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New soluble and insoluble Ta, Mo and Sb pentachloride complex catalysts have been prepared using pyridine and 
polymer supported cross-linked (poly-4-vinyl pyridine) beads (PSCPVP), respectively. The prepared catalysts are 
characterized with FTIR, SEM, EDAX, CHN and TGA. The catalytic activities of these catalysts have been examined for 
esterification of acetic acid with butanol through gas chromatographic technique. The soluble complex catalyst show better 
activity than the insoluble catalyst, but it suffers from recovery and recyclability. The insoluble catalysts maintain stability 

up to three recycle times. From the kobs values, it is found that all the soluble catalysts of Py-MCl5, M=Ta, Mo & Sb 
(kobs=7.26, 5.48 & 1.47×103 min-1) showed higher catalytic activity than the insoluble PSCPVP-MCl5 (kobs=5.18, 2.24 & 
0.87 x103 min-1), but the latter catalysts are superior to the former in terms of recyclability. The catalytic activity of soluble 
Py-TaCl5, Py-MoCl5, Py-SbCl5 catalyst is found to be 1.40, 2.44 and 1.68 times higher than PSCPVP-TaCl5, PSCPVP-
MoCl5 and PSCPVP-SbCl5, respectively. PSCPVP-TaCl5 catalyst is found to be the superior most catalyst among the three 
catalysts. Further, these catalysts can be used in column batch reactors to conduct the reaction in continuous mode. 
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Synthesis of esters through esterification of 
carboxylic acids and acylation of alcohols has been an 

attractive/effective organic transformation reaction. 

Particularly, the demand for esters has been 

increasing day-by-day owing to their vital 
applications in various arenas including 

pharmaceuticals, intermediates, artificial perfumes 

and lacquers. In view of the significance of the ester 
products and their current requirements in larger 

quantities, the study on esterification reaction with 

suitable means was considered to be an adoring area 

of interest. Normally, these reactions are performed 
with the help of different catalysts which include 

mineral acids, inorganic complexes and the 

organometallic Lewis acid complex catalysts. Several 
catalysts and methods have been already available to 

accelerate these reactions but the reaction that 

proceeds with the aid of homogeneous Lewis acid 
complex catalysts is more effective than any others. 

Specifically, heterogeneous metal complex Lewis 

acid catalyst could definitely be an environmentally 

benign, cost effective and convenient one to perform 
the esterification with larger quantities. Therefore, the 

synthesis of Lewis acid complex catalysts using metal 
halides with suitable ligands was found to be an 

attractive method to facilitate esterification. 
 

However, while designing the effective Lewis acid 

complex catalysts (both homogeneous and 
heterogeneous), the characteristics of the metal halide 

and ligands should be the prime concern to generate 

Lewis acidity in the complex catalysts. Transition 
metals have several features unlike representative 

metals, most of them have variable oxidation states as 

well as coordination number and thus show an 
excellent character to form Lewis acid complex

1,2
. 

The transition or non-transition metal in the form of 

chloride can easily form the Lewis acid complex 

catalyst with basic ligands
3
. Similarly, the molecules 

containing heteroatom like pyridine, butylamine and 

indole are an important unit of basic character and 

hence used as effective ligands and thus form an 
efficient Lewis acid complex catalyst with different 

transition metal halides.  
 

In fact, in recent years, the application of soluble 
(homogeneous) Lewis acid complex catalysts and 
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insoluble polymer-supported transition Lewis acid metal 

complex catalysts (heterogeneous) in commercial 

industrial processes has become a common practice. 
Particularly, the heterogeneous catalysts derived from 

insoluble polymer matrix has overcome the problem of 

catalyst recovery and again if the expensive metals are 

immobilized, then without the loss of the catalyst, they 
can be conveniently recycled and also be reused 

sequentially in one-step to carry out multistep catalytic 

organic synthesis and in turn avoid the intermediate 
purification steps. In particular, because of these merits, 

they have been used as catalysts for a wide range of 

reactions, principally for olefinic substrates, including 

esterification, acylation, acetalizaiton, ketalization, 
hydrosilylation, carbonylation, acetoxylation, hydro-

formylation, polymerization and hydrogenation
4
. More 

particularly, the industries are expected to have an 
effective and convenient shape of insoluble hetero-

geneous Lewis acid complex catalysts to perform the 

esterification reaction in continuous mode operation 
using column/batch reactors. 
 

In fact, the extensive literature survey on polymer-

based heterogeneous Lewis acid complex catalysts 

reveals that there is no report for the preparation of 
bead-shaped microporous cross linked poly(styrene) 

network functionalized with 4-vinylpyridine as a 

matrix (ligand) and immobilized with transition/non-
transition metal (central metal) based chlorides like 

TaCl5, MoCl5 and SbCl5 for effective catalysis of 

esterification reactions. With these background, the 
present work describes the synthesis and 

characterization of three different soluble and three 

different insoluble catalysts. Further, the catalytic 

activity of all these six catalysts was assessed for 
esterification of butanol with acetic acid under 

pseudo-first order reaction condition. 

 

Materials and Methods 
 

Chemicals 

Styrene (Fluka) and divinylbenzene (Fluka)) were 

used as such in the preparation of polymer beads. The 

monomer, 4-vinylpyridine (Fluka), was distilled under 
reduced pressure and used for the preparation. AIBN 

(Koch-light, USA) was recrystallised from ethanol. 

Gelatin (BDH), boric acid (Merck), polyvinyl alcohol 

(Fluka), NaOH (SRL), NaNO2 (SRL),TaCl5(Lancaster), 
MoCl5 (Strem) and SbCl5 (Strem) acetic acid (Merck), 

chloroform, methanol, acetone, butanol and  

other organic reagents were purified according to the 
standard procedure. 

Characterization techniques 

All the FTIR spectra were recorded on Bruker 

Tensor-27 FTIR spectrophotometer with OPUS 

software. The sampling was done using KBr pellets 

with required amount of sample, the background 
calibrations have been carried out using pure KBr 

pellet. CHN analysis was conducted on Elementar 

Vario EL III CHN Analyzer. SEM images were 
recorded on HITACHI S-3000H Scanning electron 

microscope operated at different electron volts with 

different distances. A strip of double sided conducting 

carbon tape was applied to the metal stub and the 
samples were deposited on the carbon tape after that 

sample was allowed to scanning. SEM analysis was 

carried out for polymer-supported metal complex 
catalysts, PSCPVP-MCl5, having mesh size of  

+80-100 and compared with plain PSCPVP beads of 

same mesh size. Since polymeric metal complex 
catalysts are electrically non-conducting, they should 

be made conductive by gold coating. The respective 

complex catalysts were spread on the surface of 

double sided adhesive tape, one side of which was 
already adhered to surface of a circular copper disc 

pivoted by a rod. HITACHI S-3000H auto fine-

coating ion sputter was used for the gold coating 
under identical experimental conditions. The 

thermogravimetric analyses were carried out in a 

ZETSCH-STA 409C thermal analyzer. 
 

Synthesis of soluble Py-MCl5 Lewis acid catalyst 

In a 150 mL single-necked RB flask, 20 mmol of 
pyridine was dissolved in 100 mL of chloroform. To 

this homogenous solution, 20 mmol of metal penta-

chloride was carefully added using fuming cupboard. 
The reaction mixture in the flask was stirred using a 

magnetic stirrer for 1 h at room temperature. The resulting 

soluble pyridine-metal pentachloride (Py-MCl5) Lewis 
acid complex catalyst was filtered under vacuum and 

washed repeatedly with chloroform (3×100 mL). The 

obtained Py-MCl5 complex catalyst (Scheme 1) was 

hygroscopic in nature, and hence it was stored in a 
vacuum dessiccator. The yield of Py-TaCl5, Py-MoCl5 

and Py-SbCl5 was 60, 48 and 35%, respectively. 
 

 

 
 

Scheme 1 — Synthesis of soluble Py-MCl5 Lewis acid catalysts 
[M= Ta,Mo and Sb] 
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Synthesis of polymer PSCPVP beads 

This insoluble polymer-supported cross linked poly 

(4-vinylpyridine) (PSCPVP) beads were prepared by 

adopting the early procedure in literature
5
. The method 

involves the suspension copolymerization of styrene 
(supporting), divinylbenzene (crosslinking) and  

4-vinyl pyridine (functional) monomers. By fixing  

2% crosslinking (ratio of DVB) and 25% active site 

(ratio of 4-VP), the organic phase was maintained at 
82.5 g and aqueous phase at 225 g. Exactly 1.35 g of 

gelatin, 2.55 g of boric acid and 2.25 g of polyvinyl 

alcohol were thoroughly dissolved individually in 30, 
60 and 130 ml of double distilled hot water (50

o
C). 

The dissolved polyvinyl alcohol maintains the 

viscosity of the medium. Then these solutions were 

mixed together at room temperature. The pH of the 
mixed solution was adjusted to 10 with the addition of 

25% aqueous sodium hydroxide solution and then 0.1 g 

sodium nitrite was added to maintain the conformation 
of gelatin. The aqueous phase became clear only after 

adjusting the pH to 10. It was then transferred to 250 mL 

three necked RB flask equipped with an overhead 
mechanical stirrer and a reflux condenser. Nitrogen 

was passed continuously and the temperature was 

maintained at 50
o
C. After half an hour (maintaining 

the above condition), the organic phase containing 3.3 g 
of DVB, 58.52 g of styrene, 25.76 g of 4-vinylpyridine 

and 0.4125 g of AIBN was thoroughly mixed and 

added to the reaction flask. The blade level of the 
stirrer was adjusted so that the tips were in organic 

phase and most of the blade in aqueous phase. 

Subsequently, the thermostat temperature was increased 
to 70

o
C and the stirring speed was maintained at  

400 rpm using tachometer. The polymerization 

reaction was allowed till the completion of 48 h 

(Scheme 2). The resulting polymer beads were 
filtered through a Buckner funnel and washed with 

hot water and cold methanol repeatedly until the wash 

solution did not turn cloudy upon the addition of 
water. Then it was dried at 60

o
C in a vacuum oven for 

2 days and thus obtained insoluble crosslinked 

copolymer PSCPVP beads. Then, the polymer beads 

were sieved using RO-TAP testing Sieve Shaker 
(W.S. Tyler Company, and Cleveland, Ohio) and thus 

obtained different particle size viz., -60 + 80, 80 + 

100, 120 + 170, -170 + 300 and above 300 mesh. 
 

Immobilization of MCl5 on to PSCPVP beads 

The insoluble PSCPVP beads (3 g) were swelled 

in chloroform (100 mL) for 1 h in a 150 mL RB flask 
fitted with a guard tube containing anhydrous calcium 

chloride and to which 10 mmol of metal pentachloride 

was added
16

. The resulting reaction mixture was 

stirred for 7 h at room temperature and then cooled to 
0-10°C and thus yielding the pale yellow coloured 

polymer-supported (4-vinlypyridine)-niobium penta-

chloride complex Lewis acid catalyst (PSCPVP-MCl5) 

which was filtered and then washed with chloroform 
and acetone so as to remove the unreacted MCl5. The 

PSCPVP-MCl5 catalyst was further dried under vacuum 

at 50°C for 24 h. The preparation of PSCPVP-MCl5 
complex catalyst is given in Scheme 3. 
 

Esterification of butanol with acetic acid 

The esterification reactions were carried out in  

a 150 mL two necked round bottom flask which was 

charged with excess of acetic acid i.e., 30 mL  

(524.6 mmol) and 1 mL (10.93 mmol) of butanol. The 
flask was placed in thermostat maintained at required 

temperature and stirred at 400 rpm for 10 min to 

condition the substrates, before adding the catalyst. A 
sample was drawn from the reaction mixture (zero 

time). Then, 0.25 mmol of each soluble catalyst such 

as Py-MCl5, and PSCPVP-MCl5 was added individually 
to the reaction mixture and then the reaction was 

allowed to proceed by means of constant stirring and 

temperature. The samples of each catalyzed reaction 

were collected at regular intervals of time and then the 
respective reaction mixtures were analyzed using GC. 

The kinetics of the reaction was followed by 

estimating the amount of butanol disappeared using 
gas chromatograph. The column used for the analysis 

was 2.5% PEG-2000 + 25% silicone DC-550 Celite-

 

 
 

Scheme 2 — Insoluble crosslinked PSCPVP Beads (Matrix) 
 

 
 

Scheme 3 — Synthesis of insoluble polymer-supported PSCPVP-
MCl5 catalysts 
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545 CH.WHP 45/60, 2 m × 1/8 with pre-column 

length of 4. Nitrogen was used as a carrier gas at a 
flow rate of 30 mL/min. After the injection of sample 
for analysis, the temperature of the column oven was 

kept constant for 5 min (90°C), then linearly increased 

to 120°C (10°C min
-1

) and kept at this temperature for 
the remaining time of analysis. Injector and detector 

temperatures were set at 250 and 270°C, respectively. 

For every sample, 0.5 μl of reaction mixture was 

injected to the column and the products were 
analyzed; the retention time for butanol was observed 

at 3.3 min, acetic acid at 4.06 min and the ester 

(product) was noticed at 7.47 min. 

 
Results and Discussion 
 

Characterization of the catalysts by FTIR 

The formation of complex or coordination bond 

between pyridine and the respective metal chlorides in 
all the three different complex catalysts has been 

established through their respective FTIR spectra. The 

spectrum of each complex catalyst was compared 
with the FTIR spectrum of plain pyridine (Fig. 1) and 

the respective pure metal chlorides (control). That is, 

the FTIR spectrum of pyridine corresponds to C=N 
stretching of the pyridine unit. Similarly, the FTIR 

spectrum of metal chlorides viz., TaCl5, MoCl5 and 

SbCl5 showed peaks at 1633, 1622 and 1621 cm
-1

, 

respectively. The FTIR spectrum of the three metal 
complex catalysts yielded a new peak at 1628 cm

-1
 for 

Py-TaCl5, 1633 cm
-1 

for Py- MoCl5 and 1633 cm
-1

 for 

Py-SbCl5 (Fig. 1 A-C) which corresponds to N-Metal 
stretching and thus confirming the interactions 

between the lone-pair of nitrogen of pyridine with 

respective metals. Thus, the appearance of new peaks 

in the spectrum of each Lewis acid complex catalyst 
undoubtedly confirms the formation of the respective 

metal complex catalysts shows the peak at 1587 cm
-1 

which through coordination bond. Aranaldo Costa 
Faro Jr et al.

5
 had prepared the alumina-supported 

niobia metal catalysts in which they observed that the 

metal complex gives different characteristic peaks at 
1450, 1490, 1575 and 1620 cm

-1
 and thus confirming 

the formation of coordination bond between pyridine 

and aluminium, whereas, the free pyridinium ions 

show a peak at 1580 cm
-1

. The same trend of FTIR 
results was also reported by Belfiore et al.

6
 for the 

transition-metal coordination complexes of poly (4-

vinyl-pyridine) and dichlorotricarbonyl ruthenium(II). 
That is, the C=N stretching frequency of free pyridine 

was identified at 1598 cm
-1

, while the complex gives a 

peak at 1615 cm
-1

. Spinelli et al.
7
 prepared synthetic 

macromolecule-metal complexes catalyst by simply 

mixing the copper metal cations with poly-(4-
vinylpyridine). They also found the characteristic 

stretching frequency of pyridine rings at 1600 cm
-1

 for 

pure poly (4-vinylpyridine) and for complex, the 

vibration mode has been shifted to 1618 cm
-1
, and thus 

suggesting the coordination between the pyridinic 

nitrogen and the copper metal. Pandurangan et al.
8
 

also observed a high-intensity peak around 1620 cm
-1

 
for pyridine adsorbed on Lewis acid sites for 

mesoporous heterogeneous Al-MCM-41 catalysts.  
 

EDAX analysis  

It is known that energy dispersive X-ray analysis is 

one of the most effective characterization techniques 

for identifying and quantifying the surface elements in 
a semi-quantitative fashion. Hence, all the Lewis acid 

 

 
 

Fig. 1 — FTIR spectra of (A) Py-TaCl5, (B) Py-MoCl5 and (C) 
Py-SbCl5 
 



MURUGAN et al.: POLYMER CROSS LINKED POLY-4-VINYL PYRIDINE METAL(V) CHLORIDE CATALYSTS  
 
 

1331 

complex catalysts were characterized with EDAX 

analysis. The EDAX spectrum of three Lewis acid 

complex catalysts viz., Py-TaCl5 (Fig. 2A) showed 
three characteristic peaks at 2.2 & 8.1 KeV for 

tantalum metal (Ta) and 2.8 KeV for chloride (Cl), 

Py-MoCl5 (Fig. 2B) yielded two characteristic peaks 

at 2.4 and 2.8 KeV and these in turn corresponds to 
molybdenum metal (Mo) and chloride (Cl) 

respectively. In the case of Py-SbCl5 (Fig. 2C), there 

are three major characteristic peaks at 3.5 & 4.1 and 
2.8 KeV which corresponds to antimony metal (Sb) 

and chloride (Cl), respectively. 
 

Zheng
9
 synthesized poly(N-2-thiazolyl-acrylamide) 

supported Fe(II) and Nd(III) complex catalysts and 

observed similar type of results in their EDAX 

spectra. Similarly, the EDAX spectrum of polymer-
metal complexes obtained by radiation-induced 

grafting process onto polyester fabrics using transition 

metals also confirmed the formation of complex. 
Zohdy

10
 also established the availability of silicon 

metal peak in the EDAX spectrum of poly(methyl 

methacrylate) and poly(styrene) coated on the surface 
of synthetic fibre. Ruckenstein & Hong

11
 support the 

EDAX result for the assessment of surface chloride of 

polymer-supported phase transfer catalyst based on 

the peak intensity (chloride). Balakrishnan & 
Murugan

12
 suggested a similar type of EDAX results 

for surface-enriched (with active sites) polymer-

supported phase transfer catalysts in which the 
increase in the intensity of chloride peak indicates the 

surface enrichment of active sites. Normally, the 

ability of the formation of coordination complex 
depends on the structure and chemical behaviour of 

ligands and central metal atom. Particularly, the 

formation of transition metal coordination complex 

with different basic ligands has been recognized as an 

effective Lewis acid complex catalyst. In our study, 

Lewis acid reagents viz., TaCl5, MoCl5 and SbCl5 

were not used directly as they are unstable, corrosive 
and moisture sensitive. The ligand (pyridine unit) 

containing unshared electron pair (n) in N atom and 

the transition metal atom containing higher 

coordination number are supposed to be the effective 
factor for the formation of thermo-dynamically stable 

Lewis acid metal complex catalyst. It is also 

understood from the literature that the transition 
metals are excellent Lewis acids and accept the 

electron density from many molecules or ions that act 

as Lewis base
13,14

. Therefore, in our case, the metal 

present in selected Lewis acid metal chlorides i.e., Ta, 
Mo and Sb also have more than six coordination 

number along with different oxidation states.  

Ooi et al.
15

 prepared the [Nb(edta)(H2O)2].2H2O 
complex and suggested that the formation of effective 

complex is due to eight coordination of Niobium 

metal. Similarly, Michael et al.
16

 also prepared the 
[Nb(S2 CNEt2)4]Br and [Ta(S2 CNEt2)3] (S2) 

complexes and they  established has exhibited more 

than eight coordination number for Nb and Ta. 

Likewise, the pyridine ligand also contains unshared 
electron pair (n) and thus it is expected to form an 

effective Lewis acid complex catalyst irrespective of 

metal penta chlorides
7-17

. More particularly, the 
pyridine has been extensively studied because of the 

capacity to show hydrophilic properties, chemical 

reactivity and the ability to form complex
18

. 
 

All the observed spectral results viz., UV, FTIR, 

and EDAX confirmed the formation of Lewis acid 
complex irrespective of the metal chlorides. That is, 

the characteristic absorption band such as Py-M 

noticed in the UV, the appearance of N-M stretching in 

FTIR and the peaks for metal and halides (Cl) with 
 

 
 

Fig. 2 — EDAX analysis of (A) Py-TaCl5; (B) Py-MoCl5; and (C) Py-SbCl5 
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different electron volt noticed in EDAX analysis 

strongly confirmed the formation of coordination bond 

between the unshared electrons in N-atom of pyridine 
with the respective metal chlorides. Further, from the 

earlier literatures, it was understood that the possible 

chemical bond during the formation of Lewis acid 

complex has reported to be (i) π → Metal complexes,  
ii) n → Metal complexes and iii) polymer-bonded 

complex. In our case, the unshared electron present in 

the nitrogen atom of pyridine is more active than the π 
bond present inside the pyridine ring. Hence, the 

formation of complex between pyridine and metal 

chlorides must be coordinated by n → metal complex 

type irrespective of the metal chlorides. That is, all the 
selected metal pentachloride has five coordination 

number, further, on addition of pyridine ligand 

irrespective of metal halide the 6
th
 coordination has 

formed via n → metal complex. But still, since all the 

metal pentachlorides have more than six coordination 

number, we strongly expected the Lewis acidity in each 
Py-M Lewis acid complex catalyst. The Lewis 

acidity/catalytic activities of these complex catalyst have 

been examined by estimating the pseudo-first order rate 

constant of esterification of acetic acid with butanol. 
 

Synthesis and characterization of heterogenous (insoluble) Lewis 

acid metal complex catalysts using 4-vinylpyridine functionalized 

bead-shaped poly (styrene) matrices as support material 

The preparation of transition metal immobilized 
heterogeneous Lewis acid complex catalysts using  

4-vinlypyridine functionlized bead-shaped poly 
(styrene) as a support material (PSCPVP) have not 

been largely explored so far. Further, the TaCl5, 

MoCl5 and SbCl5 Lewis acid or the homogenous form 

of pyridine based Lewis acid complex catalysts such 
as Py-TaCl5, Py-MoCl5 and Py-SbCl5 have not been 

able to attract attention widely due to two reasons. 

Firstly, the uncomplexed and complexed metal 
chloride Lewis acid catalysts (soluble) are not 

environmentally benign; and secondly, these catalysts 

have not been reused again and as a result, it is 
considered as expensive, and thus have not been used 

in large scale industrial reaction. In contrast, if the 

same metal pentachlorides Lewis acid is complexed 

with poly(4-vinylpyridine) functionalized bead 
shaped polymer-supported matrices, then their 

applications have been potentially enhanced in the 

preparative procedures. More specifically, we have 
prepared similar type of three different heterogeneous 

Lewis acid complex catalysts in the form of 

microporous beads (mesh 80+100 µm) which can be 

easily packed into column reactor for continuous 

mode of reactions. 

The three types of heterogeneous Lewis acid complex 
catalysts were prepared using the following two steps. In 

the first step, the polymer beads were prepared by 

adopting the suspension polymerization technique using 

a modified procedure as described in the experimental 
section. The resulting poly(styrene) terpolymer beads 

functionalized with poly(4-vinylpyridine) beads were 

sieved into different mesh sizes. The representative 

beads having mesh size viz., 80+100 were analyzed 

through elemental analysis, FTIR, SEM, EDAX and 
TGA analysis. All these observed results have been 

treated as control and thus been compared with each 

heterogeneous Lewis acid metal complex catalysts. 
In the second step, the representative mesh size 

polymer beads (3 g) were swelled in chloroform and 

then 10 mmol of Tantalum pentachloride was added and 
thus obtained TaCl5 immobilized bead-shaped hetero-

geneous Lewis acid complex catalyst viz., PSCPVP-

TaCl5. Similarly, the other two heterogeneous Lewis 

acid complex catalysts such as PSCPVP-MoCl5 and 
PSCPVP-SbCl5 were also prepared. The formation of 

each metal complex catalyst was confirmed by different 

instrumental techniques which include elemental 
analysis, FTIR, SEM, EDAX, TGA and DTA and then 

compared the same with control experimental results. 
 

Elemental analysis  
The formation of coordination complex between  

4-vinylpyridine substituted PSCPVP beads (matrix) 

with the respective metal chlorides (Lewis acid) has 
also been established through elemental analysis. The 

analysis in terms of % of elements was performed by 

taking identical weight of plain PSCPVP beads 
(control) as well as each heterogeneous Lewis acid 

complex catalyst. The observed elemental analysis 

results are given in Table 1. The plain terpolymer 

beads (single unit) i.e., PSCPVP (molecular formula 

 

Table 1 — Comparative relative percentage of C, H and N elements present 

in each insoluble polymer-supported Lewis acid complex catalysts 

Catalyst 

Polymer beads Metal chlorides 

MCl5 N (%) C (%) H (%) 

Cal Exp Cal Exp Cal Exp Cal Exp 

PSCPVP 

Beads 

(control) 

4.10 3.58 87.93 87.75 7.97 8.09 0.00 0.00 

PSCPVP- 

TaCl5 
2.00 1.56 42.91 40.00 3.89 4.79 51.19 53.65 

PSCPVP- 

MoCl5 
2.28 2.02 48.85 52.58 4.43 4.99 44.45 40.41 

PSCPVP- 

SbCl5 
2.19 1.70 46.88 46.84 4.25 4.50 46.69 46.96 
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C25N1H27 gives the molecular weight as 341 and thus 

treated as a control and accordingly theoretical 

contribution of C, H and N has been calculated in 
terms of %. On analysis, the plain PSCPVP beads 

gives 87.93% of Carbon, 8.09% of Hydrogen and 

4.10% of Nitrogen and the total of all these elements 

gives 100%. The values of C, H and N observed are 
found to agree well with the theoretical values of C, H 

and N. Hence, we have used these C, H and N values 

as a base value (control). The immobilization of 
Lewis acid or soluble metal pentachloride onto the 

polymeric PSCPVP beads has directly influenced the 

% of C, H and N in basic values. That is, it is very 

clear that each metal chloride immobilized 
heterogeneous Lewis acid catalyst contains C, H, N, 

Cl and the respective metal atoms. We have 

determined the individual percentage of C, H and N in 
each complex catalyst and summed the total 

percentage, then 100 – total percentage of C, H & N 

must be the contribution of metal pentachlorides 
irrespective of heterogeneous Lewis acid catalyst. The 

percentage of metal chloride calculated by this 

method has also been compared with their 

corresponding theoretical values and observed that 
theoretical value and experimental values have been 

found to agree well irrespective of metal catalyst. To 

mention precisely, the comparative study for % of C, 

H and N between plain PSCPVP matrix and 

respective metal chlorides immobilized PSCPVP-
MCl5 Lewis acid catalyst has indicated that there has 

been a sharp reduction in the percentage of C, H and 

N atoms in each heterogeneous Lewis acid complex 

catalyst. The sharp reduction of C, H and N noticed in 
the each complex catalyst has strongly confirmed that 

in each PSCPVP-MCl5 catalyst, the respective metal 

pentachloride has been immobilized and formed a 
coordination complex of metal Lewis acid catalyst. 

Based on the observed experimental values of metal 

chloride in terms of %, we have estimated the moles 

of metal chlorides immobilized in each polymer 
complex and studied for comparative catalysis for the 

esterification reactions. 
 

Fourier transform Infra-red (FTIR) studies 

The formation of coordination bond between 

functionalized 4-vinlyl pyridine and the respective 

metal chlorides in all the three Lewis acid complex 
catalysts were established by comparing their 

respective FTIR (Fig. 3 B-D) and those of the plain 

PSCPVP beads (Fig. 3A) and individual metal 

chlorides. On comparison, it is understood from the 
spectrum that the plain beads give C=N stretching at 

1597 cm
-1

 which corresponds to 4-vinylpyridine ring 
 

 
 

Fig. 3 — FTIR spectra of (A) PSCPVP Beads, (B) PSCPVP-TaCl5, (C) PSCPVP-MoCl5 and (D) PSCPVP-SbCl5 
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and thus confirmed its functionalization in the 

PSCPVP matrices. The FTIR spectra of three metal 

complexes, show new peaks at 1634 cm
-1

 for 
PSCPVP-TaCl5, 1636 cm

-1
 for PSCPVP-MoCl5 and 

1635 cm
-1
 for PSCPVP-SbCl5 (Fig. 3D). These 

observed new characteristic peaks have not been 

noticed in the control spectrum of PSCPVP matrix or 
respective metal chlorides. Thus, the appearance of 

new peaks in each insoluble complex catalyst has 

confirmed the formation of coordination 
bond/complex irrespective of complex catalysts. A 

similar FTIR observation was reported by 

Balakrishnan & Murugan
12

 for preparation of 

PSCPVP-SnCl4 catalyst by observing the peak at 
1625 and 1630 cm

-1 
for PSCPVP-ZrCl4 and PSCPVP-

TiCl4 catalyst, respectively. 

Saltykov et al.
19

 prepared the PVP-PdCl2 and 
established the formation of co-ordination between 

poly(vinylpyridine) and PdCl2 through appearance of 

C=N stretching for pyridine at 1600 cm
-1
 and 

subsequent shift to 1642 cm
-1

 for Py-PdCl2 complex 

catalyst and it is due to the deformation of  bonds of 
pyridine during complex formation. The formation of 

coordination complex viz., PVP-Cu was also 

established by Zofia et al.
23

 through the appearance of 
C=N stretching at 1600 cm

-1 
and the subsequent shift 

of vibration mode to 1618 cm
-1

. That is, the 

coordination between the unshared electron present in 

the pyridinic nitrogen atom and the copper metallic 
centre has lead to form a complex and thus shows the 

new peak at 1618 cm
-1

. 
 

Scanning Electron Microscopy (SEM) analysis 

The immobilization of Lewis acid moiety viz., 

TaCl5, MoCl5 and SbCl5 onto cross-linked 4-vinyl-
pyridine functionalized poly(styrene) bead matrices 

has also been studied through change of surface 

morphology. That is, the surface morphology of the 

plain beads viz., PSCPVP (Fig. 4A) was compared 
with surface morphology of the PSCPVP-TaCl5, 

PSCPVP-MoCl5 and PSCPVP-SbCl5 complex 

catalysts (Fig. 4 B-D), respectively. On careful 

comparison with all SEM images, it is observed that 

the surface morphology of the plain bead was found 
to be relatively smooth and homogeneous in nature, 

whereas, the complexed Lewis acid catalysts has 

shown drastic changes on the surface morphology 

irrespective of the catalysts. That is, the surface 
morphology of the overall bead view irrespective of 

complex catalyst has shown to be heterogeneous, 

rough and porous in nature. To ensure these 
observations, we also viewed the single-bead with 

high resolution irrespective of catalysts and the same 

has been compared with the single-bead view of plain 

PSCPVP beads (control). The magnified view of 
complexed Lewis acid catalyst strongly confirms the 

changes in the surface morphology when compared 

with magnified view of plain beads (control). 
Therefore, the relative change of surface morphology 

from homogeneous into heterogeneous, rough nodules 

and porous generation have strongly confirmed the 
immobilization of respective metal pentachloride 

through free electron of pyridine nitrogen 

functionalized in the cross-linked insoluble 

poly(styrene) matrices. Ruckenstein & Hong
11

 had 
also reported similar type of surface morphology 

studies for the polymer-supported catalysts. 

Balakrishnan & Rajendran
21

 observed same kind of 
heterogeneous, nodule formation on the surface of the 

PSPTC beads. The presence of a number of active 

sites was also determined from the appearance of tiny 
nodules on the surface of various insoluble multi-site 

PS-MPTCs reported by Murugan et al.
12

. 
 

EDAX Analysis 

EDAX is one of the prompt techniques to 

determine the availability of elements/metals in the 

complex/catalyst and alloys. The formation of 
coordination complex between the metal 

pentachlorides with 4-vinyl pyridine substituted 

PSCPVP beads has also been confirmed through 

EDAX analysis. That is, the EDAX spectrum of 

 

 
 

Fig. 4 — SEM images of (A) PSCPVP Beads, (B) PSCPVP-TaCl5, (C) PSCPVP-MoCl5 and (D) PSCPVP-SbCl5 
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PSCPVP beads (control) was compared with that of 

PSCPVP-TaCl5, PSCPVP-MoCl5 and PSCPVP-SbCl5 

complex catalysts (Fig. 5 A-C) in which it has been 
noticed that in the control spectrum i.e. PSCPVP there 

was no characteristic Cl and (or) any of the metal peak. 

Whereas, it was observed that the Cl peaks appeared in 

all the spectra irrespective of catalyst as well as peak for 
Ta, Mo and Sb were also found individually in the 

corresponding heterogeneous Lewis acid catalyst. These 

observations strongly indicate the immobilization or 
formation of coordination complex between respective 

metal pentachlorides and 4-vinylpyrdine substituted 

cross-linked poly (styrene) matrices. 
 

Thermogravimetric analyses (TGA)  

In TGA analysis, all the three heterogeneous Lewis 

acid catalysts and PSCPVP beads (control) was 

heated at controlled rate and then the percentage (%) 
of weight loss as well as thermal stability was 

recorded as a function of temperature. From the TGA 

curves, the thermal stability of the raw beads (control) 
as well as three different Lewis acid complex 

catalysts has been ascertained based on the obtained 

horizontal portion of the TGA. Similarly, the % of 

weight loss was also determined in all the catalysts 
along with control beads (PSCPVP).  

 

From the TGA results for PSCPVP beads (control), 
it is understood that the beads undergo decomposition 

at three different stages (Fig. 6A). The first 

decomposition was observed between 180-310C with 
2.3% of weight loss, the second stage was found 

between 320-480°C with 88% of weight loss. Finally 

in the third stage, 3% weight loss at 1000-1180C was 

observed. This observation reveals that the cross 
linked 4-vinylpyridine substituted poly (styrene) 

beads i.e., PSCPVP was decomposed mainly at 320-

480°C with weight loss of 88% which was also found 

to agree well with the earlier reports
21

. The 

thermogram of PSCPVP-TaCl5 (Fig. 6B) shows that 

the catalyst has decomposed at five different stages. 

In the first stage, i.e. between 100 and 180C, the 

weight loss occurs at a rate of 13% and the second 

stage decomposition was noticed between 180-300C 
with 5.8% of weight loss; these two different 

decompositions must be the contribution of moisture 

and metal chlorides. The large weight loss of (42%) 

noticed between 290-520C may be due to the 
decomposition of polymer matrix. Then, 4.2% and 
3.5% weight losses were noticed in the temperature 

ranges between 520-1100 and 1100-1350C, 
respectively and might be the contribution of some 

charred carbon and oxide impurities. The thermal 

stability of the catalyst in initial stage decomposition 

was found to decrease with difference of 80C as 

compared with control beads and thus indicate the 
immobilization of TaCl5 on the polymer matrix. 

 

Similarly, the decomposition pattern of PSCPVP-
MoCl5 (Fig. 6C) reveals that the initial decomposition 

occurs between 80-180C with weight loss of 10% 
which way be attributed to the decomposition of 

moisture and metal chloride (MoCl5). Further, the 

weight loss of 45 % noticed between 200 to 520C are 
pertinent to the decomposition of polymer matrix, 5.3 
and 5.6% weight losses noticed in the temperature 

ranges between 520-1010°C and 1010-1350°C 

respectively maybe due to impurities in the form of 
charred carbon and oxides. In the case of thermal 

decomposition study for PSCPVP-SbCl5 (Fig. 6D) 

catalyst, it reveals that it undergoes 4 stage 

decomposition and this pattern and % of weight loss 
was found to be totally different from other three 

complex catalysts. That is, in the first step the 

decomposition was noticed between 90-190C with 
 

 
 

Fig. 5 — EDAX spectra of (A) PSCPVP-TaCl5, (B) PSCPVP-MoCl5 and (C) PSCPVP-SbCl5 
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weight loss of 4.3% followed by weight loss of 8.5% in 

the range 190 to 250C. As we mentioned earlier, 
these two different stages of decomposition has been 

attributed to moisture and chloride. Whereas, the 

weight loss of 36% noticed between 250-340C and 
weight of 29% noticed between 340-480°C are found 

to be an unusual pattern, which have not been noticed 
in any of the previous Lewis acid complex catalyst. In 

fact, as per the control study, 4-vinyl pyridine 

substituted poly (styrene) matrix (PSCPVP) should 

decompose between 320-480°C with higher % of 
weight loss. However, to our surprise, the two stage 

decomposition obtained between 250-480°C with 

weight loss of 36 and 29% is found to be little 
ambiguous to infer and unpredictable. In spite of that, 

to the best of our knowledge, it is suggested that it 

must be the decomposition of PSCPVP-SbCl5 

immobilized polymer matrix or decomposition of 

pure Sb and polymer matrix, respectively. 

Mahale et al.
22

 reported thermal studies of seven 

coordinated Niobium(V) complexes with 
thiocarbohydraxones. They have explained that the 

decomposition noticed in the range 60-230°C with a 

loss of 20.93% was due to the loss of chloride and 

sulphur, the decomposition continued upto 580°C with 
weight loss corresponding to the loss of ligand. There 

was no further weight loss beyond 580°C which 

indicates the formation of Nb2O5. Similarly,  
Spinelli et al.

7
 also reported the same type of results in 

TGA for polymeric cupric complex and compared the 

same with pure poly (4VP). They have also observed 

that the thermogram of pure poly (4VP) shows the first 

weight loss between 80 to 100C and this is due to the 
presence of water. A second and total weight loss occurs 

at 400 to 470C and this was ascertained as 4-vinly 
pyridine substituted polymer film. The cupric based 

SCN immobilized 4-vinyl-pyridine complex has sharply 

reduced the decomposition temperature from 400°C to 
200°C. From this inference, the authors have suggested 

that the metal complex immobilized polymeric material 

was always thermally less stable than the original 
poly(4-vinylpyridine) polymer. Similarly, Michalska & 

Strzelec
23

 had synthesized polymer-supported rhodium 

catalysts using polyamide supports substituted with 

pyridine moiety, in which they also proved that the plain 
polyamide support material was found to be thermally 

more stable than the Rh immobilized polymer-

supported catalyst. 

 

 
 

Fig. 6 — TGA thermographs of (A) PSCPVP Beads, (B) PSCPVP-TaCl5, (C) PSCPVP-MoCl5 and (D) PSCPVP-SbCl5 
 



MURUGAN et al.: POLYMER CROSS LINKED POLY-4-VINYL PYRIDINE METAL(V) CHLORIDE CATALYSTS  
 
 

1337 

Comparative study for efficiency of various soluble Lewis acid 

metal complex catalysts for esterification  

Although the results of spectroscopy, microscopy and 
TGA analyses for homogenous and heterogeneous 

Lewis acid complex catalysts have concretely proved the 

formation of complex between pyridine with metal 
chloride in the case of homogenous catalyst and between 

4-vinylpyridine substituted poly (styrene) matrix 

(PSCPVP) with different metal chlorides in the case a of 

heterogeneous catalyst, but when they are used to 
conduct the reactions, sometimes they behaved 

differently in reaction medium. Hence, the catalytic 

efficiency of six different types of catalysts including 
three different soluble catalysts viz., Py-TaCl5, Py-

MoCl5 and Py-SbCl5 and 3 different insoluble catalysts 

viz., PSCPVP-TaCl5, PSCPVP-MoCl5 and PSCPVP-
SbCl5 were examined by conducting the comparative 

study using esterification of acetic acid with butanol. 

Esterification reaction was studied under pseudo-first 

order conditions using 0.25 mmol soluble catalyst and 
0.5 mmol of insoluble catalyst. The performances of 

these catalysts i.e., among the homogenous catalysts as 

well as among the heterogeneous catalysts, were 
assessed based on their pseudo-first order rate 

constants. The obtained rate constants are presented in 

Tables 2 & 3, respectively. 
 

From the comparative catalytic activity in esterification 
reaction (Table 2), the relative order among the 

homogenous Lewis acid catalysts is observed as  

Py-TaCl5> Py-MoCl5> Py-SbCl5. From the kobs values, it 
is proved that all the three homogeneous catalysts are 

capable of accelerating esterification reaction. Further, 

the order of reactivity among the catalyst usually 

depends on the (i) order of Lewis acidity of the catalyst, 
(ii) nature of the reaction or reactant and (iii) Medium. 

Whereas, the difference in catalyst activity found in 

esterification may be attributed mainly to the 
electrophilicity of catalyst-reactant complex formed and 

the degree of Lewis acidity. In other words, it also 

depends on the degree of electrostatic interaction 

between unshared electrons of pyridine with metal 
chloride, the geometry of the metal complex catalyst, 

stability of the complex and the coordination strength 

between metal chloride and pyridine ligands. 
Furthermore, the nature of the reactant had also 

contributed in the reaction yield, particularly in terms of 

size and possible orientation of substrate attraction 
towards the Lewis acidity of the complex catalyst. In the 

case of medium, the polarity of the solvent is usually the 

influential factor in any chemical reaction.  

The lower activity observed in the present study of 
Py-MoCl5 and Py-SbCl5 complex catalysts in 

esterification reaction may be mainly due to the lower 

stability of the complex. Particularly, the least 
catalytic activity noticed in the Py-SbCl5 complex is 

attributed to the following reasons. That is, SbCl5 is 

usually very volatile and corrosive; more importantly, 

antimony can be easily reduced from Sb
V
 to Sb

III
 even 

in room temperature. Further, we also believe that 

since SbCl5 is highly volatile in nature, while adding 

the SbCl5 for Py-SbCl5 preparation, partial amount of 
SbCl5 might have escaped and thus only lower 

concentration of SbCl5 involved as a complex with 

pyridine ligand and hence decrease in the Lewis 
acidity. Therefore, the high volatile nature of SbCl5, 

free reduction of Sb
V
 to Sb

III
 and thereby reduced the 

complex stability are observed to be the main reasons 

for the lower Lewis acidity which in turn reflected in 
the least catalytic activity in esterification reaction 

compared with other soluble catalysts. In fact,  

Salome et al.
24

 compared the activity of various Lewis 
acids in the liquid phase fluorination of trichloro 

methoxy-benzene by HF in which they proved that 

only the Lewis acids with an oxidation state of +V 
like MoCl5, TaCl5 and SbCl5 allows the least Cl/F 

exchange and especially MoCl5 are still reduced the 

Cl/F exchange among all.  

Similarly, in the case of Py-MoCl5 complex, the 
MoCl5 is so hygroscopic and hence it reacts instantly 

with atmospheric moisture even at room temperature 

and forms MoCl3 and that leads to the reduced 
stability of the complex. To believe this fact, it is also 

learnt from the literature that there is a possibility of 

 

Table 2 — Comparative catalytic efficiency of 3 different types of 
soluble Lewis acid metal complex catalysts for esterification of 

acetic acid with butanol 
S. No. Name of the catalyst kobs×103 (min-1) 

1 Py- TaCl5 7.26 
2 Py- MoCl5 5.48 
3 Py- SbCl5 1.47 

[Butanol: 10.93 mmol (1 mL); Stirring speed: 400 rpm; Acetic acid: 

524.6 mmol (30 mL); Temp.: 30ºC0.1; Insoluble Catalyst: 0.5 mmol] 
 

Table 3 — Comparative catalytic efficiency of 3 different types of 
Insoluble Lewis acid metal complex catalysts for esterification of 

acetic acid with butanol 
S. No. Catalyst kobs×103 (min-1) 

1 PSCPVP- TaCl5 5.18 
2 PSCPVP- MoCl5 2.24 
3 PSCPVP- SbCl5 0.87 

[Butanol: 10.93 mmol (1 mL); Stirring speed: 400 rpm; Acetic acid: 

524.6 mmol (30 mL); Temp.: 30ºC0.1; Insoluble Catalyst: 0.5 mmol] 
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decomposition of MoCl5 and leads to liberate the Cl2 

gas and hence reduced the stability of the complex. In 

contrast, similar decomposition or lower stability of 
the complex is not found in the case of TaCl5. In other 

words, the thermodynamic stability of the Py-MoCl5 

and Py-SbCl5 complex was proved to be less and 

hence when these two catalysts were employed in the 
esterification. After sometime, the Lewis acidity of 

the complex may be reduced gradually and thus 

reflected in the lower activity, whereas, the Py-TaCl5 
was found to be relatively more stable than the Py-

MoCl5 and Py-SbCl5 complex catalysts. 
 

However, among all the three complexed catalysts, 

Py-TaCl5 complexes are more stable than others as 

TaCl5 is more resistant to reduction, Ekstrom et al.
25

 

proved that Ta was more stable than Nb in the 
stabilization of complex with open structures. 

Grasselli et al.
26

 also studied the catalytic behavior of 

Ta and Nb based catalysts in the ammoxidation of 
propane and found that Ta based catalyst is more 

stable than Nb.  
 

Therefore, although the order of activity among the 

homogeneous Lewis acid complex catalysts depends 
on various factors including the geometry of the 

complex, coordination number of the metal, medium, 

temperature, structure of the reactant and possible 
attraction/orientation of substrate towards Lewis 

acidity of the complex. But, we have mainly 

highlighted our explanation that the order of reactivity 

of complex catalyst depends on stability of the 
complex. Secondly, the, higher activity observed in 

Py-TaCl5 than with Py-MoCl5 and Py-SbCl5 are also 

due to their higher degree of oxophilic attraction. That 
is, tantalum is highly oxophilic in nature and hence 

apart from the Lewis acidity of the catalyst, this metal 

complex can freely attract the oxygen molecule 
present in the substrate i.e., -CH2OH of butyl alcohol 

and -COOH group of acetic acid due to exophilic 

attraction and hence these two substrates would reach 

the acidic site of the metal complex very effectively 
or they come closer, and hence the reaction would 

proceed fastly and gives higher rate constant. Similar 

type of study has already been reported by  
Kee et al.

18
. Similarly, it was concluded that the 

reason for higher yield is the higher covalent 

coordination power of observation has already been 
reported in which MoCl5 based catalysts are effective 

for polymerization of acetylene derivatives, especially 

those containing oxygen molecule, such as propiolic 

acid, dipropargyl ether and dipropargyl carbinols. 

Guo et al.
27

 also reported the comparative catalytic 

activity of group V and VI metal chlorides (MoCl5, 

WCl6, NbCl5, TaCl5) with conventional Lewis acid 
catalysts such as ZnCl2, AlCl3, SnCl4 and TiCl4 for C-

O bond cleavage of dibutyl ether with benzoyl 

chloride and found that the group V and 1V metal 

chlorides showed better results than the conventional 
ones. They also demonstrated that among the group V 

and VI metal chlorides, MoCl5 was found to be an 

efficient catalyst on comparison with TaCl5, NbCl5 
and WCl6, because the C-O groups can interact with 

transition metal centre (Mo) through their π-electrons 

very effectively. Similarly, in the present study also, 

the Py-MoCl5 complex catalyst can easily react with 
acetic anhydride and alcohol than with Py-TaCl5 and 

Py-NbCl5 catalyst. Because, as mentioned in the 

literature, the high covalent coordination power of 
molybdenum pentachloride complex and its quick 

formation of transition complex with acetic anhydride 

and alcohol due to intensive oxophilic character that 
would facilitate the reaction more effectively than 

with the TaCl5 coordinated catalysts.  

Therefore, in a nutshell, in the earlier studies, 

although the catalytic activity of Lewis acid complex 
was explained mainly with geometry of the complex, 

and corresponding Lewis acidity but in our study, we 

have offered our explanation based on the thermal 
stability of the complex and oxophilic character of the 

substrates with respect to metal chlorides. Hence, as 

far as soluble Lewis acid catalyst is concerned, Py-
TaCl5 is found to be more stable than any other 

complex catalyst that is reflected in the increased 

order of rate constant in esterification.  
 

Is PSCPVP-MCl5 stable and reusable? 

The very purpose of immobilizing the less stable 

Lewis acids viz., transition metal based pentachlorides, 
such as TaCl5 & MoCl5 and non-transition metal 

pentachloride viz., SbCl5 onto the bead-shaped cross-

linked PSCPVP matrix via coordination complex was 

aimed at various objectives. That is, the first and 
foremost objective is to develop the convenient and 

stable Lewis acid complex (or) to enhance the 

reusability/increase the recycle number, higher 
selectivity, easier handling, simple work-up 

procedures, non-toxicity, non-corrosiveness and 

mildness of the reaction condition. Above all, the 
developed bead-shaped heterogeneous Lewis acid 

catalysts can easily be packed in column reactor and 

thus leads to conduct the esterification reactions in 

continuous mode operation and hence pave a way for 
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larger/industrial scale production of esters. Most 

importantly, easy recovery and reusability with 

consistent activity have been the utmost objective of 
this study. The reusability of catalyst used to depend 

on stability of the complex.  

Although, all the bead-shaped insoluble 

heterogeneous Lewis acid complex catalysts have 
proved to accelerate the esterification reaction 

effectively in the first cycle, but in order to determine 

the stability of complex, it is a must and logical to 
examine the reactivity in the second and subsequent 

cycles also. Because, sometimes the added Lewis acid 

metal chloride MCl5 may physically entrapped  

onto the PSCPVP matrix without forming the  
co-ordination complex with unshared electrons of  

4-vinylpyridine substituted in PSCPVP and this in 

turn would easily leach out the metal chlorides (MCl5) 
in the first cycle itself and thus have the possibility for 

reduction in catalyst activity.  

Therefore, in order to exclude the possibility of 
leachability or physisorption or physical entrapment 

of MCl5 onto the PSCPVP matrix, we decided to 

reuse the catalyst for another two cycles (excluding 

the first cycle) irrespective of metal chlorides for 
esterification of acetic acid with butanol reaction by 

adopting the identical experimental conditions as it 

was followed in the respective first cycle catalyst 
condition. The observed pseudo-first order rate 

constants are given in Table 4. From the obtained kobs, 

it is suggested that the efficiency of PSCPVP-MoCl5 
and PSCPVP-SbCl5 are found to decline sharply even 

in second cycle, thus proving the poor stability of 

complex or leachability of the metal pentachlorides. 

Particularly, the SbCl5 immobilized complex is found 
to be not active even in third cycle.  

This observation certainly confirmed that SbCl5 

undergoes reduction and gives lower state (Sb
V
 to 

Sb
III

) complex. In the case of MoCl5 it was also found 

to be lower stability because of facile possibility of 

decomposability by the liberation of chloride gas 

(Cl2). Hence, these two catalysts are unsuitable to 
reuse again. In contrast, the PSCPVP-TaCl5 Lewis 

acid complex catalyst was found to maintain their 

catalytic activity even up to third cycle with 
negligible reduction as compared with the first cycle 

activity. Therefore, the possibility of physisorption or 

physical entrapment of MCl5 or leachability of MCl5 
from PSCPVP matrix has been completely ruled out, 

because, if MCl5 is physisorbed or entrapped onto the 

matrix, then they may easily leach out from the matrix 

during the stirring of reaction even at the first cycle 

itself. Whereas, the consistency in activity at the 

second and third cycle has unambiguously proved that 
TaCl5 have formed a stable coordination bond with 

lone-pair of electrons in pyridine N atom substituted 

in the PSCPVP matrix and thus confirmed the 

stability of the respective Lewis acid complex. 

 

Conclusions 

In summary, we have developed three different 
types of soluble and three different types of 

convenient bead-shaped micro porous PSCPVP-MCl5 

(M= Ta, Mo & Sb) Lewis acid complex catalysts 
which in turn actively accelerate both the 

esterification reactions. All the six catalysts were 

characterized by FTIR, SEM, EDAX, CHN and TGA 

analyses. The comparative catalytic efficiency of the 
soluble and insoluble catalysts was assessed based on 

ascertaining the pseudo-first order rate constants. That 

is, the comparative study was carried out, by 
determining the rate constants among the soluble 

catalysts viz., Py-TaCl5, Py-MoCl5 and Py-SbCl5 as 

well as among the insoluble catalysts such as 

PSCPVP-TaCl5, PSCPVP-MoCl5 and PSCPVP-SbCl5 
for esterification reaction of acetic acid with  

n-butanol. The order of reactivity among the three 

soluble catalysts in esterification is as follows,  
Py-TaCl5 > Py-MoCl5 > Py-SbCl5.. The reasons for 

obtaining this kind of order has been mainly 

explained based on stability of the complex and 
oxophilic attraction. Similarly, among the three 

different insoluble catalysts, the order of reactivity in 

esterification is as follows, PSCPVP-TaCl5 > 

PSCPVP-MoCl5 > PSCPVP-SbCl5 and the reasons for 
obtaining a lower/higher catalytic activity are 

explained based on the polymeric support and 

stability of the complex. The catalytic activity of 
soluble Py-TaCl5, Py-MoCl5, Py-SbCl5 catalyst was 

found to be 1.40, 2.44 and 1.68 fold times more active 

than PSCPVP-TaCl5, PSCPVP-MoCl5 and PSCPVP-

 

Table 4 — Comparative recycling efficiency of insoluble 
PSCPVP-MCl5 catalysts for esterification of acetic acid with butanol 

No. of cycles 
kobsx103 (min-1) 

PSCPVP-TaCl5 
PSCPVP-

MoCl5 
PSCPVP-SbCl5 

1 5.18 2.24 0.87 
2 4.80 0.87 0.26 
3 4.60 0.23 - 

[Butanol: 10.93 mmol (1 mL); Stirring speed: 400 rpm; Acetic acid: 

524.6 mmol (30 mL); Temp.: 30ºC0.1; Insoluble Catalyst: 0.5 mmol] 
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SbCl5, respectively for esterification reaction. In case 

of declining in activity of insoluble catalysts after 

some cycles, they can be easily regenerated by simple 
treatment with respective metal chlorides i.e. by 

simple stirring of MCl5 with swelled PSCPVP bead 

matrix and thus certainly possible to get the original 

activity. These beads can be employed to be packed in 
the column reactor for continuous mode operation or 

industrial scale operation. 
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