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Quantitative Structure -Activity Relationship (QSAR) models are enormously significant to understand the correlation of 
chemical structure with the biological activity and toxicity of chemicals. In the ongoing study reveals the prediction power 
of toxicity of 45 nitrobenzenes (NBs) entailing some conceptual density functional theory based reactivity descriptors 
namely electrophilicity index (ω), lowest unoccupied molecular orbital (εlumo) and molecular compressibility (β) along with 
the hydrophobicity index (logP). Multilinear Regression (MLR) method is adopted to develop the QSAR model. Stability of 
the present QSAR model is confirmed through the cross validation method and is potentially describe the 85% of the 
variance of the experimental toxicity. 
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The quantitative structure-activity relationship (QSAR) 
analysis is accompanied to derive empirical models that 
relate the activity of chemical compounds to their 
structure1. The basic assumption is that the chemical 
structure of a compound implicit determines its actions 
towards biological systems. The most essential scientific 
principle of developing a QSAR model includes: 
understanding the mechanism of interaction between 
compounds and biological system. The attainment of 
information about a dose range for the biological effect 
of a chemical compound can be useful in the 
experimental drug design and toxicity research, and also 
calculation of the activity of new chemical compounds. 
Further, QSAR modes is popular for saving both time 
and experimental resources for synthesizing and 
biological experiment of a great number of compounds 
and offer possibility of reduction of living thing use in 
research and toxicity testing. Various statistical methods 
namely regression analysis, partial least squares, 
classification trees, and neural networks2 are used widely 
in developing QSAR. 

Toxicity prediction is crucial subject of concern and a 
lot of studies have been done to elucidate its effects with 
the help of various quantum chemical atomic and 
molecular descriptors3. Toxicity arises as a consequence 
of stereochemical electronic interaction amongst the 
reactive site and toxicant. Toxicity being a basic 
observable fact requires understanding of its origin so as 
to be concerned of its effects. In vivo and in vitro 

methods are followed simultaneously or separately for 
the prediction of toxicity. In vitro methodology is mostly 
preferred over the other due to its less time consuming 
and its economical property. QSAR (quantitative 
structure-activity relationship) and QSPR (quantitative 
structure-property relationship) are two major 
methodologies for correlating biological activity with 
physicochemical properties through descriptors 
characteristic of molecular structure and /or properties4-8. 
QSAR/QSPR domain is being dominated by Density 
Functional Theory (DFT) in the recent years. Several 
Conceptual Density Functional Theory (CDFT)- based 
descriptors have been invoked widely to study the 
reactive site, to model biological properties, and in 
addition to predict experimental behaviours9-14. 

Acute toxicity in the domain of QSAR study have 
been reported in a large number in the literature15. Many 
authors16-20 have introduced quantitative relationship 
between toxicity and hydrophobicity, wherein the 
hydrophobicities are measured by octanol-water 
partition coefficient (logPoct values) or octanol-water 
distribution coefficient (logDoct values) as descriptors.  

Response-surface approach has been widely 
invoked for the development of mechanistically 
comprehensible QSAR modes for toxicity. The 
central idea of this approach is that the toxic action 
depends on the biouptake and bioavailability as well 
as on the electrophilic reactivity of the toxicant at an 
active site. log Poct or logDoct have been introduced as 
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a descriptor for encoding biouptake and bioavailability 
and energy of lowest unoccupied molecular orbital 
(ELUMO) as descriptor for encoding the electrophilc 
reactivity. This scientific knowledge has been applied 
to different species, including the bacterium Vibrio 
fischei21, the protozoan Tetrahymena pyriformis22-23, 
the yeast Saccharomyces cerevisiae24, the mould 
Aspergillus nidulans25, the algae Scenedesmus obliquus26 

and Chlorella vulgais25, the plant Cucumis sativus27-28, 
and mice25. 

To improve the statistical fit of the model, additional 
indicator variables and other parameters have been 
added with the response surface approach29,30. 

It is well established that toxicity is a outcome of 
electronic interaction among the atom/ molecules of 
the reactive site and the toxicant. In present study, 
CDFT based descriptor, that is Compressibility is 
used in addition to the other descriptors as 
compressibility plays a vital role in understanding 
various interactions including toxic interactions31 as 
like as molecular polarizability which is a promising 
descriptor to study chemicl -biological interactions32. 

The expression of chemical toxicity is a 
combination of penetration into, or through, biological 
membranes and the interaction of the toxicant  
with the site of action. This principle is modeled 
mathematically as the following standard QSAR33. 

log (toxicity)-1=A (log of penetration) +B (log of 
interaction) 

Penetration to the site of action is generally 
represented by hydrophobicity, most often quantified 
by the 1-octanol/water partition coefficient (log P)33. 
Interaction of the chemical with the active site is more 
complicated and describes electronic and /or steric 
properties. 

The purpose of the present work is to study the 
predictive potential of compressibility for modeling 
the toxicity of NBs on Tetrahymena pyriformis along 
withthe other well-known CDFT-based reactivity 
descriptors like electrophilicity index (ω), energy of 
lowest unoccupied molecular orbital (εLUMO) to 
examine the structure activity relationship for 45 NBs. 
 
Theoretical Background  

There is a paradigm shift in the realm of conceptual 
chemistry due to the density functional underpinning 
of Parr et al34-37. The useful qualitative entities like 
hardness, electronegativity and electrophilicity index 
which were abstract semiotic representations are  
now considered as theoretical quantities of cognitive 

representations. According to DFT, given the electron 
density function ρ(r) of a chemical system and the 
ground state energy and everything can be determined. 
The chemical potential, μ of that system in 
equilibrium has been defined as the derivative of the 
energy functional E (ρ) with respect to the electron 
density at fixed molecular geometry.  
 

The chemical potential, μ, is given by38 

 

μ =-χ= [δ E(ρ) ∕ δ ρ ]v  …(1) 
 

where v is the external potential acting on an electron 
due to the presence of nucleus. 

The differential definition more appropriate to 
atomic system is on the basis that for a system of N 
electrons with ground state energy E [N,v],  

 

μ =-χ= [ ∂ E∕ ∂ N ]v  …(2) 
 

The absolute hardness is defined39 as  
 

η = ½ [∂ μ∕ ∂ N ] v = ½ [( ∂2 E∕ ∂ N2 )]v  …(3) 
 

The ansatz for hardness is mathematically difficult 
because the numerical method is required to be 
invoked to solve it40. However, Parr and Pearson39, 
invoking finite difference approximation, suggested 
an approximate formula for the evaluation of hardness 
and electronegativity as  
 

η=½ (I–A)   …(4) 
 

χ=½ (I+A)   …(5) 
 

where, I is the ionization energy and A is the 
electron affinity of the chemical species. 

Pearson41 proceeded further to evaluate ‘I’ and ‘A’ 
in terms of orbital energies of the highest occupied 
molecular orbital, HOMO and the lowest unoccupied 
molecular orbital, LUMO by connecting it with 
Hartree - Fock SCF theory and invoking Koopmans’ 
theorem the hardness and electronegativity are 
reformulated as 
 
η= ½ (-εHOMO +εLUMO)  …(6) 
and χ = -μ = – ½ (εLUMO + εHOMO )  …(7)  
where I= –εHOMO, and A= – εLUMO. 

Parr et al42 defined another global parameter, the 
electrophilicity index (ω), as a measure of the 
decrease in energy due to the maximal transfer of 
electrons from a donor to an acceptor system and is 
given as 
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ω = (μ)2 / (2η)  …(8) 
 

Atomic compressibility31 is defined (β) as a property 
of electronic distribution. Thus, the study has been carried 
out with the concept that very selected compound 
display toxicity due to modification in its volume or size 
(compressibility) due to electrophilic (nucleophilic) 
attack. Higher compressibility signifies increased 
attractive interactions between atoms and molecules 
consequently pulling the atoms and molecules together. 
In, general, an increase in compressibility increases 
closeness of electrons in an atom/ molecule, perhaps 
contributing in exhibiting atomic/ molecular character 
more significantly, for instance, toxic behavior. 

On extending this concept to molecular systems, 
Scientist defined group compressibility (Gβ) as a 
summation of compressibility of each atom present in 
a molecule43. Atomic compressibility (β) is represented 
mathematically31 as 

 

β=(12π2ε0/e
2)r2/ω  …(9) 

 

where e is the unit charge of an electron, r is the 
absolute radius of an atom, ω is the electropilicity 
index of the atom and ε0 is the vacuum permittivity 
and group compressibility (Gβ) as represented as  

 

Gβ =∑βi …(10) 
 

where βi signify the atomic compressibility of the 
ith atom in a molecule with N atoms. 
 
Method of computation 

A total of 45 Nitro-benzenes with other substituents 
have studied in the present work. The outline of the 
structure is shown in Fig. 1. 

The experimental toxicity data log (1/IGC50) of the 
45 NBs is listed in the table44 

Computational study is performed within DFT 
(Density Functional Theory) framework and descriptors 
have been calculated using conceptual density functional 
theory. All the modeling and structural optimization 
of compounds have been performed using Gaussian 
09 software package45. For optimization purpose, 
B3LYP with basis set 6-31G(d) has been adopted.  

Atomic compressibility value for each atom taken 
from reference31, to compute the molecular 
compressibility with the help of equation (10). 

The value for the hydrophobicity term i.e logP  
(logarithum of octanol/water partition coefficient) is 
taken from reference46. 

Structural -toxicity models are developed using the 
multilinear regression using the statistical software 

Minitab47. log(I/IGC50) values are used as the dependent 
variable and logP, εlumo, ω and β, as the independent 
variables. Goodness-of-fit for the proposed model is 
accomplished by assessing the coefficient of 
determination (R2), R2-adjusted, the standard error (S) 
and the number of sample size is also noted. The 
robustness of the model illustrates the stability of its 
parameters by performing validation of the model 
using leave-1/3-of set-out validation.  
 

Results and Discussion 
Several linear QSAR models involving one, two, 

three and four descriptors are established and 
strongest multi-linear correlations are identified by 
regression analysis of the Minitab program45. 
 

Four -parameter QSAR models: 
 

log(IGC-1
50) = - 3.11 + 0.318 log P + 0.0661 β + 3.31 

ω - 23.4 εlumo                                                                             ...(11) 
 

N= 45 S = 0.268781 R-Sq = 85.1% R-Sq(adj) = 
83.6% 

The calculated quantum chemical descriptors, namely 
electrophilicity index (ω), εLUMO, compressibility (β) 
and the estimated partition co-efficient logP are given 
in Table 1 

A significant improvement of the quality of QSAR 
model is obtained with a combination of the four 
parameters, namely partition coefficient logP, 
electrophilicity index(ω), LUMO energy (εlumo) and 
compressibility (β). Figure 2 shows the linear correlation 
between the observed and predicted toxicity values 
obtained using the four parameter QSAR model. 

 
 

Figure 1 — Outline of the structure of nitrobenzenes (NBs) 
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Table 1 — Descriptor values and predicted toxicity of nitrobenzene derivatives by Eq.11 

S. No Compound εLUMO(au) ω (au) β(au) log P Observed 
toxicity 

log(IGC-1
50) 

Predicted  
toxicity 

Residual 

1 2,6-Dimethylnitrobenzene -0.08672 0.173449 2.995 2.87 0.3 0.603992949 0.303993 
2 2,3-Dimethylnitrobenzene -0.07445 0.150546 2.995 2.87 0.56 0.241068108 -0.31893 
3 2-Methyl-3-chloronitrobenzene -0.08719 0.174427 2.571 3.1 0.68 0.663342446 -0.01666 
4 2-Methylnitrobenzene -0.07747 0.156527 2.235 2.41 0.05 0.135016984 0.085017 
5 2-Chloronitrobenzene -0.08694 0.173913 2.081 2.34 0.68 0.38172225 -0.29828 
6 2-Methyl-5-chloronitrobenzene -0.08827 0.17654 2.571 3.1 0.82 0.695609106 -0.12439 
7 2,4,5-Trichloronitrobenzene -0.10982 0.224193 2.081 3.49 1.53 1.449239404 -0.08076 
8 2,5-Dichloronitrobenzene -0.10356 0.209766 2.147 2.95 1.13 1.08764776 -0.04235 
9 6-Chloro-1,3-dinitrobenzene -0.11718 0.242234 1.816 2.06 1.98 1.208925518 -0.77107 
10 Nitrobenzene -0.08179 0.16491 2.015 1.95 0.14 0.103029698 -0.03697 
11 3-Methylnitrobenzene -0.08651 0.173102 2.235 2.41 0.05 0.401413805 0.351414 
12 1,3-Dinitrobenzene -0.11382 0.229118 1.75 1.62 0.89 0.942604161 0.052604 
13 3,4-Dichloronitrobenzene -0.10659 0.215379 2.147 3.16 1.16 1.243908203 0.083908 
14 4-Methylnitrobenzene -0.08381 0.168142 2.235 2.41 0.17 0.321817331 0.151817 
15 1,4-Dinitrobenzene -0.12698 0.26173 1.75 1.37 1.3 1.278991766 -0.02101 
16 4-Chloronitrobenzene -0.09816 0.196654 2.081 2.6 0.43 0.8022227 0.372223 
17 2,3,5,6-Tetrachloronitrobenzene -0.11334 0.236069 2.454 3.73 1.82 1.671893361 -0.14811 
18 6-Methyl-1,3-dinitrobenzene -0.10724 0.215088 2.24 2.08 0.87 0.920862213 0.050862 
19 3-Chloronitrobenzene -0.0998 0.200436 2.081 2.64 0.73 0.86583791 0.135838 
20 1,2-Dinitrobenzene -0.10647 0.373047 1.75 1.84 1.25 1.316979587 0.06698 
21 2-Bromonitrobenzene -0.09387 0.190466 1.065 2.52 0.75 0.588756769 -0.16124 
22 3-Bromonitrobenzene -0.09913 0.199511 1.065 2.52 1.03 0.741781541 -0.28822 
23 4-Bromonitrobenzene -0.09789 0.196454 1.065 2.55 0.38 0.712183948 0.332184 
24 2,4,6-Trimethylnitrobenzene -0.08191 0.163948 2.605 3.33 0.86 0.580491684 -0.27951 
25 5-Methyl-1,2-dinitrobenzene -0.10223 0.348662 2.24 2.3 1.52 1.31571646 -0.20428 
26 2,4-Dichloronitrobenzene -0.10169 0.205448 2.147 3 0.99 1.045496163 0.055496 
27 3,5-Dichloronitrobenzene -0.10949 0.222328 2.147 3.34 1.13 1.392008534 0.262009 
28 2,3,4,5-Tetrachloronitrobenzene -0.11568 0.239098 2.279 3.94 1.78 1.791887824 0.011888 
29 2,3-Dichloronitrobenzene -0.10202 0.206657 2.147 2.9 1.07 1.025420726 -0.04458 
30 2,5-Dibromonitrobenzene -0.10324 0.212776 3.475 3.12 1.37 1.231961958 -0.13804 
31 1,2-Dichloro-4,5 -dinitrobenzene -0.12284 0.477847 1.882 3.2 2.21 2.488128523 0.278129 
32 3-Methyl-4-bromonitrobenzene -0.09478 0.189942 1.555 3.01 1.16 0.796525166 -0.36347 
33 2,3,4-Trichloronitrobenzene -0.10822 0.220949 2.081 3.44 1.51 1.385163842 -0.12484 
34 2,4,6-Trichloro-1,3-dinitrobenzene -0.12309 0.269736 1.948 3.41 1.43 1.876273533 0.446274 
35 4,6-Dichloro-1,2-dinitrobenzene -0.12206 0.4749 1.882 3.08 2.42 2.421962518 0.001963 
36 3,5-Dinitrobenzylalcohol -0.11037 0.222851 2.203 0.43 0.53 0.492654222 -0.03735 
37 3,4-Dinitrobenzylalcohol -0.1032 0.354222 2.203 0.65 1.09 0.829672482 -0.26033 

38 
2,3,5,6-Tetrachloro-1,4-
dinitrobenzene -0.14066 0.322619 2.454 2.92 2.74 2.340082588 -0.39992 

39 4-Fluoronitrobenzene -0.08513 0.171119 1.697 1.8 0.25 0.133018411 -0.11698 
40 4-Fluoro-2-nitrotoluene -0.086 0.172036 1.897 2.26 0.25 0.315909965 0.06591 
41 1-Fluoro-2-nitrobenzene -0.08431 0.169296 1.737 1.69 0.23 0.075459884 -0.15454 
42 1-Fluoro-3-nitrobenzene -0.09023 0.180471 1.737 1.9 0.2 0.317758254 0.117758 
43 4-Nitrobenzaldehyde -0.10872 0.220357 2.248 1.56 0.2 0.808101368 0.608101 
44 3-Nitrobenzaldehyde -0.0966 0.193354 2.248 1.75 0.14 0.495534978 0.355535 
45 3-Nitroacetophenon -0.09211 0.184343 2.468 1.49 0.32 0.292505258 -0.02749 

 

Cross-validation 
In order to check the reliability and stability of the 

QSAR model (Eq. 11), the leave -1/3-of -set -out 
validation is applied in the following way: the parent 

data points were divided three subsets namely A, B 
and C. In each of three combinations, two of the 
subset were combined into one and the correlation 
equation was determined with the same descriptors. 
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The obtained equation was used to predict data for the 
remaining subset. It turns out that the predicted R2 
values using subsets (A+B), (B+C) and (C+A) are 
close to that corresponding to the full training  
set (A+B+C) and the average values of R2 and 
R2(predicted ) given in the Table 2, are also close. So 
the data given in the Table 2 speaks in favour of the 
efficacy of the present model for estimating the 
toxicity of the nitrobenzenes for which experimental 
data are unavailable. 
 
Conclusion 

A comprehensive QSAR analysis has been carried 
out for the 45 NBs using conceptual density 
functional theory based reactivity descriptors namely 
electrophilicity index (ω), lowest unoccupied molecular 
orbital (εlumo) and molecular compressibility (β) along 
with the hydrophobicity index (logP) to assess their 
toxic behaviour towards T.pyriformis. The high value 
of Coefficient of determination and robustness of the 
model establish the importance of these descriptors in 
the prediction of toxicity.  
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