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Stem rot disease caused by fungal pathogen, Sclerotium rolfsii Sacc., is potential threat to groundnut production in warm 
and humid condition. After host-pathogen interaction, a multitude of plant resistance associated reactions are initiated. In the 
present investigation we studied the role of polyamines and ethylene during host-pathogen interaction in stem rot tolerant 
(CS319, GG17 and GG31) and susceptible (TG37A) groundnut genotypes at 24, 48 and 72 h after infection. Stem rot 
tolerant genotypes showed higher expression of polyamine biosynthesis genes ornithine decarboxylase (Ordec), spermine 
synthase (Sms) and lipoxygenase1 (LOX1) gene at 72 h after infection than that of susceptible genotype TG37A. The 
expression analysis of ethylene biosynthesis genes (1-aminocyclopropane-1-carboxylate oxidase: ACCO and (ACCS) 
showed up regulation in stem rot susceptible genotype TG37A than that of tolerant genotypes after infection at all stages 
(24, 48 and 72 h after infection). The expression of amine oxidase (AMO) gene was observed highest in stem rot susceptible 
genotype TG37A while minimum in GJG31. Expression of this gene was remarkably induced in TG37A which may leads to 
higher accumulation of H2O2. Higher content of a polyamine, putrescine was found in the leaves of stem rot tolerant 
genotypes at 48 and 72 h after infection. These results implied that tolerant genotypes induced higher polyamine 
biosynthesis which may involve in plant defense and impart tolerance/ resistance. While, susceptible genotype (TG37A), 
utilized higher flux of S-Adenosyl methionine (SAM) for ethylene biosynthesis which may leads to necrosis of plants. Thus, 
stem rot resistant genotypes may be developed through genetic manipulation of polyamine biosynthesis pathway.  
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Groundnut (Arachis hypogaea L.) is an important 
oilseed legume, mostly grown in arid and semi-arid 
regions of the world. India is one among the leading 
producers of groundnut in the world. However, 
productivity of the crop is very low (1422 kg/ha) as 
compared to the leading producer China (3893 kg /ha) 
and USA (4426 kg/ha)1 mainly because of various 
biotic and abiotic stresses. Among the biotic stress, 
stem rot diseases, caused by facultative parasitic 
fungi, Sclerotium rolfsii Sacc., is potential threat to 
groundnut production in warm and humid condition. 
The disease is prevailed at 30 to 45 days after 
germination and at the time of harvest under rain-fed 
situations due to low and erratic distribution of 
rainfall. Generally, fungus attacks stem of groundnut 
plants near the soil surface however, in the light soil, 
it also damage pegs and pods2. Due to wide host 
range, soil borne nature, late diagnosis of disease3, 

and rapid multiplication of the pathogen development, 
use of the resistant variety is only feasible solution of 
the problem4. 
 

Diverse regulatory processes mediate host 
resistance response to pathogen infection, of which, 
plant hormone functions have been studied 
extensively5. Upon the perception of the S. rolfsii in 
groundnut, the jasmonic acid-mediated defense 
pathway gets activated, thereby inducing systemic 
resistance in groundnut6. In tomato, ethylene was 
imparting resistance against necrotrophic fungi 
Botrytis cinerea7. An early and active response of 
plants to perception of pathogen attack is production 
of ethylene which is associated with the induction of 
defense reactions. However, contradictory results 
have been obtained in different conditions and the 
plant-pathogen combination8. In response to many 
virulent pathogen infections in plants, ethylene 
evolution occurs concomitantly with the progression 
of disease symptoms9. Putrescine, spermidine, and 
spermine are the three most important polyamines in 
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plants. In both compatible and incompatible plant-
microbial interactions, appreciable changes in 
polyamines metabolism have been observed10. 
Putrescine and spermidine content increased in maize 
(Zea mays) plants after infection with the fungal 
biotroph Ustilago maydis11. Similarly, six-fold 
increase in spermidine content observed in barley 
(Hordeum vulgare) leaves infected with the brown 
rust fungal biotroph Puccinia hordei compared to 
control healthy leaves and resulted in the formation of 
green islands surrounding the site of infection due to 
chlorophyll retention12. In contrary, a decrease in 
content of polyamine has been observed in tobacco 
leaves inoculated with fungal, bacterial and viral 
pathogens13. Biosynthesis of putrescine leads by 
decarboxylation of ornithine by ornithine 
decarboxylase or arginine by arginine decarboxylase 
through agmatine, subsequently putrescine is 
converted to spermidine, and spermine by spermidine 
synthase and spermine synthase enzyme 
respectively14. S-adenosyl-methionine (SAM) is a 
common precursor for both polyamine and ethylene15. 
In tomato fruits, ethylene induced by Rhizopus 
stolonifer infection was reported to be responsible for 
the decreased content of polyamine16. Thus, the rate 
of biosynthesis of both molecules regulates 
expression of each other, which is a decisive factor in 
determining the predominance of either of these two 
pathways during different conditions17.  
 

Polyamine oxidase and lipoxygenase enzymes are 
key players for hypersensitive reaction (HR) during 
host-pathogen interaction18. As a signal molecule, 
H2O2 derived from polyamine oxidation mediates cell 
death, the hypersensitive response and the expression 
of defense genes19. Lipoxygenase is able to generate 
different functional molecules that include (a) 
hydroperoxides and free radicals that might be 
involved in the localized cell death observed during 
the hypersensitive response; (b) jasmonic acid and its 
methyl ester that can trigger defense gene expression; 
and (c) 2-trans-hexenal acts as antimicrobial compounds 
for direct defense against pathogen attack20.  
 

In this context, we studied the expression of five 
different genes viz., ornithine decarboxylase, spermine 
synthase, ethylene biosynthesis, lipoxygenase1, amine 
oxidase along with polyamine profiling to elucidate the 
role of polyamines and ethylene in the reaction of 
different groundnut genotypes to the infection of 
facultative parasitic fungi, Sclerotium rolfsii. 

Materials and Methods  
 

Plant material and growth conditions 
Seeds of one stem rot susceptible groundnut 

genotype TG37A and three Stem rot tolerant 
genotypes CS319, GJG17 and GJG31 obtained from 
ICAR- Directorate of Groundnut, Junagadh, India. 
These genotypes were selected based on previous 
reports on stem rot incidence,4,21. Seeds were sown in 
earthen pots (20 kg soil capacity) in PII glass house 
under controlled atmospheric conditions. A potting 
mixture consisting Vertisol, sand and farm yard 
manure in a 2:1:1 ratio with diammonium phosphate 
at 1.0 g kg-1 of soil was used. Each genotype was 
grown in six pots, three pots were kept for control and 
three for inoculation of stem rot pathogen.   
 

Inoculation of S. rolfsii in groundnut and sample collection for 
analysis 

S. rolfsii was isolated from TG-37A genotype and 
cultured in 90 mm Petri dishes containing standard 
Potato Dextrose Agar (PDA) medium. The fungal 
pathogen S. rolfsii was further mass multiplied on 
sorghum grains. The fungus multiplied in sorghum 
grain was inoculated to about 45 days old groundnut 
plant by placing infested sorghum grain (about 2 g) on 
soil surface near the main stem. For ensuring the 
developing of mycelia, the experiment was carried out 
in controlled condition with natural photoperiod 
(temperature 30±2℃ relative humidity above 70% 
and soil moisture content near field capacity) in glass 
house23. The pathogen was re-isolated to prove Koch's 
postulates immediately after the expression of 
symptoms. Disease symptoms were visually appeared 
after 48 h (Fig. 1). Leaf samples were collected from 
infected and non-infected genotypes at 24, 48 and 72 
h after infection because hyphae from germinating 
sclerotia of S. rolfsii ramified over host tissue within 
24-48 h following inoculation22. Second upper leaves 
were collected from 3 replications of plants at each 
time interval. Leaf samples used for polyamines 
analyses were stored at 20℃.  
 

RNA extraction, quantification quality check and cDNA 
Synthesis 

Fresh leaves (0.1 g) were collected at 24, 48 and 72 h 
after infection from infected and non-infected plants 
of each genotype. Total RNA was extracted from the 
leaves by a TRIZOL (Invitrogen) reagent as per 
standard protocol. The RNA samples with the ratio of 
1.7-2.0 at OD 260/280 were used for cDNA synthesis. 
Agarose gel (0.8% w/v) was prepared in 1.0 X 
formaldehyde agarose gel buffer and used to check 



INDIAN J EXP BIOL, JULY 2021 
 
 

478

RNA quality. The cDNA was synthesized using 
RevertAid™ First Strand cDNA Synthesis Kit  
(The Thermo Scientific™) following manufacturer’s 
instructions. 
 

Primers for Real Time PCR 
Gene sequences for polyamine and ethylene 

biosynthesis genes along with amine oxidase and 
lipoxygenese gene of groundnut were searched on 
NCBI. The primers were designed by using NCBI- 
primer 3 software (Table 1), while for endogenous 
control actin primer sequences reported by  
Morgante et al.23 were used.  
 

Quantitative RT-PCR analysis 
PCR was performed using 1.0 μL (≤100 

ng/reaction) aliquot of the first strand cDNA in a final 
volume of 10 μL containing 10 pM of specific 
primers (forward and reverse). As a endogenous 
control, the groundnut actin primer23 was used to 
normalize each sample for variations in the amounts 
of RNA used. PCR was carried out using 5 μL 2x 
QuantiFast SYBR Green PCR Master Mix (Genetix, 

USA), both reverse and forward primer were 0.5 μL, 
Template cDNA 1.0 μL and RNase free water 3 μL to 
final volume 10 μL in a thermal cycler (ABI-7300) 
programmed as follows. An initial denaturation for  
5 min at 95°C, 35 amplification cycles [5 min 95°C 

(initial denaturation), 10 s at 95°C (denaturation), 30 s 
at 58°C/60°C (annealing)] for primers. Each sample 
was analysed in triplicate for all primers. To ensure 
amplification of a single product with the expected 
melting temperature and the absence of primer-dimers 
a melting curve analysis was performed on all 
samples. The products of each primer set were 
observed using agarose gel (0.7%) electrophoresis. To 
estimate relative gene expression, Ct value of both 
reference and target genes were calculated based on 
the mean value of three replications. Relative RNA 
quantities were determined with delta-delta (ΔΔ) Ct, 
using the formula given by Livak and Schmittgen24. 
 

HPLC analysis for polyamines 
Polyamines were analyzed through HPLC as 

described by Flores and Galston26 with minor 
modifications. Polyamines were extracted from leaves 
in 5 % cold perchloric acid (HClO4) at a ratio of about 
200 mg/2mL HClO4. Extracted samples were 
incubated for 1.0 h in an ice bath and centrifuged at 
15000 rpm for 20 min. Supernatant containing the 
free polyamine fraction was collected in Eppendorf 
tube (1.5 mL) and stored at 20℃ till further analysis.  
 

Sample preparation (Benzoylation)  
Plant extracts and standards (500 μL) were 

benzoylated using 1.0 mL of 2 N NaOH and 10 μL 
benzoyal chloride as per method described by 
Redmond andTseng26. Benzoyalated polyamines were 
extracted in 2.0 mL diethyl ether by centrifugation at 

 

 
Fig. 1 — Stem rot tolerant (GJG17, GJG31 and CS319) and
susceptible (TG37A) groundnut genotypes at 0 (Control), 24, 48
and 72 h after infection. Visual symptoms of disease appeared
after 48 h of infection 
 

 

Table 1 — List of genes and their primer sequence used for 
expression analysis 

Name of 
gene 

Accession 
no. 

Primer  
(R- Reverse, F-Forward) 

Ornithine 
decarboxylase 
(OrDec)  

GT 
735346.1 

CATGGAGAATAATCAAAGGATCTTC 
R 
AAGGCATGTACTGTCAAGCCAC F 

ACC oxidase 2 
(ACCO2)  

EE 
125763.1 

CCTCAAATGTCCAAACCCAAAG R 
GCCTTCCAACTTTGTCATCTTG F 

ACC synthase 
(ACCS)  

EE 
125903.1 

TGAATTCACTAGCCCATCAGG R 
TCCTCCCTATGTTCTTCTAGGT F 

Spermine 
synthase (Sms) 

GT 
735283.1 

GTCTAACTTTCGGGCTTGCT R 
CCCTCACACCCTTCTCCTAA F 

Amine oxidase 
(Amo) 

EE 
123718.1 

GTTTCAGCCATTTCGGATCTTG R 
AACAATGCCCAGGAGTTCTAC F 

Lipoxygenase 1 
(LOX1) 

AF 
231454.1 

CAGTATCCTTATGGAGGGCTTATC R
GGTGACTCTTCACCATCTCTTC F 

Actin Morgante 
et al.24 

GAGCTGAAAGATTCCGATGC R 
GCAATGCCTGGGAACATAGT F 
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3000 rpm for 5 min. Ether phase containing 
polyamines was collected in 1.5 mL eppendorf tube 
and dried in a vacuum concentrator at 40ºC. These 
dried polyamines were redissolved in 100 μL 
methanol (HPLC grade). Standards were treated in a 
similar way, with up to 100 ppm of each polyamine in 
the reaction mixture. The benzoylated samples were 
stored at 20ºC till further analysis. The isocratic 
solvent system consisted methanol: water run at 60% 
at the flow rate of 1.0 mL/min. The benzoylated 
extracts were eluted at room temperature (25±1°C) 
using a C18 reverse- phase column (4.6×250 mm, 5 
μm particle size) and detected at 254 nm. The quantity 
of individual polyamines was calculated based on area 
and concentration of standards.   
 

Statistical analysis 
Quantitative qPCR data were statistically compared 

between non-infected and infected samples at each 
time using two factor (genotype × time) factorial analysis 
and values were compared P <0.05 for significance. 
Data processing and time series analysis of polyamines 
was carried out using MetaboAnalyst 5.0, an online 
statistical package developed by Pang et al.28. 
 
Results and Discussion  
 

Expression of ornithine decarboxylase and spermine synthase 
gene 

Significant differences in the expression of 
polyamine and ethylene biosynthesis genes were 

observed at 72 h afer infection. While at 24 and 48 h 
afer infection no distinguish expression pattern of 
polyamine and ethylene biosynthesis genes were 
observed in susceptible and tolerant genotype. The 
expression of ornithine decarboxylase (Ordec) gene 
was higher in stem rot tolerant groundnut genotypes 
(GJG17, GJG31 and CS319) than that of susceptible 
genotype TG37A at 72 h afer infection (Fig. 2A). 
Among the different tolerant genotypes, highest 
expression of Ordec gene was observed in GJG31 
followed by CS319 and GJG17 at 72 h afer infection. 
Expression of spermine synthase (Sms) gene was 
increased with progression of disease in all genotypes 
but CS319 had appreciably higher expression than 
other genotypes at 72 h afer infection (Fig. 2B). The 
expression of Sms gene in stem rot tolerant genotype 
CS319 (18.79 fold) was more than 2 fold as compared 
to susceptible genotype TG37A (8.10 fold) at 72 h 
afer infection. Higher expression of Ordec was further 
supported by higher putrescine content as shown in 
polyamine profiling data. Ornithine decarboxylase 
synthesizes diamine putrescine that is the precursor 
for the more complex triamine spermidine and 
tetraamine spermine. The enzymes spermidine 
synthase and spermine synthas have a key role in 
polyamine biosynthesis28. In tolerant genotype Ordec 
is activated and synthesized putrescine. The results 
indicate that the activation of Ordec is critical while 
activation of Sms is situational and time dependent. 

 

 
 
Fig. 2 — Comparative fold change expression of genes in groundnut genotypes in response to Sclerotium rolfsii infection at 24, 48 and 
72 h time interval. Data were analyzed by two factor (genotype x time) factorial experiment and values were compared P <0.05 
for significance (A) ornithine decarboxylase (Ordec), P <0.05: 0.335; (B) spermine synthase (Sms) genes, P <0.05: 0.49;
(C) 1-aminocyclopropane-1-carboxylate synthase (ACCS), P <0.05: 0.425; (D) 1-aminocyclopropane-1-carboxylate oxidase, P <0.05: 
662; (E) lipoxygenase 1 (LOX1), P <0.05: 0.629; and (F) amine oxidase (AMO) gene, P <0.05: 0.859. 
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Thus higher expression of polyamine biosynthesis 
genes in stem rot tolerant genotypes resulted in higher 
polyamine accumulation particularly putrescine which 
exhibited enhanced tolerance to stem rot pathogen. 
Similarly, reductions in the activities of ornithine 
decarboxylase and arginine decarboxylase were also 
observed in tomato infected with the fungus Rhizopus 
stolonifer, and these changes were accompanied by 
reduced polyamine concentrations16. Overexpression 
of heterologous adc29  or ordc cDNAs leads to 
elevated putrescine levels in plant30. 
 

Expression analysis of ethylene biosynthesis genes  
The expression of 1-aminocyclopropane-1-

carboxylate synthase (ACCS) gene was observed 
higher in stem rot susceptible genotype TG37A at all 
time intervals (Fig. 2C). Tolerant genotype (GJG 17 
and CS319) showed lower expression compared to 
TG37A. The expression of 1-aminocyclopropane-1-
carboxylate oxidase 2 (ACCO2) gene was lower at 
early stage, but stem rot susceptible genotype 
(TG37A) exhibited highest expression at later stages 
of pathogen attack. On the other hand, tolerant 
genotype (CS319 and GJG31) showed significantly 
less expression than that of TG37A and GJG17 (Fig. 
2D). These results clearly differentiate tolerant and 
susceptible genotypes based on ACCO expression 
pattern. At 48 h after infection, all genotypes showed 
little expression of ACCO2 gene which might start 
signals for defense reaction but higher expression of 
ACCS and ACCO2 genes may leads to sudden burst 
of ethylene in TG37A at 72 h afer infection and 
subsequent necrosis, senescence and death of plants. 
Our results suggested that a sub-optimal level of 
ethylene may require initiating ethylene mediated 
defense reactions but higher levels may cause plant 
death.  

Increased ethylene evolution was also observed in 
tomato plant infected with Rhizopus stolonifer31. 
These results are further supported by observation of 
Brown and Lee32; they observed that ethylene 
production induces susceptibility to stem-end rot of 
citrus. A significant increase in ACCO gene 
expression was also observed in the Xanthomonas 
campestris pv. vesicatoria challenged tomato plants34. 
Ethylene mediated disease reaction was further 
confirmed by incorporation of ACC deaminase 
producing bacteria, Paenibacillus lentimorbud B-30488 
in soil. These bacteria ameliorated deleterious 
enhanced ethylene level in S. rolfsii infected tomato 
plants. Modulated activities of ACCO and ACCS were 

also observed in S. rolfsii infected plants. These 
results concluded that ACC deaminase producing 
bacteria (B-30488) diminishing the ethylene production 
thereby control the southern blight disease caused by 
S. rolfsii34. Since the pathways for the biosynthesis of 
polyamines and ethylene share a common precursor 
S-adenosyl-methionine (SAM), an increase in ethylene 
evolution should, theoretically, lead to a reduction in 
polyamine biosynthesis. These results suggest complex 
regulation of SAM homeostasis35. New insights also 
placed SAM homeostasis and transmethylation in relation 
to promote plant virus infections, during which 
biosynthesis of ethylene is also important36. Moreover, 
overexpression of ethylene may inhibit jasmonic acid 
mediated defense response37 which may lead to stem 
rot disease induction in susceptible genotypes.  
 

Expression analysis of lipoxygenase1 (LOX1) and amine 
oxidase (AMO) genes 

LOX1 expression induced with time dependent 
manner in all genotypes. However, highest expression 
of LOX1 gene observed in stem rot tolerant genotype 
CS319 at 48 and 72 h after infection (Fig. 2E). While, 
in susceptible genotype (TG37A) LOX1 expressed 4 
times lesser than that of CS319. Similarly, in 
groundnut, the gene coding for PnLOX1 is induced in 
mature seeds infected with Aspergillus spp. The 
products of reactions catalyzed by PnLOX1 conferred 
a role in plant-fungus interaction to this particular 
lipoxygenase. The PnLOX1 product namely (13S)-
hydro-peroxy-(9Z,11E)-octadecadienoic (13-HPOD) 
is an inhibitor and (9S)-hydroperoxy-(10E, 12Z)-
octadecadienoic acid (9-HPOD) is an inducer of 
mycotoxin synthesis38.  
 

Moreover, overexpression of pepper CaLOX1 gene in 
Arabidopsis (Arabidopsis thaliana) conferred enhanced 
resistance to Alternaria brassicicola, Pseudomonas 
syringae pv tomato and Hyaloperonospora arabidopsidis. 
In contrast, mutation of the Arabidopsis CaLOX1 
ortholog AtLOX1 significantly increased susceptibility 
to these three pathogens. Together, these results suggest 
that CaLOX1 and AtLOX1 positively regulate defense 
and cell death responses to microbial pathogens39. The 
remarkable involvement of CaLOX1, AtLOX1 and 
RcLOX540  in mediating resistance to pathogen attack 
suggests that these LOX genes are highly conserved 
for disease resistance in plants. Plant LOXs have been 
proposed to play a role in gene activation during 
wound response and necrotrophic fungal pathogen 
infection40. Higher expression of LOX1 gene in stem 
rot tolerant genotypes further confirmed the role of 
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lipoxygenase in disease resistance. Higher expression 
of LOX may contribute for jasmonic acid signaling 
pathway41 which was identified as a possible defense 
mechanism in groundnut against stem rot disease6. 
 

Highest upregulation of amine oxidase (AMO) gene 
was observed in stem rot susceptible genotype 
TG37A while minimum in GJG31 at 72 h after 
infection. AMO gene expression was observed higher 
in tolerant genotypes at 48 h after infection, which 
further increased in all genotypes at 72 h after 
infection. However, expression of this gene was 
remarkably induced (about 4.5 fold) in TG37A at 72 h 
after infection (Fig. 1F). Polyamine oxidase is important 
in producing H2O2 in-vivo during host-pathogen 
interaction, cell growth and differentiation420. H2O2 is a 
mediator of several physiological events such as 

lignification and wall stiffening and programmed cell 
death. In present investigation, higher expression of 
PAO gene in stem rot susceptible genotype (TG37A) 
may cause more accumulation of H2O2 which leads 
membrane leakage and ultimately plant death. These 
results suggest that excess expression (beyond a 
threshold limit) of AMO and ethylene biosynthesis 
genes may harmful during S. rolfsii- groundnut 
interaction, however optimal level of AMO and ACCS 
and ACCO expression is essential for H2O2 and 
ethylene mediated defense reactions.  
 

Polyamine profiling  
Agmatine and putrescine content was increased in 

the leaves of all groundnut genotypes at 24 h after 
infection but concentration of agmatine was higher in 
stem rot susceptible genotype TG37A (Fig 3). 

 

 
 

Fig. 3 — Heat map of polyamine in groundnut genotypes during Sclerotium rolfsiiinfection at 24, 48 and 72 h time interval. [Time series 
analysis was done using MetaboAnalyst 5.0 online software where C= control, INF= infected] 
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Constitutive level of putrescine and cadaverine also 
observed higher in TG37A. Cadaverine was increased 
at 24 h after infection in TG37A. However, TG37A 
could not maintain the level of any polyamines except 
agmatine at later stages of infection (48 and 72 h after 
infection). On the other hand, concentration of 
agmatine and putrescine increased in the stem rot 
tolerant genotypes (GJG17, GJG 31 and CS 319) at 
48 and 72 h after infection. Though, the levels of 
polyamines were varied in genotype to genotype. 
Interestingly, spermine was not observed in TG37A at 
any stage of analysis. However, spermidine was 
detected only in GJG31 at 48 h after infection. 
 

These results of polyamines profiling are supported 
by expression analysis of arginine decarboxylase and 
spermine synthase gene. Furthermore, our results are 
corroborated with a previous report where increased 
resistance against Fusarium wilt was observed in 
over-expressing arginine decarboxylase gene in 
transgenic eggplant43. Higher spermine content was 
also reported after Fusarium infection in wilt resistant 
genotypes of castor18. Higher content of spermine 
plays a role as a mediator in defense signaling against 
wilt disease caused by Fusarium oxysporium43 and 
tobacco mosaic virus44. Therefore, higher levels of 
polyamines in resistant genotypes after infection  
(48 h) suggest their involvement in fungal disease 
resistance. 
 
Conclusion 

This study generated some basic understanding of 
the signals mediated defense mechanism of groundnut 
against Sclerotium rolfsii infection. These results 
implied that tolerant genotypes induced higher 
polyamine biosynthesis which may involve in plant 
defense and impart resistance/tolerance. While in 
susceptible genotype (TG37A), excess expression of 
ethylene biosynthesis genes at 72 h after infection 
may utilize higher flux of S-adenosyl-methionine for 
ethylene biosynthesis instead of polyamine 
biosynthesis. Expression of hydroperoxides producing 
enzymes LOX1 was higher in tolerant genotype leads 
to induce hypersensitive reaction. Higher expression 
of LOX may contribute in JA signaling pathway 
which has been recently identified as a possible 
defense mechanism in peanut against stem rot disease. 
However, higher expression of amine oxidase in 
susceptible genotype may exert oxidative stress and 
higher membrane-lipid peroxidation due to pathogen 
infection which ultimately cause plant death. Thus, 

stem rot resistant genotypes may be developed 
through genetic manipulation of polyamine 
biosynthesis pathway. 
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