in water) were considered on the basis of single point energy calculations at the gas phase DFT/B3LYP/6-31G(d) optimized geometries from polarized continuum model^{41,42}. The **1**-Me (*cis*) radical adduct is stabilized by only 3.120 kJ/mol in gas phase and by 1.903 kJ/mol in water compared to the **1**-Me (*trans*) radical adduct. However, the *cis* adducts of nitrones **2**, **3**, **4**, **5**, **6**, **7**, **8**, **9** and **12**

are stabilized respectively by 19.602, 16.312, 14.689, 19.198, 18.263, 19.022, 14.590, 16.525 and 18.224 kJ/mol in water compared to the respective *trans* adducts. The *cis* adducts for nitrones **10** and **11** are stabilized than their *trans* adducts by 32.874 and 57.216 kJ/mol in water. These data suggest that nitrogen and *C*-aryl substitution has pronounced effect on the stability of radical adducts for the investigated nitrone series. The difference between *cis* and *trans* radical adducts of nitrones **2-9** are comparable to each other. Nitrones **5** and **10** have similar nitrogen substituents. However, the change of *C*-aryl substitution from *p*-COONa in **5** to

	Table 4	onstants of									
Comp.	Bon	d distance	es (Å)	Wil	perg bond i	ndex	$\Delta E_{\rm reaction}$	$\Delta E_{\text{reaction}}$	$\alpha_{\rm H}({\rm mT})$		
	NO	CN	CC	NO	CN	CC	(kJ mol ¹) ^a	(kJ mol ¹) ^b	Calc. ^c	Expt. ¹¹	
1	1.279	1.317	_	1.2841	1.4692	_	_	_	_		
1-CH ₃ (<i>cis</i>)	1.286	1.485	1.535	1.2898	0.9283	0.9992	-178.138	-172.025	0.275	0.368	
1-CH ₃ (trans)	1.285	1.481	1.537	1.2896	0.9310	0.9967	-175.018	-170.122	0.231		
2	1.280	1.317	-	1.2824	1.4637	-	_	_	_		
2- CH ₃ (<i>cis</i>)	1.286	1.486	1.535	1.2877	0.9265	0.9989	-178.474	-173.892	0.265	0.388	
2-CH ₃ (<i>trans</i>)	1.289	1.498	1.533	1.2844	0.9218	1.0123	-158.444	-154.290	0.076		
3	1.280	1.316	-	1.2806	1.4706	-	_	_	_		
3- CH ₃ (<i>cis</i>)	1.285	1.483	1.537	1.2900	0.9308	0.9966	-176.854	-174.070	0.353	0.394	
3- CH ₃ (<i>trans</i>)	1.289	1.494	1.536	1.2857	0.9277	1.0066	-158.756	-157.758	0.096		
4	1.281	1.316	-	1.2776	1.4703	-	_	_	_		
4- CH ₃ (<i>cis</i>)	1.285	1.487	1.535	1.2913	0.9249	0.9985	-168.817	-163.466	0.218	0.385	
4-CH ₃ (trans)	1.289	1.498	1.533	1.2872	0.9213	1.0118	-154.511	-148.777	0.045		
5	1.287	1.315	_	1.2629	1.4746	-	_	_	_	_	
5 -CH ₃ (<i>cis</i>)	1.288	1.481	1.536	1.2831	0.9300	0.9967	-180.621	-174.055	0.197		
5-CH ₃ (trans)	1.292	1.503	1.540	1.2787	0.9074	0.9883	-160.644	-154.857	0.071		
6	1.286	1.315	-	1.2593	1.4735	-	_	_	_		
6- CH ₃ (<i>cis</i>)	1.286	1.498	1.544	1.2864	0.9106	0.9821	-175.953	-171.471	0.350	0.373	
6-CH ₃ (trans)	1.289	1.498	1.533	1.2837	0.9205	1.0116	-155.422	-153.208	0.052		
7	1.281	1.317	_	1.2751	1.4643	-	_	_	_	_	
7- CH ₃ (<i>cis</i>)	1.285	1.490	1.534	1.2929	0.9222	1.0001	-186.668	-176.796	0.254		
7-CH ₃ (trans)	1.290	1.498	1.533	1.2833	0.9198	1.0114	-168.544	-157.774	0.042		
8	1.284	1.317	-	1.2712	1.4627	-	_	_	_	_	
8-CH ₃ (cis)	1.286	1.490	1.534	1.2897	0.9223	1.0006	-183.431	-169.723	0.244		
8-CH ₃ (<i>trans</i>)	1.290	1.494	1.535	1.2827	0.9234	1.0073	-160.691	-155.133	0.068		
9	1.278	1.317	-	1.2903	1.4686	-	_	_	_	_	
9- CH ₃ (<i>cis</i>)	1.285	1.481	1.538	1.2897	0.9318	0.9947	-169.875	-166.622	0.092		
9- CH ₃ (<i>trans</i>)	1.288	1.492	1.535	1.2862	0.9296	1.0073	-147.456	-150.097	0.079		
10	1.285	1.317	-	1.2635	1.4692	-	_	_	_	_	
10-CH ₃ (<i>cis</i>)	1.286	1.490	1.536	1.2905	0.9188	0.9995	-181.797	-169.284	0.325		
10- CH ₃ (<i>trans</i>)	1.289	1.507	1.534	1.2879	0.9119	1.0127	-147.818	-136.410	0.028		
11	1.278	1.317	-	1.2844	1.4849	-	_	_	_	_	
11- CH ₃ (<i>cis</i>)	1.286	1.484	1.535	1.2874	0.9309	0.9979	-213.138	-208.342	0.322		
11- CH ₃ (<i>trans</i>)	1.293	1.499	1.543	1.2692	0.9299	0.9969	-205.944	-151.126	0.269		
12	1.268	1.321	_	1.3322	1.4495	-	_	_	_	_	
12- CH ₃ (<i>cis</i>)	1.283	1.483	1.536	1.2946	0.9276	0.9962	-173.637	-165.761	0.139		
1	1.00-	1 10 0	1	1.000	0.005	1 0 0 0 7			0.0.70		

able 4—Bond distand	ces, bond orders,	reaction	energies	$\Delta E_{\text{reaction}}$	and hype	rfine split	ting const	ants o
DFT/B	3LYP/6-31G(d)	optimize	ed nitrone	s and niti	one-radio	al adducts	3	

^aB3LYP/6-31G(d); ^bPCM/B3LYP/6-31G(d)//B3LYP/6-31G(d). ^cCalculated by PCM/B3LYP/6-31G(d)//B3LYP/6-31G(d).

1.534

1.2887

0.9276

1.0085

-151.187

1.493

12-CH₃ (*trans*) 1.287

o-OCH₂CH₃ in 10 results in the increased stability difference by 13.676 kJ/mol. Nitrones 9 and 11 have similar nitrogen substituents. However, the change of C-aryl substitution from p-OCH₂CH₂P(Ph₃) in 9 to p-OC₁₂H₂₅ and m-OC₆H₁₂COO(CH₂NMe₃) $(CH_2COOC_8H_{17})$ in **11** as the *C*-aryl substituents increases the stability difference by 40.691 kJ/mol. This implies that the O-alkyl substitution of the C-aryl ring increases the stability differences in this series. The calculated bond distances and bond orders of the nitrones and radical adducts are listed in Table 4. C-N

bond distances of the cis and trans adducts show values in the range 1.499 to 1.481 Å. The wiberg bond order values for the nitrone C-N bond in the range 1.47-1.45 are changed to the range 0.92-0.93 in the radical adducts. PCM/B3LYP/ 6-31G(d)//B3LYP/6-31G(d) calculated hyperfine splitting constants are listed in Table 4. The experimental values for the methyl radical adducts of nitrones 1, 2, 3, 4 and 6 are available in literature. $\alpha_{\rm H}$ values for the cis adducts are comparable to the experimental data. For instance, the calculated $\alpha_{\rm H}$

-147.537

0.058

values for 3-Me (*cis*) and 6-Me (*cis*) adduct are 0.353 and 0.350 and the reported experimental values are 0.394 and 0.373 respectively. However, the calculated $\alpha_{\rm H}$ values for 3-Me (*trans*) and 6-Me (*trans*) adduct are 0.096 and 0.052 respectively. These values further suggest the stability of *cis* adduct compared to the *trans* adduct in conformity with the reaction energies.

Transition states

Nitrones 1, 5, 6, 8, 9 and 12 have been selected as the cost effective computational models for the

location of transition states during the study. Total 12 transition states corresponding to *cis* and *trans* methyl radical attacks to the nitrones were successfully located at DFT/B3LYP/6-31G(d) level of theory. The optimized transition state geometries are shown in Fig. 3. The Wiberg bond indices and atom-atom overlap weighted NAO bond orders were calculated to examine the extent of bond formation in the transition states (Table 5). Nitrone-Me (*trans*) transition states show lower forming C-C bond order

Fig. 3—DFT/B3LYP/6-31G(d) optimized transition states.

	Table 5—Bond distances, bond orders and activation energies of transition states										
Comp.	Comp. Bond dista		distances (Å) we		Atom-atom overlap- weighted NAO bond order		Wiberg bond index			$E^{\#}(\mathrm{kJ\ mol}^{-1})$	
	N-O	C-N	C- C	N-O	C-N	C- C	N-O	C-N	C-C	B3LYP/ 6-31G(d)	PCM/B3LYP/ 6-31G(d)// B3LYP/6-31G(d)
TS1[1-CH ₃ (<i>cis</i>)]	1.282	1.335	2.496	0.9426	1.0909	0.1515	1.2791	1.3652	0.1867	13.452	15.812
TS2 [1-CH ₃ (trans)]	1.282	1.335	2.495	0.9424	1.0908	0.1519	1.2790	1.3649	0.1872	13.453	15.854
TS3 [5 -CH ₃ (<i>cis</i>)]	1.288	1.334	2.489	0.9331	1.0951	0.1541	1.2628	1.3738	0.1896	14.234	15.539
TS4 [5-CH ₃ (trans)]	1.296	1.330	2.579	0.9127	1.1197	0.1310	1.2425	1.4463	0.1688	57.283	64.037
TS5 [6-CH ₃ (<i>cis</i>)]	1.286	1.335	2.496	0.9334	1.0938	0.1522	1.2610	1.3711	0.1912	18.989	20.798
TS6 [6-CH ₃ (trans)]	1.288	1.329	2.597	0.9297	1.1202	0.1232	1.2616	1.4510	0.1642	67.394	68.085
TS7 [8-CH ₃ (cis)]	1.286	1.335	2.494	0.9350	1.0903	0.1520	1.2679	1.3653	0.1877	11.866	15.294
TS8 [8-CH ₃ (trans)]	1.292	1.335	2.550	0.9251	1.1041	0.1330	1.2610	1.4155	0.1686	55.466	59.873
TS9 [9-CH ₃ (<i>cis</i>)]	1.282	1.335	2.495	0.9437	1.0895	0.1527	1.2830	1.3636	0.1886	14.129	17.362
TS10 [9-CH ₃ (trans)]	1.280	1.335	2.613	0.9478	1.1018	0.1213	1.3009	1.4115	0.1574	59.609	59.095
TS11 [12- CH ₃ (<i>cis</i>)]	1.280	1.335	2.510	0.9507	1.0873	0.1473	1.2926	1.3607	0.1813	6.910	14.138
TS12 [12- CH ₃ (<i>trans</i>)]	1.281	1.338	2.600	0.9471	1.0960	0.1252	1.2976	1.3999	0.1622	69.898	67.955

values compared to the corresponding *cis* channel for nitrones 5, 6, 8, 9 and 12. The Wiberg bond indices and atom-atom overlap weighted NAO bond orders of C-C forming bond in the *cis* and *trans* radical adducts are respectively calculated in the range 0.98-1.01 and 0.83–0.85. For the transition states, these bond orders account to 0.15-0.19 and 0.12-0.15 respectively leading to the formation of cis and trans adducts. On the other hand, the forming C-N bond orders in the transition states of *cis* adducts are lower than the *trans* adducts of these nitrones. The forming C-C bond lengths in the cis adduct transition states are shorter than the *trans* adducts. These data overall suggest the favored generation of cis radical adducts. This is in complete agreement with the computed reaction energies listed in Table 4. The bond order and bond length values for the *cis* and *trans* adducts of nitrone 1 are comparable and is also in conformity with their calculated reaction energies (Table 4).

The *trans* adducts show higher activation energies than the corresponding *cis* adducts both in gas phase and water for the nitrones **5**, **6**, **8**, **9** and **12**. The activation energies of TS3-TS4, TS5-TS6, TS7-TS8, TS9-TS10 and TS11-TS12 transition state pairs differ by 43.049, 48.405, 43.600, 45.480 and 62.988 kJ/mol respectively from gas phase calculations. The corresponding differences account to 48.498, 47.287, 42.511, 41.733 and 53.817 kJ/mol in water. Inclusion of solvent effects resulted to enhanced activation

barrier in each case. On the other hand, the activation energies for the *cis* and *trans* adduct formations of nitrone **1** are comparable to each other (15.812 kJ/mol and 15.854 kJ/mol respectively in water). This implies that substitution increases the stability of the *cis* adduct.

Conclusions

The α -phenyl-*N*-*t*-butyl nitrone derivatives show varied electron demand characteristics with the change of nitrogen and aryl substitutions which determines their charge transfer directions during the methyl radical capture by these nitrones. Introduction of PPh₃and NMe₃ groups in the C- phenyl substituent chain of the nitrone increases the electrophilicity of these nitrones. DFT based local reactivity indices calculated from MK calculations perform better than the NPA system to rationalize the site of radical attack. The calculated interaction energies show a definite pattern on the basis of substituent attached to the C-phenyl group of the reacting nitrone. Greater interaction energy changes at constant external potential are predicted for PPh₃ and NMe₃ substituted nitrones during the radical attacks. The local interaction energies provide correct interpretation (C3 attack) for the radical capture. Preferred generation of cis adduct is predicted from forming bond orders at the transition states, computed reaction energies, activation energies and hyperfine splitting constants which is in complete agreement with the reported experimental

results. Both nitrogen and C-aryl substitutions at the nitrone increase the stability difference of the *cis* and *trans* radical attacks.

Supplementary Data

Supplementary data associated with this article, i. e., Tables S1-S96, are available in the electronic form at http://www.niscair.res.in/jinfo/ijca/IJCA_56A(01) 9-20_SupplData.pdf.

References

- 1 Sen S & J W Phillis J A, Free Radic Res Commun, 19 (1993) 255.
- 2 Floyd R A, Free Radic Biol Med, 46 (2009) 1004.
- Floyd R A, Hensley K, Forster M J, Kelleher-Andersson J A
 & Wood P L, *Mech. Ageing Dev*, 30 (2002) 1021.
- 4 Floyd R A, Hensley K, Forster M J, Kelleher-Andersson J A & Wood P L, *Ann NY Acad Sci*, 959 (2002) 321.
- 5 Liu J, Atamna H, Kuratsune H & Ames B N, *Ann NY Acad Sci*, 959 (2002) 133.
- 6 Atamna H, Paler-Martínez A & Ames B N, *J Biol Chem*, 275 (2000) 6741.
- 7 Novakov C P & Stoyanovsky D A, *Chem Res Toxicol*, 15 (2002) 749.
- 8 Janzen E G, Dudley R L & Shetty R V, J Am Chem Soc, 101 (1979) 243.
- 9 Marshall J W B, Duffin K J, Green A R & Ridley R M, Stroke, 32 (2001) 190.
- 10 Dhainaut A, Tizot A, Raimbaud E, Lockhart B, Lestage P & Goldstein S, *J Med Chem*, 43 (2000) 2165.
- 11 Durand G, Polidori A, Ouari O, Tordo P, Geromel V, Rustin P & Pucci B, *J Med Chem*, 46 (2003) 5230.
- 12 Durand G, Poeggeler B, Boker J, Raynal S, Polidori A, Pappolla M A, Hardeland R & Pucci B, *J Med Chem*, 50 (2007) 3976.
- 13 Murphy M P, Echtay K S, Blaikie F H, Asin-Cayuela J, Cocheme' H M, Green K, Buckingham J A, Taylor E R, Hurrell F, Hughes G, Miwa S, Cooper C E, Svistunenko D A, Smith R A J & Brand M D, *J Biol Chem*, 278 (2003) 48534.
- 14 Reddy P H, J Biomed Biotechnol, 2006, Article ID 31372, 1.
- 15 Navarro A & Boveris A, Adv Drug Del Rev, 60 (2008) 1534.

- 16 Fangour S El, Marini M, Good J, McQuaker S J, Shiels P G & Hartley R C, AGE, 31 (2009) 269.
- 17 Parr R G & Yang W, *Density Functional Theory of Atoms* and *Molecules*, (Oxford University Press, NewYork) 1989.
- 18 Geerlings P, Proft F De & Langenaeker W, Chem Rev, 103 (2003) 1793.
- 19 Chermette H, J Comput Chem, 20 (1999) 129.
- 20 Parr R G & Pearson R G, J Am Chem Soc, 105 (1983) 7512.
- 21 Chattaraj P K, Sarkar U & Roy D R, *Chem Rev*, 106 (2006) 2065.
- 22 Reed A E & Weinhold F, J Chem Phys, 78 (1983) 4066.
- 23 Besler B H, Merz Jr K M & Kollman P A, *J Comput Chem*, 11 (1990) 431.
- 24 Domingo L R, Sáez J A & Pérez P, Chem Phys Lett, 438 (2007) 341.
- 25 Benchouk W & Mekelleche S M, *J Mol Struct: THEOCHEM*, 852 (2008) 46.
- 26 Yang W & Mortier W J, J Am Chem Soc, 108 (1986) 5708.
- 27 Chandra A K & Nguyen M T, J Chem Soc, Perkin Trans, 2 (1997) 1415.
- 28 Méndez F, Tamariz J & Geerlings P, *J Phys Chem A*, 102 (1998) 6292.
- 29 Parr R G & Gázquez J L, J Phys Chem, 97 (1993) 3939.
- 30 Gázquez J L, Martinez A & Méndez F, J Phys Chem 97 (1993) 4059.
- 31 Gázquez J L, Chemical Hardness-Structure and Bonding, Vol. 80, edited by K D Sen & D M P Mingos, (Springer, New York), 1993, p. 27.
- 32 Becke A D, J Chem Phys, 98 (1993) 5648.
- 33 Lee C, Yang W & Parr R G, Phys Rev B, 37 (1988) 785.
- 34 Gaussian 03, Rev. D.01 (Gaussian, Inc., Wallingford CT) 2004.
- 35 Domingo L R, Aurell M J, Pe'rez P & Contreras R, *Tetrahedron*, 58 (2002) 4417.
- 36 Nguyen H M T, Peeters J, Nguyen M T & Chandra A K, *J Phys Chem A*, 108 (2004) 484.
- 37 Ponti A, J Phys Chem A, 104 (2000) 8843.
- 38 Mendez F & Garcia-Garibay M A, *J Org Chem*, 64 (1999) 7061.
- 39 Acharjee N, J Theoret Comput Chem, 13 (2014) 1450071.
- 40 Acharjee N, J Theoret Comput Chem, 13 (2014) 1450007.
- 41 Miertus S & Tomasi J, Chem Phys, 65(1982) 239.
- 42 Barone V & Cossi M, J Phys Chem A, 102 (1998) 1995.