
Indian Journal of Chemical Technology 
Vol. 25, January 2018, pp. 106-110 
 
 
 

 
 

 

MHD boundary layer flow and heat transfer 
along an infinite porous hot horizontal 

continuous moving plate  

Anuj Kumar Jhankal 
Army Cadet College, Indian Military Academy,  

Dehradun 248 007, India  

E-mail: anujjhankal@yahoo.com 

Received 20 July 2016; accepted 17 August 2017 

Analysis is to study the two-dimensional magnetohydrodynamic 
(MHD) boundary layer flow and heat transfer along an infinite 
porous hot horizontal continuous moving plate. The governing 
partial differential equations are transformed into self-similar 
ordinary differential equations using similarity transformations 
before being solved analytically. Numerical results for the 
dimensionless velocity profiles, the temperature profiles, the skin 
friction coefficient and the Nusselt number are present graphically 
and discuss briefly for various physical parameters, such as 
magnetic parameter M, plate velocity α, Prandtl number Pr, Eckert 
number Ec and heat source/sink parameter S. It has been found that 
these parameters have significantly effects on the flow and  
heat transfer.  
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The problem concerning the flow of an electrically 
conducting fluid past a continuous moving surface in a 
quiescent fluid has copious applications in many 
engineering processes, such as materials manufactured 
by polymer extrusion, artificial fibers, hot rolling, wire 
drawing, glass fiber, metal extrusion and metal 
spinning, cooling of metallic sheets. In addition, they 
also find very useful applications in the design of 
insulation systems employing porous media. In all 
these cases, a study of the flow field and the heat 
transfer can be of significant importance since the 
quality of the final product depends to a large extend 
on the skin friction coefficient and the surface heat 
transfer rate. In view of these applications the classical 
problem was introduced by Blasius1 where he 
considered the boundary layer flow on a fixed flat 
plate. Different from Blasius1, Sakiadis2 initiated the 
study of boundary layer flow over a continuous solid 
surface moving at a constant speed through an 
otherwise quiescent fluid environment. Later, Crane3 
extended this idea for the two-dimensional problem 
where the velocity is proportional to the distance from 

the plate. Subsequently, several investigators Tsou  
et al.4, Vleggaar5, Banks6, Jenget al.7, Vajravelu8,  
Char et al.9, Buhler et al.10, Takhar et al.11, Pop et al.12, 
Andersson13, Lin et al.14, Hassanien15, Seddeek16, 
Muondwal et al.17, Agarwal et al.18 have considered 
various aspects of this problem, such as the effect  
of mass transfer, wall temperature, variable fluid 
properties and magnetic field. 

Motivated by works mentioned above and practical 
applications, the main concern of the present paper is 
to study the two-dimensional magnetohydrodynamic 
(MHD) boundary layer flow and heat transfer along an 
infinite porous hot horizontal continuous moving plate. 
Using similarity transformation, the governing partial 
differential equations are transformed into a set of self-
similar ordinary differential equations, which are then 
solved analytically. The numerical results are plotted 
in some figures and the variations in physical 
characteristics of the flow dynamics and heat transfer 
for several parameters involved in the equations  
are discussed. 
 

Problem formulation 
Let us consider two dimensional laminar steady 

boundary layer flows and heat transfer of a viscous 
incompressible electrically conducting fluid along an 
infinite hot continuous moving flat plate in the 
presence of constant section at the surface, constant 
free stream, Uஶand heat generation (or adsorption). It 
is assumed that external fluid owing polarization of 
charges and Hall-effect are neglected. The plate is 
moving in flow direction with constant velocity U୵ 
and maintain at constant temperature, where x-axis is 
along the flow and y-axis is perpendicular to it, the 
applied magnetic field B଴ is transversely to x-axis. The 
magnetic Reynolds number of the flow is taken to be 
small enough so that the induced magnetic field can be 
neglected. Under the usual boundary layer 
approximations, the governing equation of continuity, 
momentum and energy (Pai19, Schlichting20, Bansal21) 
under the influence of externally imposed transverse 
magnetic field (Jeffery22, Bansal23) are: 

 

ப୴∗

ப୷∗ = 0 ⇒ v∗ = −v଴ (constant), v଴ > 0 … (1) 
 

ρ ቀ−v଴
ப୳∗

ப୷∗ቁ = μ
பమ୳∗

ப୷∗మ − σୣB଴
ଶu∗ … (2) 
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ρC୮ ቀ−v଴
ப୘∗

ப୷∗ቁ = κ
பమ୘∗

ப୷∗మ + μ ቀ
ப୳∗

ப୷∗ቁ
ଶ

+ Q(T∗ − Tஶ)  

  … (3)  
 

Along with the appropriate boundary conditions for the 
problem are given by: 
y = 0: u∗ = U୵, v∗ = −v଴ , T∗ = T୵ 
y → ∞: u∗ → Uஶ, T∗ → Tஶ … (4) 
 

Analysis 
The momentum and energy equations can be 

transformed into the corresponding ordinary 
differential equation by using the following non-
dimensional parameters: 
 

y = y∗ ୴బ

஝
, u =

୳∗

୙ಮ
, θ =

୘∗ି୘ಮ

୘౭ି୘ಮ
, α =

୙౭

୙ಮ
, Pr =

ஜେ౦

ச
,  

S =
୕୴మ

ச୴బ
మ, Ec =

୙ಮ
మ

େ౦(୘ି୘ಮ)
 … (5) 

 

The transformed ordinary differential equations are: 
 

uᇱᇱ + uᇱ = Mu … (6) 
 

θᇱᇱ + Pr θᇱ + Sθ = −EcPr(uᇱ)ଶ … (7) 
 

The transformed boundary conditions are: 
 

u(0) = α, θ(0) = 1 and u(∞) → 1, θ(∞) → 0.  
 … (8) 
 

where prime denotes differentiation with respect to y, 

M =
஢౛୆బ

మ஥

஡୴బ
మ  is the dimensionless magnetic parameter, 

Pr =
ஜୡ౦

ச
 is the Prandtl number, α is the velocity of the 

plate, S =
୕୴మ

ச୴బ
మ is the heat source (S<0) or sink (S>0) 

parameter and Ec =
୙ಮ

మ

େ౦(୘ି୘ಮ)
 is the Eckert number. 

 

Solving equations (6) and (7) subject to boundary 
condition (8), we have: 

 

u(y) = Aଵe୬భ୷ + Aଶe୬మ୷ … (9) 
 

θ(y) = −Aଷeଶ୬భ୷ − Aସeଶ୬మ୷ − Aହe(୬భା୬మ)୷ 
+A଺e୬య୷ + A଻e୬ర୷ … (10) 
 

where the constantsA୧ (i = 1-7) and n୨(j =1-4) are given 
in “Appendix”.  
 

Skin friction and Nusselt number 
Having known the velocity and temperature fields 

we can now obtain the expression for the 
dimensionless Skin friction C୤ and Nusselt number Nu, 
which are given by 

C୤ = ቀ
ப୳

ப୷
ቁ

୷ୀ଴
= Aଵnଵ + Aଶnଶ … (11) 

 
And 
 

Nu = − ቀ
பθ

ப୷
ቁ

୷ୀ଴
= −2nଵAଷ − 2nଶAସ − Aହ(nଵ + nଶ) +

A଺nଷ + A଻nସ … (12) 
 

The numerical results of C୤ and Nu are shown in 
Figs 7 and 8, respectively. 
 
Results and Discussion  

In order to discuss the effect of various parameters 
on the velocity field, thermal boundary layer, shearing 
stress and coefficient of rate of heat on the wall, the 
numerical computation of the solution, obtained in 
preceding section, have been carried out and they are 
represented in Figs 1-8. 

Figure 1 illustrates the effect of plate velocity α on 
velocity profile for M = 0. We infer from this figure 
that velocity increases considerably as plate velocity α 
increases. Moreover, when 0 < α < 1 (that is when 
plate velocity is less than free stream velocity), the 
profile for u is concave down, and when α > 1 (that is 
when free stream velocity less than plat velocity), the 
profile for u is concave up. 

The effect of magnetic parameter M on the velocity 
near the plate is presented for α = 0 in Fig. 2. 
Application of a transverse magnetic field to an 
electrically conducting flow gives rise to a resistive 
type of force called Lorenz force. This force has the 
tendency to slow down the motion of the fluid in the 
boundary layer. As expected, as M increases the 

 
 

Fig. 1 — Effect of α on the velocity profile for M=0. 
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velocity decreases. On the contrary, Fig. 3 shows that 
the temperature is not much influenced by the magnetic 
parameter (M). 

Figure 4 illustrates the effect of Prandtl number (Pr) 
on the temperature profiles. We infer from this figure 
that temperature decreases with an increase in the 
Prandtl number, which implies viscous boundary layer 
is thicker than the thermal boundary layer. From this 
plot, it is evident that large values of Prandtl number 
result in thinning of the thermal boundary layer. In this 
case, temperature asymptotically approaches to zero in 
free stream region. Since the momentum equation is 
independent ofθ, so no effect of Pr on the velocity field 
is observed.  

Figure 5 is plotted for temperature profile for 
different values of Eckert number (Ec). We observe 
that the effect of increasing values of Eckert number is 
to enhance the temperature at a point. Physically, it 
means that the heat energy is stored in the fluid due to 
the frictional heating.  

Figure 6 shows the effect of heat source/sink 
parameter (S) on the temperature profile for given 
values of Prandtl number (Pr), Eckert number (Ec) 
plate velocity α and magnetic parameter M. From this 
plot, it is observed that the effect of increasing values 
of heat source/sink parameter is to increases the 
temperature. 

The local skin friction coefficient against plate 
velocity (α) for various values of magnetic parameter 
(M), is illustrated in Fig. 7. The local skin friction 
coefficient decreases with an increase in magnetic 
parameter. 

Figure 8, which is a representation of the local 
dimensionless coefficient of heat transfer −𝜃 ′(0), 
knows as the Nusselt numberfor various values of heat 
source/sink parameter (S) versus magnetic parameter 
(M) for the given values of Prandtl number (Pr), Eckert 
number (Ec) and plate velocity α. We observe from this 

 
 

Fig. 2 — Effect of M on the velocity profile for α=0. 
 

 
 

Fig. 3 — Effect of M on the temperature profile for α= 0.5, S=0.2, 
Ec=0.01 and Pr=1. 

 
 
Fig. 4 — Effect of Pr on the temperature profile for α= 0.5, S=0.1, 
Ec=0.01 and M=1. 
 

 
 
Fig. 5 — Effect of Ec on the temperature profile for α= 0.5, S=0.1 
Pr=1, Ec=0.01 and M=1. 
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figure that the rate of heat transfer decreases with an 
increase in heat source/sink parameter.  
 
Conclusion 

A mathematical model has been presented for the 
MHD boundary layer flow and heat transfer along an 
infinite porous hot horizontal continuous moving plate. 
The governing partial differential equations are 

converted into ordinary differential equations by using 
similarity transformations. The effect of several 
parameters controlling the velocity and temperature 
profiles are shown graphically and discussed briefly. 
The influence of the parameters α, M, Pr, Ec and S on 
dimensionless velocity and temperature profiles were 
examined. The main physical results of the study may 
be summarized as follows. 
(i) The mean velocity profile is concave down for 

0 < α < 1 and is concave up for α > 1.  
(ii) As the magnetic parameter increases, we can find 

the velocity profile decreases in the flow region. 
Thus, we conclude that we can control the velocity 
field and temperature by introducing magnetic field. 

(iii) The boundary layer is highly influenced by the 
Prandtl number. The effect of Prandtl number is to 
decrease the thermal boundary layer thickness. 

(iv) Eckert number has significant effect on the 
boundary layer growth. 

(v) The effect of heat source/sink parameter is to 
increase the thermal boundary layer thickness. 

(vi) The Skin friction coefficient decrease as magnetic 
parameter increases. 

(vii) The Nusselt number decrease as heat source/sink 
parameter increases. 

 

Appendix 

nଵ =
ିଵା√ଵାସ୑

ଶ
, 

nଶ =
ିଵି√ଵାସ୑

ଶ
, 

nଷ =
ି୔୰ା√୔୰మିସୗ

ଶ
, 

nସ =
ି୔୰ି√୔୰మିସୗ

ଶ
, 

Aଵ =
ଵି஑ୣర౤మ

ୣర౤భିୣర౤మ
, 

Aଷ =
஑ୣర౤భିଵ

ୣర౤భିୣర౤మ
, 

Aଷ =
୉ୡ୔୰୅భ

మ୬భ
మ

ସ୬భ
మାଶ୔୰୬భାୗ

, 

Aସ =
୉ୡ୔୰୅మ

మ୬మ
మ

ସ୬మ
మାଶ୔୰୬మାୗ

, 

Aହ =
ଶ୔୰୉ୡ୅భ୅మ୬భ୬మ

(୬భା୬మ)మା୔୰(୬భା୬మ)ାୗ
, 

A଺ =
ୣర౤రା(୅యା୅రା୅ఱ)ୣర౤రି୅యୣఴ౤భି୅రୣఴ౤మି୅ఱୣర(౤భశ౤మ)

ୣర౤రିୣర౤య
, 

A଻ = 1 + Aଷ + Aସ + Aହ − A଺. 
 
Nomenclature 
 

𝐁𝟎  Constant applied magnetic field, [Wb mିଶ] 
𝐂𝐟   Skin friction coefficient, [−] 
𝐄𝐜   Eckert number (= U∞

ଶ C୮(T − T∞)ൗ ), [−] 

 
 

Fig. 6 — Effect of S on the temperature profile for α= 0.5, Pr=1, 
Ec=0.01 and M=1. 
 

 
 

Fig. 7 — Skin friction against α for different values of M. 
 

 
 

Fig. 8 — Nusselt number against M for various values of S when 
Pr = 1.0, α = 0.5 and Ec = 0.01. 
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𝐌    Magnetic parameter (= σୣB଴
ଶ ρc⁄ ), [−] 

𝐍𝐮  Nusselt number, [−] 
𝐏𝐫   Prandtl number (= μC୮ ⁄ ), [−] 
𝐐    Volumetric rate of heat generation, [K] 
𝐒      Heat source/sink parameter (= Qvଶ κv଴

ଶ⁄ ), [−] 
𝐓     Temperature of the fluid, [K]  
𝐮, 𝐯  Velocity component of the fluid along the x and y  
        directions, respectively, [m sିଵ] 
𝐱, 𝐲  Cartesian coordinates along the surface and 
        normal to it, respectively, [m]  
 

Greek symbols  
𝛂   Dimensionless velocity of the plate, [= U୵ U∞]⁄  
𝛒   Density of the fluid, [Kg mିଷ] 
𝛍   Viscosity of the fluid, [Kg m sିଵ] 
𝛔𝐞  Electrical conductivity, [mଶsିଵ] 
𝛋   Thermal conductivity, [W mିଶKିସ] 
𝛖   Kinematic viscosity, [mଶsିଵ] 
𝛉   Dimensionless temperature, [= (T − T∞) (T୵ − T∞)]⁄  
 

Superscript  
′Derivative with respect to y 
 

Subscripts 
𝐰  Properties at the plate 
∞  Free stream condition 
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