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Higher thermal and ethanol tolerance of a yeast strain isolated from oral cavity 
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Efficient bioethanol producing microorganisms must be endowed with peculiar physiological and technological traits, 
such as, higher thermal and ethanol tolerance. This encompasses a strain thermotolerance and an ability to grow at elevated 
sugar and ethanol concentration or ability to sustain dehydration process such as freeze drying. In this study, we 
characterized a thermotolerant yeast strain isolated from the human oral cavity regarding the above mentioned parameters. 
Such an uncommon niche was considered as the great potential reservoir, to isolate strains endowed with metabolic 
aptitudes requested for ethanol production. In the process, we have defined the YTerm-1strain ability to sustain high sugar 
and ethanol concentration that are two technological constrains in bioethanol production. Finally, we highlighted that the 
strain YTerm-1 was able to accumulate, at a high level, trehalose and β-glucan, two compounds conferring the cells an 
increased resistance to freeze drying process and osmotic stress. Our results suggest that the Yterm-1 strain showed a better 
growth ability and higher ethanol yield as compared to the industrial strain. Other metabolic traits, such as resistance to 
dehydration stress, tolerance to ethanol, accumulation of intracellular trehalose or membrane β-glucan confer to that isolate 
all the characteristics requested in industrial production of ethanol. 
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The yeast Saccharomyces cerevisiae has been isolated 
from different environmental niches, domesticated 
and used in many biotechnological applications based, 
notably, on its ability to convert sugars into alcohol. 
Actually, the bio-based production of ethanol has 
been considered as one alternative to petroleum1. 
Although S. cerevisiae has been used for decades for 
this purpose, there are several challenges to face such 
as a rise in temperature during aerobic sugar 
fermentation2,3. Therefore, thermotolerant strains may 
contribute to reduce the cost of bioreactor cooling at 
an industrial scale. Yeasts isolated from a given 
environmental niche present metabolic adaptations 
acquired overtime to sustain the specific 
environmental pressure4-6. In our previous study, an 
uncommon niche, namely the human oral cavity, has 
been considered. Several strains have been identified 
as S. cerevisiae through analysis of ITS-16S-rDNA 
region and characterized as thermotolerant7. Among 
them, strain Yterm-1 showed a significantly increased 
specific growth rate at 37°C (i.e. 0.489 h-1) as 
compared to 30°C (i.e. 0.304 h-1), demonstrating thus 
its adaptation to higher temperatures. Moreover, its 

specific growth rate was also found significantly 
higher (43% on average) than that of several 
commercial thermotolerant strains used for ethanol 
production.  

Thermotolerance is not the only requested 
physiological trait to consider for ethanol production. 
In the ‘so-called’ high gravity fermentation, the initial 
sugar concentration is around 150 g/L increasing, thus 
the osmolarity of the culture medium8,9. During the 
process, this sugar is converted into ethanol that 
accumulates over time. Therefore, the ability for cells 
to sustain a high osmotic pressure and high ethanol 
concentration must be also considered. Finally, the 
ability of cell to resist to dehydration must be 
also considered as yeast starters are usually 
commercialized as a dry product10,11.  

Several works have reported isolation of 
S. cerevisiae strains in clinical samples from
patients12,13. However, further characterizations of
these strains for industrial applications have not been
explored yet. In our previous studies, five
S. cerevisiae clinical isolates able to growth at
elevated temperature have been identified. Based on
the thermotolerance, we have made an attempt to
further characterize the most promising isolate, named
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YTerm-1, and to produce ethanol and to tolerate high 
concentration of ethanol and glucose. We also 
investigated the ability of strain YTerm-1 to 
accumulate trehalose and β-glucan, as these two 
compounds are well known to confer cells an 
increased resistance to dehydration and osmotic stress 
induced at high sugar concentration14,15. To be of 
practical use, modern industries mainly consider 
dehydrated microorganisms in order to avoid any 
change in the physiological and morphological 
characteristics of cells during storage10. Freeze drying 
is a technique of dehydration widely used in industry 
for formulation of dry starters which could affect 
considerably the viability of cells11. Hence, we 
compared the resistance of YTerm-1 and Quickferm 
Super strains to drying process as well. 
 
Materials and Methods 
 

Media, strains and culture conditions 
All chemicals and media were from Sigma-Aldrich 

or Biocorp (Poland). In the study, S. cerevisiae strains 
YTerm-116 and Quickferm Super (SternEnzym GmbH 
& Co) were used. They were grown at 30°C or 37°C 
as stipulated in the text in media YPD (20 g/L 
glucose, 10 g/L peptone, 10g/L yeast extract) or 
YPDE (20 g/L to 200 g/L of glucose, 50 g/L to 200 g/L 
of ethanol, 10 g/L peptone, 10g/L yeast extract). 
Cultures were performed for 48 h in shake-flasks  
(50 mL medium in 100 mL) or in 15 mL sealed tube 
(Falcon, Greiner). For ethanol production, cultures 
were performed in 50 mL sealed tube (Falcon, 
Greiner) containing 45 mL of modified YPD medium 
containing 20 or 100 g/L glucose. Cultures were 
seeded at an initial optical density at 600 nm (OD600) 
of 2. 
 

Analytical methods 
Biomass was monitored by OD600 measurement 

using a TECAN Infinite M200 spectrophotometer 
(Thermofisher). β-glucan concentration was 
performed using the β-Glucan Assay Kit (K-YBGL, 
Megazyme, USA) according the manufacturer’s 
instructions. Trehalose was extracted as previously 
described16 and its concentrations were determined by 
corona CAD-HPLC (integrated UltiMateDionex 
system: 3000 RSLC, Sunnyvale, CA, USA) using a 
Sugar-D column (4.6×250 mm, 5 mm, Cosmosil). The 
mobile face was 7:3 acetonitrile/water mixture (v/v) 
operated at flow rate of 1.0 mL/min, temperature 
30°C. Trehalose concentration was expressed in mg/g 
of dry cell weight (CDW). Ethanol concentrations 

were determined by gas chromatography using a 
Trace GC Ultra (Termo, Italy) instrument equipped 
with a split/splitless injector, a flame ionization 
detector (FID) and a TG-ALC1 column (30 m×0.32 mm 
ID×1.8 µm). The oven temperature was 65°C. Helium 
was used as a carrier gas at a flow-rate of  
3.0 mL/min. The temperature at detector was set at 
280°C. Split injection (1:150) was carried out at 
210°C. For each analysis one µL of the sample was 
injected on the column. The results were recorded and 
processed using Chrom-Card version 2.4.1software 
(Termo, Italy).  
 

Freeze drying process 
Yeast cells from a 48 h culture (150 mL) in YPD 

were collected by centrifugation at 5,000×g for 15 min 
at 4°C. The harvested cells were then washed twice 
with 0.9% NaCl solution before being resuspended in 
3 mL of a cryoprotectant mixture solution (10% w/v 
skimmed milk and 5% w/v sucrose) as previously 
described33. The cell suspensions were poured as a 
thin layer in a Petri dishes and frozen at 80°C for  
24 h. Samples were then freeze-dried using a Christ 
LSC Plus freeze-dryer (Grosseron, France) operating 
at a condenser plate temperature of 70°C and a 
chamber pressure less than 1.3 mbar for 72 h. The 
yeast survival ratio was calculated after a cell count 
on YPD plates after serial 10-fold dilutions before and 
after freeze-drying. 
 

Statistical analysis 
The statistical analyses were performed using the 

GraphPad Prism 6. Statistical significance was 
assessed by Dunnettˈs or Tukey's multiple 
comparisons test.  
 
Results and Discussion 

Alongside thermotolerance, the ability of  
S. cerevisiae to sustain high ethanol concentration and 
to grow at high sugar content (i.e. high osmolarity) 
directly influence ethanol productivity17. Therefore, 
the growth ability of strains YTerm-1 and the 
commercial QuickFerm Super used here as a 
reference was monitored in regard to ethanol and 
sugar concentrations. According to Nuñez-Guerrero  
et al.18 a good ethanol tolerance, up to 8%, is one of 
the main desirable characteristics for yeast 
fermentation. Thus, strains were first grown in rich 
YPDE medium containing ethanol at different 
concentrations (0; 5 and 10% v/v). After 48 h of 
culture, the biomass values were used to compare cell 
growth ability. As shown in Fig. 1A, cell growth of 
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YTerm-1 was slightly affected by the presence of 5% 
ethanol in the culture medium as compared to the 
non-supplemented medium. However, no further 
significant difference in biomass could be observed 
for higher ethanol concentrations (i.e. 10%). This 
demonstrates that cell growth ability was not altered 
for strain YTerm-1 in those conditions. By contrast, 
cell growth of the reference strain QuickFerm Super 
was inhibited at high ethanol concentration (i.e. 10%, 
Fig 1A). These observations made for YTerm-1 are in 
accordance with previous researches reporting an 
ethanol tolerance ranging between 7-10%19. In 
another study, authors have screened for ethanol 
tolerance several yeast strains belonging to 
S. cerevisiae, Kluyveromyces marxianus and
Torulaspora. delbrueckii18. As a good candidate for
ethanol production, wild type S. cerevisiae strain ITD-
00185 which exhibited ethanol resistance up to 8%,
has been selected. Divate et al.20 compared the
ethanol resistance of the wild type (SC) and
engineered derivative (SCTΔN) of S. cerevisiae. It
has been shown that the growth of SCTΔN was
inhibited by ethanol concentrations greater than 10%,
whereas 6% of ethanol slowed down the growth of
SC20.

One of the factors which affect the cell growth is 
the sugar concentration since it affects the osmotic 
pressure of the culture medium. Therefore, a high 
initial glucose level in the fermentative media may 
induce in cell an osmotic stress that could lower or 
inhibit ethanol production21-23. Indeed, Zhang et al.21 
reported on the effect of substrate inhibition on 
performance of ethanol fermentation using S. cerevisiae 
BY4742. Within the tested concentrations, ranging 
between 40-280 g/L, a glucose concentration of 80 
g/L was found the optimal value in regards to ethanol 
yield. Exposure to hypertonic solution may decrease 
the cell membrane fluidity and cause the organelle 
dehydration while an excessive glucose concentration 
could lead to some metabolic disorder and thus to a 
lower ethanol productivity21. In another study, the 
highest ethanol production rate and glucose 
consumption rate occurred in the presence of 10% of 
sugar in the medium23. Thus, strains YTerm-1 and 
Quickferm Super were grown in YPD medium 
supplemented with different amount of glucose 
(2-200 g/L) and the corresponding biomasses were 
determined after 48 h of culture. As shown in Fig. 1B, 
the biomass obtained, and thus the cell growth ability, 
were not significantly different for YTerm-1 in regard 
to glucose concentration. The biomass obtained in all 

the experimental conditions tested were also slightly 
higher than those of reference strain. This 
demonstrate that YTerm-1 could be used in high 
gravity fermentation process.  

Among the different constituents of the fungal cell 
wall, β-glucan, a polysaccharide composed of 
D-glucose units linked by β-glycosidic bonds, is
involved in maintaining cell integrity notably at
elevated osmotic pressure24-27. Therefore, the potential
of YTerm-1 and Quickferm Super strains to
accumulate β-glucans in their cell wall was measured
at 30°C and 37°C. As shown in Table 1, β-glucan
content was higher at 37°C as compared to 30°C
(2-fold and 1.4-fold, respectively). Moreover, at 37°C
β-glucan content was 30% higher for strain YTerm-1
as compared to Quickferm Super strain. These values

Fig. 1 — Biomass (OD600) of strains YTerm-1 and QuickFerm 
Super after 48 h of growth in (A) YPD medium (glucose 20 g/L) 
supplemented with 0, 5 and 10% of ethanol; and (B) YPD 
medium containing 2, 10 and 20% of glucose. [Statistical analyses 
were performed using Dunnett's multiple comparisons test, 
asterisks indicate significant differences (**P <0.01) between 
control (0%) and ethanol stress conditions] 

Table 1 — β-glucans and trehalose content  of the YTerm-1 and 
Quickferm Super strain 
β-glucan [%] Trehalose [mg/gCDW] 

30°C 37°C 30°C 37°C 
YTerm-1 12.56±0.19 25.21±0.03 6.67±0.08 7.61±0.04 
Quickferm 
Super 

14.76±0.68 17.73±0.01 1.75±0.05 4.43±0.29 
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of β-glucan content are also higher than those reported 
in the literature24. For instance, Varelas et al.24 reported 
a β-glucan content of 6.3% for S. cerevisiae strain 
VIN 13 while Mongkontanawat et al.28 reported a 
value of 15, 8.3 and 12.7%, respectively for S. cerevisiae 
strains TISTR 5919, 5020 and Angel. The higher 
content of the β-glucans obtained for strain YTerm-1 
could be related to its aptitude to grow at high sugar 
concentration (i.e. high osmolarity). In summary, this 
set of experiments highlighted that the thermotolerant 
strain YTerm-1 is compatible with ethanol process 
conditions, as it is able to sustain high sugar and 
ethanol concentration.  

As high gravity fermentation processes are 
operated at a starting sugar concentration in the range 
of 100 to 150 g/L29, ethanol production of strains 
YTerm-1 and Quickferm Super was determined after 
24 h and 48 h of growth at 37°C in YPD medium 
containing 10% of glucose. As shown in Fig. 2, 
YTerm-1 produced ethanol with titer of 41 g/L while 
QuickFerm Super yielded to a significantly lower 
value (12.9 g/L). For strain S. cerevisiae BCRC21812 
grown in batch bioreactor for 30 h at an initial glucose 
concentration of 100 g/L, an ethanol titer of 48.7 g/L 
was reported23. Other studies reported the similar 
results. For instance, for S. cerevisiae wild type strain 
SC and engineered derivative SCTΔN grown in 
fermentation broth containing 10% of glucose, a 
maximal ethanol titer of 40 g/L was obtained after 
96 h20. Similarly, other authors pointed out that 
among various genetically improved S. cerevisiae 

strains, the highest concentration of ethanol (34.6 g/L) 
was assessed for the hap4-OE strain (S. cerevisiae 
BY4741 overexpressing the transcription factor 
HAP4) after 26 h of fermentation of 100 g/L 
glucose30. Zhang et al.21 highlighted that for 
S. cerevisiae BY4742 maximum ethanol yield was
observed after 72 h and in the presence of 80 g/L
glucose in the medium, 39 g/L of ethanol was
produced. This demonstrates that the ability of
YTerm-1 to produced ethanol is in the same range of
other reported strains.

For many biotechnological applications, 
dehydrated yeast starters are preferred due to their 
ease of commercialization, storage and handling. In 
yeast, resistance to dehydration is related, among 
other, to the presence of intracellular metabolites such 
as trehalose31. Indeed, the disaccharide avoids fusion 
of membranes by replacing water molecules in the 
lipid bilayer32. Intracellular accumulation of trehalose 
was thus quantified in strains YTerm-1 and 
Quickferm Super, at 30 and 37°C, as its accumulation 
is triggered by heat stress. As shown in Table 1, the 
trehalose content increased for both strains as the 
growth temperature was increased. Trehalose content 
was equal to 7.61 mg/gCDW and 4.43 mg/gCDW for 
YTerm-1 and Quickferm Super strains, respectively. 
Moreover, the quantity of trehalose in Quickferm 
Super strain was notably increased at 37°C (more than 
2.5-fold) while, in strain YTerm-1, trehalose content 
was only slightly increased in those conditions. Based 
on these observations, a higher resistance of YTerm-1 
to dehydration process could be hypothesized.  

As in Fig. 3, strain YTerm-1 showed a higher 
resistance to freeze-drying process as compared to 
Quickferm Super. Indeed, the viability of YTerm-1 
strain cultivated at 30 and 37°C was equal to 53 and 
55%, respectively. By contrast, Quickferm Super 
showed a viability of 37.8 and 40%, which is in the 
same range than the viability obtained for strain 
S. cerevisiae MUCCL 28359 (i.e. 38%) in the same
experimental conditions33. The remarkable difference
(i. e. 29% and 27%, respectively) in cell viability for
strains YTerm-1 and Quickferm super grown at 30
and 37°C, respectively, could be correlated to the
difference of their intracellular concentrations of
trehalose. Indeed, Nakamura et al.34 showed that the
survival of yeast cells subjected to freezing depends
on the intracellular trehalose content. This was also
demonstrated in other studies20,35,36. Based on these

Fig. 2 — Ethanol production [g/L] by thermotolerant yeast
YTerm-1 and Quickferm Super after 24 h and 48 h of
fermentation at 37°C in YPD medium containing 10% of glucose.
[Statistical analyses were performed using Tukey's multiple
comparisons test (**P <0.01 )] 
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findings, higher content of trehalose and higher 
survival rate after freeze-drying process, have shown 
a good cryotolerance of YTerm-1 strain which makes 
it very usable in areas of applied microbiology. 

Conclusion 
From an industrial point of view, there is a great 

interest to isolate yeast strains from specific niches 
since these strains could be endowed with the desired 
specific metabolic aptitudes. In the process of 
bioethanol production, thermotolerance, ability to 
sustain high sugar and ethanol concentrations, 
together with the ability to convert sugars into ethanol 
and a good resistance to dehydration are the key 
parameters to consider. In this study, we demonstrated 
that uncommon niches, such as the human oral cavity 
could constitute a good reservoir to isolate such a 
strain. The Yterm-1strain isolated from the human 
oral cavity was found to perform equal or even better 
regarding these parameters than the commercial strain 
Quickferm Super or other strains reported in the 
literature for ethanol production. 
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