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The effect of some added electrolytes, viz. NaCl, CaCl2 and AlCl3, on the critical micelle concentration (CMC), 
maximum surface excess concentration (Γmax) and minimum area per molecule (Amin) at air-liquid interface of a cationic 
surfactant cetylpyridinium chloride (CPC) in aqueous solutions have been studied at 288.15, 293.15 and 298.15 K using 
tensiometric method. The effect of an added electrolyte on decreasing CMC of CPC is found to be in the order (AlCl3) > 
(CaCl2) > (NaCl), which falls in the same order as of the moles chloride ions furnished by each mole of the added 
electrolyte. The Γmax decreases with increasing temperature and electrolyte concentration leading to an enhanced available 
area per molecule at the air-liquid interface. The process of micellization and adsorption of CPC at air-liquid interface are 
both favoured by exothermic enthalpy change as well as entropy gain. The observed features such as lowering of CMC, 
higher thermodynamic micellar stability, more relaxed surfactant molecules at the interface, due to an added electrolyte, 
may be exploited for improving the efficiency of the surfactant as a detergent, solubilizing agent, froth floatation process for 
concentrating ores, petroleum oil recovery and oil spill management. 
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Surfactants are a unique class of versatile amphiphilic 
compounds with spatially distinctive polar hydrophilic 
head and non-polar hydrophobic tail groups. Owing to 
their amphiphilic nature and characteristic features 
such as tendency to decrease interfacial tension and 
aggregation to form micelles in the bulk, surfactants 
are widely employed as individual care products, 
domestic cleaners and in food handling, Besides these, 
surface active compounds also find their applications 
in pharmaceuticals1, agriculture, enhanced petroleum oil 
recovery2,3, emulsifying4,5, solubilizing6 and wetting 
agents7, metallurgical processes8,9 and nanotechnologies10. 
Several reports have appeared on different physico-
chemical properties of surfactants in aqueous 
solutions. Naskar et al.11 investigated the counter-ion 
effect on micellization of an anionic surfactant, sodium 
dodecyl sulfate (SDS) and a cationic surfactant, 
dodecyltrimethylammonium bromide. Suhail & 
co-workers1 have reviewed the classification of 
surfactants, their mechanism of action, antimicrobial 
functions, their role in pharmaceutical product 
development, gene therapy and personal care products. 
Dominguez & Berkoiwitz12, while performing molecular 
dynamics simulation on SDS monolayer at the 

water/carbon tetrachloride and water-vapour interfaces 
observed that surfactant tails are less ordered at the 
water/vapour interface, while at the water/carbon 
tetrachloride interface the amphiphilic molecule is less 
inclined to the surface normal. Sukul et al.13 studied 
interaction between the polymer polyvinyl pyrrolidone 
(PVP) and an anionic surfactant SDS using excited state 
proton transfer of 1-naphthol as a probe. They inferred 
the existence of two kinds of environment in the SDS-
PVP aggregates and also recorded that the critical 
association concentration of SDS for the PVP-SDS 
system is 10 times lower than the critical micelle 
concentration (CMC) of SDS. Watry & Richmond14 
compared molecular structures of dodecanesulphonate 
and dodecyl benzenesulphonate adsorbed at organic/ 
water interface (CCl4/Water) and air/water interface 
employing vibrational sum frequency spectroscopy. They 
observed that change in aromatic ring orientation as a 
function of surface concentration is quite different for 
dodecylbenzene sulphonate at the air/water interface 
relative to that at CCl4/water interface. Mukherjee 
et al.15 studied physicochemistry of micellization of 
binary mixtures of a cationic surfactant cetylpyridinium 
chloride (CPC) and a non-ionic surfactant Triton X-100 
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and determined micellar composition and their mutual 
interaction using Rubingh regular solution theory 
elucidating synergistic behaviour of the two 
surfactants. Heinz et al.10 have reviewed covalent and 
non-covalent interactions of surfactants with 
nanomaterials of metals, metal oxides, layered materials, 
and polymers. The surface modified nanomaterials 
have found applications in therapeutics, sensors, 
catalysis, classical detergents energy conversion and 
storage and purification systems.  

However, reports on physicochemical and 
thermodynamic studies of surfactants in electrolyte 
aqueous solutions are limited16-19. Partap & Yadav17 
studied the effect of inorganic ions on surface properties 
of a non-ionic surfactant iso-octyl phenoxy polyethoxy 
ethanol in water and aqueous Na2SO4 and Na3PO4 
solutions. They found that the micellization process 
despite being endothermic, becomes feasible due to 
dominating entropy gain. Hoque et al.18 from 
conductometric measurements studied interactions 
between two cationic surfactants, tetradecyltri-
methylammonium bromide and dodecyltri-
methylammonium chloride, in water and in aqueous 
solution of NaCl. They analyzed the data in terms of 
Rubingh’s model within the framework of the 
pseudophase separation model. Recently, Wołowicz & 
Staszak19 have studied surface and adsorption 
characteristics of SDS at the liquid−air interface in the 
presence of hydrochloric acid and heavy metal ions. 
They found that both hydrochloric acid and heavy 
metal ions cause decrease in CMC of the surfactant 
and the SDS adsorption is controlled by diffusion. 

To the best of our knowledge no report exists, at 
present, on the effects of added electrolytes, comprising 
halides associated with varying metal ion’s valency, on 
the surface and thermodynamic properties of CPC in 
aqueous medium. Derived from the tensiometric 
measurements, we report here, CMC, surface excess 
concentration (max), minimum area per molecule (Amin) 
at the air–liquid interface, surface pressure at CMC 
(cmc), and thermodynamic parameters of micellization 
as well adsorption of CPC aqueous solutions in the 
presence of chlorides of metals with varying cation 
valencies on the above physico-chemical properties at 
288.15, 293.15 and 298.15 K. 
 

Materials and Methods 
 

Chemicals 
Sodium chloride (NaCl, M.W. 58.44 g mol-1); 

calcium chloride (CaCl2, M.W. 110.98 g mol-1), 
aluminum chloride (AlCl3, M.W.: 133.34 g mol-1) and 

CPC (C21H38ClN, M.W.: 339.99 g mol-1) used were 
from SD Fine Chemicals. Molecular structure of CPC 
is given in Fig.1.  
 
Methods 
 

Surface tension measurement 
Surface tensions of CPC aqueous solutions, with or 

without added an electrolyte, were measured by drop-
weight method using a modified stalagmometer, 
described elsewhere20. Different concentrations of 
aqueous CPC solutions were prepared by appropriately 
diluting 50 mM CPC stock solution using distilled 
water. However, for preparing varying CPC 
concentrations in case of CPC + electrolyte + water 
systems, dilutions were done using electrolyte solution 
of proper molarity. The stalagmometer was calibrated 
using standard liquids including benzene, carbon 
tetrachloride, n-hexane, acetophenone and water. 
Surface tensions were measured over a wide range of 
CPC concentrations and at temperatures 288.15, 293.15 
and 298.15 K. using a thermostatic bath (Tempstar, 
Model KW 201 A) that ensured temperature control 
within + 0.01 K. The reproducibility of measured 
surface tension values was within + 0.2 m N m-1.  
 

Specific conductivity measurements 
A digital conductivity meter (Model E.I. 601 E) 

equipped with conductivity cell having cell constant = 1.0 
and pre-standardized using 0.1 M KCl, was employed 
for conductivity measurements of CPC aqueous 
solutions at temperatures 288.15, 293.15 and  
298.15 K. Doubly distilled water (specific 
conductance 2.0 × 10-6 S cm-1) was used for preparing 
different CPC aqueous solutions. 
 

Calculation of maximum surface excess concentration 

Maximum surface excess concentration (max) at 
the air-liquid interface was obtained using Gibb’s 
adsorption equation26, 

 

୫ୟ୶ ൌ െ1/2.303 nRTሺdγ/dሺlog Cሻሻ୘ …(1) 
 

where, n is number of particles released per surfactant 
molecule in the solution; R is gas constant  
(8.314 J K-1 Mol-1) and C is molar concentration of 
the surfactant CPC. The (d/d(log C))T represents the 

 
 

Fig. 1 — Molecular structure of cetylpyridinium chloride 
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slope of the plot for surface tension versus log C below 
CMC, at constant T (K) and these values are included 
in Table 1; for the ionic surfactant CPC, n =2. 
 
Calculation of minimum area per molecule at liquid–air interface  

Minimum area (or area of exclusion) per surfactant 
molecule, Amin, (nm2/molecule) at the liquid–air 
interface has been calculated using the Eqn (2)26, 
 

A୫୧୬ ൌ 10ଵସ/N ୫ୟ୶ …(2) 

 

where, ‘N’ is Avogadro's number (= 6.022 × 1023 
molecules per mole) and max is maximum surface 
excess concentration at the air-liquid interface. 

Calculation of surface pressure at CMC 

Surface pressure at CMC (cmc), an index of the 
surface tension reduction at CMC, was obtained using 
the relation26, 

 

πୡ୫ୡ ൌ γ଴ െ γ
ୡ୫ୡ

  …(3) 
 

where, 0 = surface tension of water and cmc = surface 
tension at CMC. 
 

Calculations of thermodynamic properties of micellization 
Standard Gibb’s free energy of micellization 

(G0
mic) for CPC in aqueous solution, with or without 

an added electrolyte, was calculated using Eqn (4)28, 

Table 1 — Critical micelle concentration (CMC), surface excess concentration (max), minimum area per molecule (Amin) and  
surface pressure at CMC (cmc) for CPC + water system with or without an added electrolyte of different concentrations 

[Electrolyte] 
mol dm-3 

Temp 
(K) 

CMC x 103 

(mol dm-3) 
max x 1010 

(mol m-2) 
Amin x 102 

(nm2)/molecule  
cmc 

(mNm-1) 

CPC+H2O      
 288.15 6.2 (6.2)* 2.18(-2.41)** 76.2 24.5 
 293.15 6.7 (6.8)* 2.06(-2.31)** 80.6 25.4 
 298.15 7.0 (7.2)* 1.92(-2.19)** 86.5 26.4 

CPC+NaCl      
0.025 288.15 5.9 2.05 81.0 30.7 

 293.15 6.4 1.93 86.0 32.8 
 298.15 6.8 1.82 91.2 34.9 

0.050 288.15 5.5 1.81 91.7 31.7 
 293.15 6.0 1.69 98.2 33.4 
 298.15 6.4 1.58 105.1 35.4 

0.075 288.15 5.2 1.63 101.9 32.1 
 293.15 5.7 1.51 110.0 34.0 
 298.15 6.0 1.40 118.6 36.4 

CPC+CaCl2      
0.025 288.15 5.6 2.13 77.9 32.3 

 293.15 6.1 2.03 81.8 34.4 
 298.15 6.6 1.88 88.3 36.4 

0.050 288.15 5.3 2.04 81.4 32.7 
 293.15 5.8 1.87 88.8 35.2 
 298.15 6.3 1.73 95.9 37.4 

0.075 288.15 5.0 1.92 86.5 34.5 
 293.15 5.5 1.76 94.3 36.9 
 298.15 6.0 1.62 102.5 39.4 

CPC+AlCl3      
0.025 288.15 5.2 1.80 92.2 32.5 

 293.15 5.7 1.72 96.5 34.4 
 298.15 6.2 1.65 100.6 36.2 

0.050 288.15 4.9 1.73 95.9 33.3 
 293.15 5.3 1.67 99.4 35.2 
 298.15 5.8 1.59 104.4 37.4 

0.075 288.15 4.6 1.69 98.2 34.3 
 293.15 5.0 1.60 103.8 36.4 
 298.15 5.3 1.53 108.5 38.4 

*CMC values in parenthesis were obtained from conductance method; ** (d/d log C)T values representing the slope of the plot for
surface tension versus log C below CMC, at constant T (K) and used in the calculation of max 
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Table 1. The Amin values invariably show a positive 
dependence on temperature as well as the amount of 
the added electrolyte. It may be because at a higher 
temperature, due to the expansion of the liquid, the 
available free space per molecule at the interface is 
enhanced, while mixing of an electrolyte to a CPC 
aqueous solution, results in partial disruption of 
water-structure, enabling further relaxation of the 
surfactant molecules.  
 

Surface pressure at CMC 

Surface pressure at CMC (cmc) and an index of the 
surface tension reduction at CMC, are recorded in 
Table 1. The cmc values increase with increasing 
temperature as well as on mixing an electrolyte. It 
may be due to the fact that at higher temperature as 

well as mixing an electrolytes in surfactant solution 
cause weakening of hydrogen-bonded water-structure 
in the bulk, thus cumulatively contribute to decrease 
in intermolecular interaction of water molecules and 
resulted in lowering of the surface tension i.e., cmc. 
 

Thermodynamic properties of micellization 
The thermodynamic properties of micellization are 

presented in Table 2. It may be seen that that the 
micelle forming process in aqueous media is favoured 
both by entropy gain as well as the exothermic 
enthalpy change. The G0

mic values, in pure water as 
well as in surfactant + electrolyte solutions are 
negative and increase (become less negative) with 
increasing temperature. It suggests that though the 
CPC micellar formation in aqueous media is feasible, 

Table 2 — Thermodynamic parameters of micellization / adsorption / transfer for CPC + water system with or without an added 
electrolyte of different concentrations 

[Electrolyte] 
(mol dm-3) 

Temp 
(K) 

-G0
m. /-G0

ad 
(kJ mol-1) 

-H0
m / H0

ad 

(kJ mol-1) 
S0

m / S0
ad 

(kJ K-1 mol-1) 

CPC+ H2O     
 288.15 38.46 / 39.61   
 293.15 38.04 / 39.27 13.12 / 20.80 0.085 / 0.063 
 298.15 37.61 / 38.98   

CPC+NaCl     
0.025 288.15 35.94 / 37.44   

 293.15 35.47 / 37.16 7.62 / 21.33 0.095 / 0.054 
 298.15 34.99 / 36.90   

0.050 288.15 36.16 / 37.91   
 293.15 35.67 / 37.65 6.94 / 23.29 0.098 / 0.049 
 298.15 35.18 / 37.42   

0.075 288.15 36.80 / 38.31   
 293.15 35.83 / 38.06 6.52 / 28.38 0.100 / 0.033 
 298.15 35.38 / 37.98   

CPC+CaCl2     
0.025 288.15 33.35 / 34.87   

 293.15 32.84 / 34.53 2.94 / 16.94 0.102 / 0.060 
 298.15 32.33 / 34.27   

0.050 288.15 33.51 / 35.11   
 293.15 32.98 / 34.86 2.20 / 20.49 0.105 / 0.049 
 298.15 32.46 / 34.62   

0.075 288.15 33.68 / 35.48   
 293.15 33.14 / 35.30 1.48 / 22.11 0.0108 / 0.045 
 298.15 32.60 / 35.03   

CPC+AlCl3     
0.025 288.15 31.05 / 32.87   

 293.15 30.51 / 32.51 +1.44 / 11.40 0.109 / 0.072 
 298.15 29.96 / 32.15   

0.050 288.15 31.23 / 33.15   
 293.15 30.71 / 32.82 +1.54 / 13.18 0.110 / 0.067 
 298.15 30.13 / 32.48   

0.075 288.15 31.39 / 33.42   
 293.15 30.86 / 33.14 +1.97 / 17.31 0.112 / 0.054 
 298.15 30.27 / 32.88   
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however, upon increasing temperature the micellar 
stability decreases due to thermal agitation and 
endothermic desolvation of the surfactant hydrophilic 
head group at higher temperature29.  

The G0
mic values increase (i.e., become less 

negative) upon mixing an electrolyte in a CPC 
solution, may be due to endothermic enthalpy change 
overweighing the entropy gain during disruption of 
hydrogen bonded water structure in an aqueous 
solution. The feasibility of micelle formation further 
decreases upon raising the electrolyte concentration as 
well as upon replacing a lower valence metal halide 
salt by higher valence metal halide in CPC solution as 
evident from the increasing G0

mic in both the cases. 
The entropy of micellization S0

mic values are 
invariably positive and increase with increasing 
temperature, for the studied CPC solutions. It is 
obvious since higher temperature and mixing an 
electrolyte both cause disruption of water structure 
resulting in entropy gain. Enthalpy of micellization 
(H0

mic) values for CPC+H2O, CPC+NaCl+H2O and 
CPC+CaCl2+H2O are exothermic and the exothermicity 
decreases with increasing temperature and addition of 
an electrolyte. However, in case of CPC+AlCl3+H2O 
system endothermicity is enhanced with increasing 
temperature as well as electrolyte concentration. 
These results can also be readily explained in terms of 
water-structure breaking effects of temperature and 
added electrolyte. 
 
Thermodynamic parameters of adsorption 

Standard thermodynamic parameters of adsorption 
i.e., G0

ad, H0
ad and S0

ad are also included in Table 2. 
The observed lower values of G0

ad compared to 
corresponding G0

mic for CPC solutions, at studied 
temperatures and electrolyte concentrations, suggest 
that the process of adsorption of CPC monomers at 
the air-liquid interface is thermodynamically more 
feasible compared to their aggregation to form 
micelles. The higher entropies of adsorption (S0

ad) in 
comparison to S0

mic may be due to higher degree of 
freedom of the surfactant monomers at the liquid-air 
interface compared to the cramped interior of 
micelles31,32. Further, higher exothermic enthalpy of 
adsorption (H0

ad) compared to corresponding H0
mic 

can be attributed to more degree of surfactant head 
group hydration in less structured water at the liquid-
air interface than in the bulk. However, the observed 
lowering of exothermic H0

ad at higher temperatures 
as well as upon adding an electrolyte may be due to 

endothermic water structure disruption in both the 
cases and the same becomes more significant when an 
electrolyte comprised of higher cation valence is 
mixed in CPC solution. 
 
Conclusions 

This work reports the effect of three metal 
chlorides (NaCl, CaCl2 and AlCl3) on physio-
chemical and thermodynamic properties of a cationic 
surfactant CPC in aqueous medium. The effect of an 
added electrolyte on decreasing CMC of CPC was in 
the order: (AlCl3) > (CaCl2) > (NaCl) which falls in 
the same order as of chloride ions moles furnished by 
each mole of the added electrolyte. However, upon 
increasing temperature, a reverse effect on the CMC 
is observed. Thermodynamic studies revealed that 
exothermic enthalpy change and entropy gain favours 
the micellization and the surfactants adsorption at the 
air-liquid interface is preferred over their aggregation 
in the bulk. The observed features such as lowering of 
CMC of CPC upon mixing a metal chloride which 
becomes more significant when the electrolyte 
producing more halide ions is added, may be 
exploited for improving the efficiency of CPC in its 
use as laundry detergent, solubilizing organic material 
in water, concentration of ores and enhanced 
petroleum recovery in the tertiary process. 
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