
Indian Journal of Chemical Technology 

Vol. 23, September, 2016 pp. 335-344 

 

 

 

 

 

 

Multiobjective simultaneous optimization of biosurfactant process medium by 

integrating differential evolution with artificial neural networks 

J Satya Eswari*
 
& Ch.Venkateswarlu

1
 

 Department of Biotechnology, National Institute of Technology, Raipur 429 010, India 
1Chemical Engineering Department, BV Raju Institute of Technology, Narsapur 502 313, India 

E-mail: satyaeswarij.bt@nitrr.ac.in 

Received 27 May 2014; accepted 11 September 2015 

A method of differential evolution (DE) integrated with artificial neural networks (ANN) is derived for modelling and 

optimization of a biosurfactant process producing rhamnolipid by Pseudomonas aeruginosa. A central composite rotatable 

design (CCRD) data is used to develop multiple regression and ANN response surface models in order to integrate them 

with DE for optimizing the medium compositions. The DE with global search operators explores the search space of the 

response surface models and finds the optimum medium compositions that maximize the rhamnolipid productivity.  

A multiobjective simultaneous optimization strategy that integrates ANN model with DE search is found to compromise for 

biomass concentration and maximize the rhamnolipid activity as 55.9 mg/L (R2 = 0.914) with an optimized medium 

compositions of glucose=24.079; NH4NO3=3.28; KH2PO4=0.24; yeast extract=7.95 and MgSO4.7H2O=2.69.  

The experimental rhamnolipid activity of 56 mg/L obtained using the optimized medium compositions are close to the 

predicted rhamnolipid activity. These findings demonstrate that the ANN-DE integrated multi objective optimization 

strategy is quite effective for simultaneous optimization of biochemical and biotechnological processes. 

Keywords: Optimization, Rhamnolipid, Pseudomonas sp., Response surface methodology, Central composite design, 

Differential evolution 

 

The amphiphilic compounds that exhibit high surface 

and emulsifying activity are known as biosurfactants. 

Biosurfactants uses various carbohydrate sources, oils 

and biomass wastes and are produced extra cellularly 

or as a part of the cell membrane by a variety of 

microorganisms. These products have gained a 

considerable interest in recent times mainly due to 

their high surface activities, heterogeneity and great 

potential for therapeutic applications like 

antimicrobial, antifungal, antioxidant and antiviral 

agents
1-8

. Among various biosurfactants, rhamnolipids 

are gaining much importance because of their 

applications in food, cosmetic and pharma industries. 

Response surface methodology (RSM) is the method 

that uses factorial designs and regression analysis 

along with optimization studies can serve to enhance 

the desired productivity of bio surfactants. RSM is a 

collection of statistical techniques for designing 

experiments, building models and evaluating the 

effects of factors. RSM involves establishing 

mathematical relations between the design variables 

and the resulting responses, and optimizing the 

process conditions. This methodology has been 

applied for response surface modeling and 

optimization of different biochemical and 

biosurfactant processes
9-11

. RSM is not free from 

problems when it is applied to multi-factor and multi-

response situations. One of the difficulties associated 

with RSM is to understand the actual relationship 

between causal factors and individual responses. 

Another limitation is that a desirable condition for one 

response property is not always desirable for the other 

characteristics. This leads to the problem of 

conflicting objectives. Therefore, RSM need to be 

configured appropriately along with an efficient 

optimization methodology to deal with the problem of 

simultaneous optimization
12-20

. The aim of this work 

is to optimize the culture medium composition for 

rhamnolipid production by Pseudomonas aeruginosa. 

In this process, the factors include carbon source, 

nitrogen source, phosphate ratio and iron, and the 

responses are biomass and rahmnolipid 

concentrations. The objective is to maximize the 

Rhamnolipid concentration while compromising 

biomass concentration. Central composite rotatable 

design (CCRD) data is used to develop second order 

polynomial models with interaction terms. The model 

coefficients are tested for statistical significance, 
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insignificant coefficients are eliminated and the 

adequacies of the resulting models are validated for 

goodness of fit. Other mathematical approaches that 

combine evolutionary algorithms with artificial neural 

networks (ANN) are found superior to statistical 

approaches such as response surface methodology
12

. 

DE is an evolutionary optimization technique that 

works based on natural selection and survival of the 

fittest concepts of the biological world. Although 

differential evolution (DE) combined ANN has 

gained popularity for its use in various engineering 

fields, this modelling and optimization approach has 

not been fully exploited to enhance the production of 

bio molecules such as biosurfactants. The demand for 

rhamnolipid will increase several fold in coming years 

due to its potential application in the food processing 

industry in addition to clinical applications. Hence it 

is important to develop an economically viable 

bioprocess for production of rhamnolipid. In this 

study, an attempt was made to optimize the 

biosurfactant production by using DE integrated ANN 

based nonlinear modeling and optimization
12-14

. A 

CCRD based experimental data was used to develop 

ANN model. The ANN model was coupled with DE 

to find the maximum production level and the 

optimum concentrations of the critical medium 

components that affect significantly the production 

process. DE is first is first combined with ANN 

models to establish the biosurfactant process media 

compositions for maximizing the rhamnolipid 

concentration and minimizing the biomass 

concentration individually. These individual 

responses are further treated through a weighted 

objective function to optimize the media composition 

that satisfies the simultaneous optimization problem 

of the bio surfactant process. The results evaluated by 

RSM coupled with DE are compared with those of 

DE integrated ANN. 

 

Experimental Section 
 

Microorganism, medium, production and quantification 

Pseudomonas aeruginosa obtained as a lyophilized 

culture from IMTECH was cultivated in a mineral 

base medium with the following composition (g/L): 

glucose=10.0; NH4NO3=1.7; KH2PO4=3.0; yeast 

extract=5.0; MgSO4.7H2O=0.2; Na2HPO4=7.0; and  

1 mL hexadecane. The culture was incubated at 30°C, 

200 rpm for 24 h. P. aeruginosa was grown in  

250 mL flask with 100 mL of minimal media at the 

same conditions for 48 h with 10% inoculum. The 

rhamnolipid activity along with surface tension of  

32 designed experiments was studied. Before 

rhamnolipids are produced on an industrial scale, the 

process parameters must be optimized. Different ways 

to enhance the yield include (a) strain improvement, 

(b) medium development, (c) process optimization and 

(d) the use of alternative, inexpensive substrates. The 

present study is focussed on medium optimization to 

enhance rhamnolipid activity. The conventional 

method for medium optimization involves changing 

one variable at a time, keeping the other factors fixed 

at a specific set of conditions. This method may lead 

to unreliable results and wrong conclusions. Moreover, 

carrying out experiments with every possible 

combination of the variables is impractical, because of 

the large number of experiments. The critical media 

components that influence the biosurfactant 

production were identified by single-factor-at-a-time 

experiments. The range and levels of the four 

independent variables along with the central values 

for these critical media components are listed in 

(Table 1). Further, a CCRD was applied with five 

factors and the experimental design data is shown in 

Table 2. 

 
Response surface modelling 

The RSM technique can improve product yields 

and provide closer confirmation of the output 

responses toward the nominal and target 

requirements. In recent years, RSM has played an 

important role in biotechnology and other fields. The 

first step in RSM is to find a suitable approximation 

for the true functional relationship between the 

response (Y) and the set of independent variables. 

 If there is curvature in the system, then a 

polynomial of high degree must be used, such as the 

second-order model: 
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Table 1 ― The central composite rotatable design for 

optimization of five nutrients (each at five levels) for the 

production bio surfactant rhamnolipid 

 
Factors  Levels 

 Lowest Low Center High Highest 

(x1)Glucose 7 12 17 22 27 

(x2) NH4NO3 0 1 2 3 4 

(x3)Yeast extract 0 5 10 15 20 

(x4)MgSO4. 7H2O 0.1 0.2 0.3 0.4 0.5 

(x5)KH2PO4(%) 2 3 4 5 6 
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where βii represents the quadratic effect of the i
th
 

factor and βij represents the cross product effect, or 

interaction effect, between the i
th
 and j

th 
factors, where 

x1, x2, . . ., xk are the independent variables, β0 the 

constant coefficient, k the linear effect of the k
th 

factor 

coefficients and ε is the error observed in the response 

Y. The goal of RSM is to find an approximating 

function for predicting future response and to 

determine factor values that optimize the response 

function. An important assumption is that the 

independent variables are continuous and controllable 

by experiments with negligible errors. The task then is 

to find a suitable approximation for the true functional 

relationship between independent variables and the 

response surface. 

 
Artificial neural networks (ANN)  

Artificial neural networks (ANNs) are computer 

systems developed to mimic the operations of the 

human brain by mathematically modeling its neuro-

physiological structure. They consist of a large 

number of computational units connected in a 

massively parallel structure. These computational 

units are called neurons which replace the nerve cells 

in the brain and the strengths of the inter connections 

are represented by weights, in which the learned 

information is stored
14,15

. The MFFN provides a 

mapping between an input (x) and an output (y) 

through a nonlinear function f, i.e., y = f (x).  

The three layered MFFN has input, hidden and 

output layers, each layer comprising of its own 

nodes. All the nodes in the input layer are connected 

using weighted links to the hidden layer nodes; 

similar links exist between the hidden and output 

layer nodes. Usually, the input and hidden layers 

also contain a bias node possessing constant output 

of 1. The nodes in the input layer do not perform any 

numerical processing, whereas all numerical 

processing is done by the hidden and output layer 

nodes, and they are termed as active nodes. 

Table 2 ― Experimental design and results of the Central composite Rotatable design (CCRD) 

 

Experimental values Coded values Responses 

 x1 x2 x3 x4 x5 X1 X2 X3 X4 X5 Biomass Rhamnolipid Surface tension 

1 12 2 0.2 0.2 5 -1 -1 -1 -1 1 5.2 28 46 

2 22 2 0.2 0.2 3 1 -1 -1 -1 -1 3.2 2.8 45.93 

3 12 2 0.2 0.2 3 -1 1 -1 -1 -1 3 2.5 45 

4 12 2 0.2 0.2 5 1 1 -1 -1 1 2 2.3 49 

5 22 4 0.4 0.2 3 -1 -1 1 -1 -1 2.2 3 47 

6 12 4 0.4 0.2 5 1 -1 1 -1 1 2.8 4.4 48 

7 22 4 0.4 0.2 5 -1 1 1 -1 1 2.4 5.3 45 

8 12 4 0.4 0.2 3 1 1 1 -1 -1 4.2 5.4 49 

9 22 2 0.2 0.4 3 -1 -1 -1 1 -1 0.4 6.9 47.6 

10 12 2 0.2 0.4 5 1 -1 -1 1 1 1.8 47 37.65 

11 22 2 0.2 0.4 5 -1 1 -1 1 1 2.2 37 39 

12 12 2 0.2 0.4 3 1 1 -1 1 -1 4 33 43.6 

13 22 4 0.4 0.4 5 -1 -1 1 1 1 2.2 43 38.7 

14 12 4 0.4 0.4 3 1 -1 1 1 -1 2.4 46 36.56 

15 22 4 0.4 0.4 3 -1 1 1 1 -1 3.4 45 34.65 

16 12 4 0.4 0.4 5 1 1 1 1 1 8.6 56 30.57 

17 7 3 0.3 0.3 4 -2 0 0 0 0 4 38 38.95 

18 27 3 0.3 0.3 4 2 0 0 0 0 4.2 25 48 

19 17 1 0.3 0.3 4 0 -2 0 0 0 6.8 49 35.74 

20 17 5 0.3 0.3 4 0 2 0 0 0 2 3.4 44.47 

21 17 3 0.1 0.3 4 0 0 -2 0 0 2.6 3.2 47.5 

22 17 3 0.5 0.3 4 0 0 2 0 0 1.8 3.1 48 

23 17 3 0.3 0.1 4 0 0 0 -2 0 1 2.8 47.6 

24 17 3 0.3 0.5 4 0 0 0 2 0 1.2 2.5 46 

25 17 3 0.3 0.3 2 0 0 0 0 -2 1.2 2.6 47.3 

26 17 3 0.3 0.3 6 0 0 0 0 2 1.4 2.4 47.35 

27 17 3 0.3 0.3 4 0 0 0 0 0 1.2 2.5 46.64 

28 17 3 0.3 0.3 4 0 0 0 0 0 1.4 2.3 48 

29 17 3 0.3 0.3 4 0 0 0 0 0 1.2 2.3 47.2 

30 17 3 0.3 0.3 4 0 0 0 0 0 1.4 2.2 47 

31 17 3 0.3 0.3 4 0 0 0 0 0 1.2 2.3 45 

32 17 3 0.3 0.3 4 0 0 0 0 0 1.6 2.3 46 
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Training algorithm 

The problem of neural network training is to obtain 

a set of weights such that the prediction error defined 

by the difference between the networks predicted 

outputs and the desired outputs is minimized. The 

iterative training makes the network to recognize 

patterns in the data and creates an internal model, 

which provides predictions for the new input 

condition. The input to the network consists of  

n-dimensional vector xp and a unit bias. Each input is 

multiplied by a weight wij and the products are 

summed to obtain the activation state  
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The output of the hidden layer neuron Opj for 

sigmoid function is calculated as  
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where f represents the differentiable and non-decreasing 

function. The output layer of a single hidden layer 

network performs the same calculations as above, except 

that the input vector xp is replaced by the hidden layer 

output Op and the corresponding weights wjk: 
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Similar calculations can be extended to networks 

containing more than one hidden layer.  

A simple way of measuring the progress of 

learning is by defining the sum of squared error, Ep 

for p learning patterns. The set of training examples 

consists of p input-output vector pairs (xp, dp). 

Weights are initially randomized. Thereafter, weights 

are adjusted soas to minimize the objective function 

E(w), defined as the mean squared error between the 

prediction outputs, ypk and the target outputs, dpk for 

all the input patterns: 
 

∑
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Where Ep is the sum of squared error with each 

training example, 

2

1
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The task of Ep, minimization is accomplished by 

training the network using a gradient descent technique 

such as generalized delta rule
9,10

. According to this 

rule, the error function δpk between the hidden layer 

neurons to the output layer neuron k is computed. The 

weight changes from hidden to input layer can be 

calculated in the same way. After the weights are 

updated, a new training example is randomly selected, 

and the procedure is repeated until satisfactory 

reduction of the objective function is achieved. 
 

Processing of information  

Network training is an iterative procedure that 

begins with initializing the weight matrix randomly. 

Network learning process involves two types of 

passes: a forward pass and a reverse pass. In the 

forward pass, an input pattern from the example data 

set is applied to the input nodes, the weighted sum of 

the inputs to the active node is calculated which is 

then transformed into output using a nonlinear 

activation function such as sigmoid function. The 

outputs of the hidden nodes computed in this manner 

form the inputs to the output layer nodes whose 

outputs are evaluated in a similar fashion. In the 

reverse pass, the pattern specific squared error defined 

in Eqn. (5) Is computed and used for updating the 

network weights in accordance with the gradient 

strategy. The weight updating procedure when 

repeated for all the patterns in the training set 

completes one iteration. For a given ANN based 

modeling problem, the number of nodes in the 

network input layer and output layer is dictated by the 

input-output dimensionality of the pattern being 

modeled. However, the number of hidden nodes is an 

adjustable structural parameter. If the network 

architecture contains more hidden units than 

necessary, it leads to an oversized network. To avoid 

over fitting of the network, the network simulations are 

to be conducted by systematically varying the number 

of hidden units. These simulations provide optimal 

network architecture with the smallest error magnitude 

for the test data. The neural network architecture for  

5 input 2 output variables is given in the Fig. 1.  
 

Differential evolution (DE) 

Evolutionary algorithms are widely used to solve 

optimization problems in various fields. These 

algorithms have an advantage over conventional 
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gradient-based search procedures because they are 

capable offinding global optima of multi-modal 

functions and searching design spaces with disjoint 

feasible regions. Among the evolutionary algorithms, 

differential evolution (DE) is a simple population 

based search algorithm for global optimization of real 

valued functions. Its robustness and effectiveness has 

been demonstrated in a variety of applications. DE is 

controlled by three parameters, namely, population 

size(NP), the crossover operator (CR) and mutation 

constant called scaling factor (F). The performance of 

DE depends on the manipulation of target vector and 

difference vector in order to obtain a trial vector. The 

DE algorithm can be studied from
21,22

 Store and Price 

et al., 1997. The first initial population of size PN 

vectors [x1
0
, x2

0
,…, xPN

0
] are generated at random in 

D-dimensional search space and the fitness function 

values are evaluated. DE extracts distance and 

direction information from the current vectors and 

adds random deviation for diversity to generate new 

parameter vectors. With the target vector and mutant 

vector, mutation has been performed. F is the mutation 

constant which controls the amplification of the 

difference between two individuals. After mutation, 

crossover is introduced to increase the diversity of the 

mutant vectors. During this operation, the trial vector 

is developed from the elements of target vector and 

the elements of the mutant vector is derived. Cr is the 

crossover constant in the range [0,1]. Finally, 

selection is performed by comparing the trail vector 

produced by the crossover operator with the target 

vector and the one with better fitness function is 

allowed to enter the next generation. 
 

Integration of DE with ANN 

It has been known that machine learning 

techniques such as ANN mimic different aspects of 

biological information processing for data modeling 

and could prove to be useful in media optimization for 

fermentation. Back propagation algorithm, a 

multilayer feed forward ANN, trains and then 

evaluates system performance using the adaptive 

gradient learning rule. The learning rate of the 

network was set to a value that resulted in an optimal 

coefficient of correlation (R
2
) for the NN. Regression-

based RSM requires the order of the model to be 

stated, while the ANN tends to implicitly match the 

input vector to the output vector. DE on the other 

hand, is a commonly used global enhancement 

technique which optimizes a given function over a 

particular range, and is based on the evolutionary 

methods of natural selection of the best individuals in 

a population. The DE explores all regions of the 

solution space using a population of individuals. 

Initially, all the population of individuals is generated 

randomly and mutation, crossover and selection 

processes are calculated. Then the fitness function 

evaluated an objective function. In the present work, 

the selected vectors are used for fitness function 

calculation using artificial neural networks. The flow 

chart of DE linked ANN is given in Fig 2. 
 

Simultaneous optimization strategy  

The maximization of a particular response can be 

achieved by input conditions that possibly will not 

satisfy the minimization requisite of other response. 

In ordinance to propitiate such incongruous goals over 

the identical stable optimal input media conditions, 

with a lonely function that ruminates concurring 

optimization of numerous response variables is 

obliged. Hence a customary of optimization created 

on the distance between the predicted value of each 

response and the optimum value of each response can 

be performed. Such a criterion is given by 
 

D = ∑
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where D is the distance function, σi is the standard 

deviation of the observed values for each response 

 
 
Fig. 1 ― Artificial neural network architecture: Multi input multi 

output (MIMO) of 5 inputs with 2 outputs such as biomass and 

rhamnolipid activity. 
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variable, FDi is the ideal value of each response 

variable optimized individually over the experimental 

region and FOi is the predicted value of each response 

for the same set of casual factors. 

Results and Discussion 
Experimentally analysed data indicates how the 

activity of biosurfactant varies with surface tension.  

A good bio surfactant reduces surface tension from  

 
 

Fig. 2 ― Flow chart of ANN-DE algorithm 
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70 to 30 dyn/cm. The better activity of biosurfactant  

can be observed from the experimental data of surface 

tension and rhamnolipid activity as plotted in Fig.3. 

 
Response surface methodology  

In this work, CCRD design data is used for fitting 

second-order models. According to this design, the 

total number of experiments required is 2 
k−1 

+2k +n0, 

which includes 2k factorial points with its origin at the 

center, 2k points fixed axially at a distance  

β (β = 2k/4) from the center to generate the quadratic 

terms, and replicate tests at the center (n0); where k is 

the number of independent variables. A design should 

include enough replications, often at the centre points, 

to provide an independent estimate of the 

experimental error and allow for a test for lack of fit 

of the model. For five variables, the recommended 

number of tests at the centre is six. Hence the total 

number of tests required for five independent 

variables is 2
4
 + (2×5) + 6=32. 

For statistical calculation, the experimental 

variables xi has been coded as Xi according to the 

following transformation equation: 

 

i

oi
i

x

xx
X

∆

−
=

 

 

where Xi is the dimensionless coded value of the i
th 

independent variable, xi is the uncoded value of the i
th
 

independent variable, x0 is the value of xi at the centre 

point, and ∆xi is the step change value of the real 

variable xi. The dependent variables are the biomass 

concentration (y1, g/L) and rhamnolipid concentration 

(y2, mg/L). The experimental design matrix with coded 

factors is shown in Table 2. 

Ybio = 1.259574 + 0.444681X1 + 0 + 0.2X3 + 0.016667X4 

+ 0.2X5 +0.475X12 + 0.475X13 + 0.525X23 + 0.575X14 +  

0.825X24 + 0.625X34 – 0.1X15 -0.2X25 + 0.2X35 +0.3X45 +  

0.543085 X 2
1

+0.840426 X 2
2

+0.290426 X 2
3

+ 

0.015426 X 2
4

+0.065426 X 2
5

   … (8) 
 

Yrham = 0.976596 + 0.632447X1 – 3.575X2 + 2.016667X3 
+ 10.81667X4 + 3.25X5 – 0.775X12 + 0.3X13 + 1.575X23 +  

4.625X14 + 3.175X24 + 5.225X34 – 2.0875X15 – 3.0625X25 

- 3.7375X35 + 1.6125X45 + 8.319681 2
1X  + 7.310904 2

1X  

+1.548404 2
1X  + 1.423404 2

1X  + 1.385904 2
5X     … (9) 

 

The comparison of the experimental responses with 

the model predictions plotted in Fig. 4 shows the 

prediction ability of the fitted regression models for 

both the biomass and rahmnolipid concentrations. The 

data in Table 1 is used to fit the regression models as 

Eqns 8 and 9. The statistical significance of the 

regression model coefficients is tested for 98% 

confidence level using student t-test. The t-values 

along with standard error for both biomass and 

rhamnolipid activity are given in Tables 3a and 3b. 

From the Tables 3a, 3b the insignificant coefficients 

are eliminated based on the variable selection. The P 

values are used to check the significance of each of 

the coefficients, which is necessary to understand the 

pattern of the mutual interactions between the 

independent variables. The lower the magnitude of P, 

the more significant is the corresponding coefficient. 

The significance of each coefficient was determined 

by student t-test and P-value, which is shown in  

Table 3 of column 4. The larger the magnitude of t-

value and smaller the P-value, the more significant is 

the corresponding coefficient. After eliminating the 

insignificant coefficients, the regression equations for 

biomass and rhamnolipid concentrations in coded 

factors are represented by 
 

Ybio = 1.259574 + 0.444681X1 + 0.016667X4+ 0.2X5 

+0.475X12 + 0.475X13 + 0.525X23 + 0.575X14 + 0.825X24 

+ 0.625X34 + 0.2X35 +0.3X45 + 0.543085 X 2
1

 + 

0.840426 X 2
2

 + 0.290426 X 2
3

 + 0.065426 X 2
5

   … (10) 
 

Yrham = 0.976596 + 0.632447X1 - 0.775X12 + 0.3X13 + 

1.575X23 + 4.625X14 + 3.175X24 + 5.225X34 + 1.6125X45 + 

8.319681 2
1X  + 7.310904 2

2X  + 1.548404 2X
3

     … (11) 
 

Figure 4 shows the contour response surface plot of 

the model equation describing rhamnolipid activity. 

 
 
Fig. 3 ― Surface tension reduction along with rhamnolipid 

activity observed for 48 h 
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Fig. 4 ― Experimental and model predicted values of response surface models and DE tuned ANN models of biomass and 

rhamnolipid activity. 

Table 3b ― Coefficient estimates in the regression model for 

rhamnolipid selected through variable selection MSE=0.00001 

 

Intercept Coefficient 

estimate 

Standard  

error 

t table< t calculated;  

t 0.05,31 =1.695 

P-value 

X0 0.976596 0.246896 5.101648 0.0005 

X1 0.632447 0.149503 2.974400 0.02 

X2 -3.575 0.126161 0.000000 0.0 

X3 2.016667 0.126161 1.585273 0.1 

X4 10.81667 0.126161 0.132106 <0.25 

X5 3.25 0.126161 1.585273 0.1 

X1X2 -0.775 0.154515 3.074128 0.0025 

X1X3 0.3 0.154515 3.074128 0.0025 

X2X3 1.575 0.154515 3.397720 0.001 

X1X4 4.625 0.154515 3.721313 0.0005 

X2X4 3.175 0.154515 5.339275 0.0005 

X3X4 5.225 0.154515 4.044905 0.005 

X1X5 -2.0875 0.154515 -0.647185 0.25 

X2X5 -3.0625 0.154515 -1.294370 0.1 

X3X5 -3.7375 0.154515 1.294370 0.1 

X4X5 1.6125 0.154515 1.941554 0.05 

X1 8.319681 0.129473 4.194577 0.001 

X2 7.310904 0.114924 7.312903 <0.0005 

X3 1.548404 0.114924 2.527117 0.025 

X4 1.423404 0.114924 0.134224 <0.25 

X5 1.385904 0.114924 0.569296 <0.25 

Table 3a ― Coefficient estimates in the regression model for 

biomass selected through variable selection biomass 

MSE=0.03125*0.00001 

 

Intercept Coefficient 

estimate 

Standard  

error 

t table< t calculated;  

t 0.05,31 =1.695 

P-value 

     

X0 1.259574 0.078075 16.132827 <0.01 

X1 0.444681 0.047277 9.405878 <0.005 

X2 0 0.039896 0.000000 <0.25 

X3 0.2 0.039896 5.013072 0.0005 

X4 0.016667 0.039896 0.417756 <0.25 

X5 0.2 0.039896 5.013072 0.0005 

X1X2 0.475 0.048862 9.721246 <0.005 

X1X3 0.475 0.048862 9.721246 <0.005 

X2X3 0.525 0.048862 10.744535 <0.0005 

X1X4 0.575 0.048862 11.767824 <0.0005 

X2X4 0.825 0.048862 16.884269 <0.01 

X3X4 0.625 0.048862 12.791113 0.025 

X1X5 -0.1 0.048862 -2.046578 0.05 

X2X5 -0.2 0.048862 -4.093156 0.005 

X3X5 0.2 0.048862 4.093156 0.005 

X4X5 0.3 0.048862 6.139734 0.05 

X1
2 0.543085 0.040943 13.264417 0.0025 

X2
2 0.840426 0.036342 23.125429 0.001 

X3
2 0.290426 0.036342 7.991446 <0.001 

X4
2 0.015426 0.036342 0.424454 <0.25 

X5
2 0.065426 0.036342 1.800271 0.1 
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The responses of rhamnolipid and biomass 

concentrations obtained from these prediction 

equations are integrated with DE to optimize the 

biosurfactant production medium compositions. 

 
DE integrated ANN 

Back propagation algorithm (BPA), a multilayer 

feed-forward ANN, was used to model the non-linear 

relationships between media components (Glucose, 

NH4NO3, yeast extract, MgSO4.7H2O and KH2PO4) 

and rhamnolipid activity.  Four neurons were used in 

the input layer, 12 in the hidden layer, and 2 in the 

output layer with sigmoid function as the transfer 

function to model the dependence of rhamnolipid 

production on media components. The five input 

variables (Glucose, NH4NO3; KH2PO4; MgSO4.7H2O; 

and yeast extract) and the 2 output variable (biomass 

and rhamnolipid activity) listed in Table 2 were used. 

Once the ANN model was developed, DE was 

applied to determine the values of biomass and 

rhamnolipid production and optimum concentration 

of the media components. DE was used with a 

population size of 30, mutation rate of 0.04, and 

uniform crossover rate of 0.7. The ANN prediction 

responses of rhamnolipid and biomass 

concentrations were integrated with DE to optimize 

biosurfactant production medium compositions that 

maximize the rhamnolipid activity while 

compromising biomass concentration. 
 

Multiobjective simultaneous optimization 

Simultaneous optimization was performed to 

evaluate the formulation conditions that optimize the 

individual objectives. Maximization of Rhamnolipid 

activity minimization of biomass concentration is 

considered as the desired objectives. The individually 

optimized responses were used in the performance 

criterion defined by Eqn. (7) to obtain a single set of 

conditions that simultaneously satisfy both the 

responses. The simultaneous optimization based on the 

minimization of distance function in Eqn. (7) has 

established optimum medium compositions that 

maximize the rhamnolipid activity while 

compromising for the biomass concentration. 

The optimum concentrations of the media 

components were Glucose: 24.07, NH4NO3: 3.28, 

KH2PO4: 7.95, MgSO4.7H2O: 0.24 and yeast extract: 

2.6915. These optimized medium composition yields 

the maximum rhamnolipid concentration as 56 mg/L 

along with the biomass concentration of 8.2 mg/L. 

The ANN-DE Multiobjective simultaneous 

optimization strategy provides better performance for 

predicting rhamnolipid activity (R
2
=0.914) and 

biomass concentration (R
2
=0.799) than the RSM-DE 

which provides the predictions of rhamnolipid activity 

(R
2
= 0.7578) and biomass concentration (R

2
=0.7868). 

The comparison of the experimental responses with 

the model predictions were plotted in Fig. 4. The 

predicted results obtained with the DE integrated 

RSM and ANN models were further validated 

experimentally. The results were found to be closer 

when compared with experimental results.  
 

Conclusion 

The significant media components were optimized 

using an RSM and ANN integrated DE. The 

optimized medium compositions (g/L) of 

Glucose=24.079; NH4NO3=3.28; KH2PO4=0.24; yeast 

extract=7.95, MgSO4.7H2O =2.69 were identified to 

be significant media components for in maximizing 

the rhamnolipid concentration to an extent of 56 mg/L 

by Pseudomonas aerugenosa in batch fermentation 

using a Central composite rotatable design (CCRD). 

The results of DE integrated ANN were 

experimentally validated. The optimized medium 

compositions by ANN-DE were found to be to be 

more effective in enhancing the rhamnolipid 

production. The results thus demonstrate the 

usefulness of DE integrated ANN strategy for 

optimization of rhamnolipid biosurfactant process. 
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