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The heat transfer in the unsteady CuO nanofluid flow between two moving parallel disks has been investigated using 
analytical method called Galerkin Optimal Homotopy Asymptotic Method (GOHAM). The effect of Brownian motion on 
heat transfer enhancement has been shown. The analytical investigation is carried out for various governing parameters such 
as the squeeze parameter, Hartman number, Brownian motion and thermophoretic parameters. The results show that 
concentration is an increasing function of Brownian motion parameter while it is a decreasing function of the 
thermophoretic parameter.The comparison of obtained results with numerical solutions assures us about the validity and 
accuracy of the current study. 
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Nanofluid, a name conceived by Choi, in Argonne 
National Laboratory to describe a fluid in  
which nanometer-sized particles are suspended. 
Nanoparticles have unique properties, such as large 
surface area to volume ratio, and lower kinematic 
energy which can be exploited in various applications. 
Nanoparticles are better stable when dispersed in base 
fluids, due to their large surface area and they are 
more stable when compared to micro fluids which 
lead to many practical problems. In recent years, 
nanofluids have attracted more and more attention1,2. 

In paper, by Azimi and Azimi3, DTM have 
successfully applied to a non-linear MHD Jeffery 
Hamel problem with Graphene Oxide (GO) 
nanoparticle. The effects of graphene oxide solid 
volume fraction, Reynolds number, Hartman number 
and the angle between parallel plates on velocity 
components were investigated. Their results showed 
that the velocity profile is strongly influenced by solid 
volume fraction of GO nanoparticles. 

The unsteady mixed convection squeezing flow of 
an incompressible graphene oxide water nanofluid 
between two vertical parallel planes is discussed in 

paper by Azimi and Riazi4. The buoyancy force due to 
thermal and molecular diffusion is taken as the source 
of the convective flow. They concluded that when 
Graphene oxide solid volume fraction increases, the 
rate of heat transfer increases. Eckert number has 
significant effect on temperature profile and it can 
increase the rate of heat transfer by increasing  
and their results showed that the temperature field  
T decreases by increasing the mixed convection 
parameter. 

The squeezing flow between two parallel 
boundaries is an interesting topic of research due to its 
abundant applications. Examples of such flows are 
quite prevalent in polymer processing, compression 
and injection modeling. The lubrication system can be 
discussed through the squeezing flow. The initial 
work on the squeezing flow was investigated by 
Stefan5.  

Azimi and Riazi6 used analytical method called 
Reconstruction of Variational Iteration Method 
(RVIM) in order to fine approximate solution for 
nanofluid squeezing flow and heat transfer between 
two moving parallel plates. They concluded that the 
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Nusselt number increases with increase of Eckert 
number and solid volume fraction of graphene oxide 
nanoparticles in water.  

 The effect of different types of nanoparticles 
(graphene oxide, aliminium oxide, titanium oxide, 
silver) on the Nusselt numberin unsteady squeezing 
flow between two moving parallel plates (which is 
filled with nanofluid) problem was investigated by 
Azimi and Mirzaei7. The results showed the 
nanoparticle type is an important factor in the cooling 
and heating processes and silver can cause most heat 
transfer enhancement rate. Velocity profiles for 
various moving number have been also obtained in 
their study. 

In the heart of all the different engineering 
sciences, everything showed itself in the mathematical 
relation that most of these problems and phenomena 
are modeled by ordinary or partial differential 
equations. In most cases, scientific problems are 
inherently of nonlinearity that does not admit exact 
solution, so these equations should be solved using 
special techniques. Some of these methods are 
Homotopy Perturbation Method (HPM)8, Reconstruction 
of Variational Iteration Method (RVIM)9, Glerkin 
Optimal Homotopy Asymptotic Method (GOHAM)10 
and others11,12. 

In this study, the Galerkin Optimal Homotopy 
Asymptotic Method (GOHAM), is applied to find the 
semi-analytical solutions of nonlinear differential 
equations governing the problem of unsteady CuO 
nanofluid flow, heat and mass transfer between two 
moving disks. The effect of Brownian motion on 
nanoparticle concentration was also studied. 
 

Mathematical Formulation 
Figure 1 shows the geometry of the squeezing flow 

of an incompressible viscous MHD nanofluid 
between two circular plates separated by a distance

( ) ( )1 2
1z l t h ta= - = . A uniform magnetic field of 

strength ( ) ( ) 0.5

0 1B t B ta -
= - is applied perpendicular to 

the disks. The upper disk at ( )z h t= approaching the 

stationary lower disk with the velocity dtdh / . The 
flow is axisymmetric about 0r . The velocity 
components along the radial and axial directions are

( ), ,u r z t  , ( ), ,w r z t , respectively. Now specify the 

basic equations for an unsteady axisymmetric  
flow and assume ( ) ( )( ), , ,0, , ,v u r z t w r z té ù= ê úë û

thus, the 

unsteady mass and conservation Equations become:  
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where u  and w  are the velocities in the r  and z  
directions, respectively, pis pressure, Tis temperature, 
C  is the nanoparticle concentration, 

BD  is the Brownian 

motion coefficient, 
TD  is the termophoretic diffusion 

coefficient, mT  is the mean fluid temperature and k  is 

the thermal conductivity. The last term in the energy 
equation is the total diffusion mass flux for 
nanoparticles, given as sum of two diffusion terms.   is 
the dimensionless parameter that gives the ratio of 

 

Fig.1 ― Physical model. 
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effective heat capacity of the nanoparticle material to 
heat capacity of the fluid. Effective density (

nf ),  

the effective dynamic viscosity (
nf ), effective heat 

capacity (
nfC ) and the effective thermal conductivity 

nfk  

of the nanofluid are defined as8: 
 

( )

( ) ( ) ( ) ( )

( )

( )
( )

2.5

1

1

1

2 2

2 2

nf f s s

p p pnf f s

f
nf

s f f sns

f s f f s

f
nf

nf

C C C

k k k kk

k k k k k

v

r r j r j

r r j r

m
m

j

f

f

m

r

= - +

= - +

=
-

+ - -
=

+ + -

=

 

...(6) 

The relevant boundary conditions for the problem are: 
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By introducing following parameters, the above 
Equation can be easily simplified: 
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The above parameters are substituted into 
Equations. (2) and (3). Then the pressure gradient is 
eliminated from the resulting Equations. We finally 
yield: 
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Using equation (8), Equations (3) and (4) simplify 
to following equations: 
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where S is squeeze parameter, Pr is the Prandtl 
number, M is Hartman number, Nb is the Brownian 
motion parameter Nt is thermophoretic parameter and 
Le  is the Lewis number which are defined as: 
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It is important to note that 0A indicates the 
suction of fluid from the lower disk while 0A
represents injection flow. 
 

Solution Procedure 
Following differential Equation is considered: 

 

( )( ) ( )( ) ( ) ( )0, 0L u t N u t g t B u+ + = =
 ...(14) 

 

where L is a linear operator,   is an independent 

variable, ( )u t is an unknown function,  g t is a 

known function, ( ( ) )N u t is a nonlinear operator and 
B is a boundary operator. By means of OHAM, one 
first constructs a set of Equations: 
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where [0,1]p   is an embedding parameter, ( )H p

denotes a nonzero auxiliary function for 0p  and 

(0) 0H  ,   is an unknown function. Obviously, 

when 0p   and 1p  , it holds that: 
 

( ) ( ) ( ) ( )0,0 , ,1u uv t t v t t= =
 ...(16) 

 

Thus, as p increases from 0 to 1, the solution 
( ), pv t varies from 0 ( )u  to the solution ( )u  , where 

0 ( )u  is obtained from Eq. (16) for 0p = : 
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We choose the auxiliary function ( )H p  in the form: 
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... (18) 
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where 1C , 2C , … are constants which can be 

determined later. Expanding ( , )p  in a series with 
respect to p, one has: 
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Substituting Equation.20 into Equation.16, 
collecting the same powers of p, and equating each 
coefficient of p to zero, we obtain set of differential 
equation with boundary conditions. Solving 
differential Equations by boundary conditions 

0 1 1 2 2( ), ( , ), ( , ),...u u C u C   are obtained. Generally 

speaking, the solution of Equation.15 can be 
determined approximately in the form: 
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Note, that the last coefficient mC  can be function of

 . Substituting Equation.20 into Equation.14, there 
results the following residual: 
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If ( , ) 0iR C  then ( ) ( , )m
iu C  happens to be the exact 

solution. Generally, such a case will not arise for 
nonlinear problems, but we can minimize the 
functional by Galerkin method: 
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The unknown constants ( 1,2,..., )iC i m can be 

identified from the conditions: 

( ) ( )1 2 1 2, , , ,..., 0
b
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a
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where a and b are two values, depending on the given 
problem. With these constants, the approximate 
solution (of order m) (Eq. (24)) is well determined.  
It can be observed that the method proposed in this 
work generalizes these two methods using the special 
(more general) auxiliary function ( )H p .  

Results and Discussion 
In this section, we will discuss about the obtained 

results of squeezing CuO-Water nanofluid flow 
between parallel disks problem for various solid 
volume fraction and moving parameter. The physical 
properties of Copper Oxide- Water nanofluid can be 
found in Table.1. 

Figure 2 shows the effect of the squeeze number  
on the temperature profile in the case of 

2,Pr 7, 0.05, 0.15, 0.5, 3t bH Ec N N Sc= = = = = =
.As it can be seen in Fig.2 the non-dimensional 
temperature is direct function of squeezing parameter. 
In the other words, an increase in the squeeze number 
can be related with the decrease in the kinematic 
viscosity, an increase in the distance between the 
plates and an increase in the speed at which the plates 
move. Thermal boundary layer thickness increases as 
the squeeze number increases. 

It is important to note that parameters bN  and tN  

characterize the strengths of Brownian motion and 
thermophoresis effects. 

 

Table1 ― Thermo physical properties of water and  
CuO nanoparticle 

 3( kg / m )  pC ( j / kgk )  k(W / m.k )  

Pure water 997.1 4179 0.613 
Copper Oxide  8933 385 401 

 

 
Fig.2 ― Effect of squeeze parameter on temperature. 
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Figure 3 shows the effect of squeezing parameter 
on non-dimensional concentration profile in the case 
of 4,Pr 7, 0.1, 0.25, 0,5, 3tH Ec N Sq Sc= = = = = = . 

As it can be seen in Fig.3, an increase in bN  

effectively increases the nanoparticles concentration. 
This increase is due to the effective movement of 
nanoparticles from the upper disk to the fluid. 

Figure 4 shows the influence of thermophoretic 
parameter on concentration function in the case of

3,Pr 7, 0.1, 0.15, 0.5, 3bH Ec N Sq Sc= = = = = =
.The non-dimensional concentration function decreases 
by increasing the thermophoretic parameter. From  
the physical point of view, an increase in the 
thermophoretic effect generates the larger mass flux 
due to temperature gradient which decreases the 
concentration. 

Figure 5 shows the effect of Hartman number on 
velocity profile when 1Sq  .  

It is important to note that the influence of external 
magnetic field is to decrease the value of the velocity 
magnitude throughout the enclosure because the 
presence of magnetic field introduces a force called 
the Lorentz force, which acts against the flow, if the 
magnetic field is applied in the normal direction. 
The figure also gives information about the accuracy 
of our solution by presenting a comparison between 
analytical solutions obtained by GOHAM and 
numerical ones achieved by forth order Runge Kutta 

method. As it can be illustrated in Fig.5, analytical 
solutions have good agreement with numerical ones. 
This figure assures us about the accuracy and validity 
of our approximate analytical solution.  
 
Conclusion 

In this study, unsteady MHD nanofluid flow and 
heat transfer between parallel disks are investigated. 

 

Fig.3 ― Effect of Brownian motion parameter on temperature. 
 

Fig.4 ― Effect of thermophoretic parameter on concentration. 
 

 

Fig.5 ― Influence of H on velocity. 
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GOHAM is used to solve the governing equations. 
The effect of the squeeze number on heat and mass 
transfer are investigated. The results show that the 
higher values of heat transfer enhancement are obtained 
when Brownian motion increases. Also, it can be found 
that concentration is an increasing function of Brownian 
motion parameter while it is a decreasing function of the 
thermophoretic parameter. Velocity is decreasing 
function of magnetic effect. The comparison between 
GOHAM and Runge Kutta method assures us about the 
validity and accuracy of our solution.  
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