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Aspergillus sp. is widely distributed in nature and plays significant roles in the degradation of lignocellulose biomass and 

extensively used in bioprocess and fermentation technology and many species are also a generally regarded safe. Many of 

the Aspergillus species are established cell factories due to their inherent capacity in secreting large number of hydrolytic 

enzymes. With the advent of next generation genomic technologies and metabolic engineering technologies, the production 

potential of Aspergillus cell factory has improved over the years. Various genome editing tools has been developed for 

Aspergillus like engineered nucleases, zinc finger nucleases, TALEN and CRISPR-Cas9 system. Currently, the 

CRISPR/Cas9-based technique is extensively used to enhance the effectiveness of gene manipulation in model system 

Aspergillus nidulans and other strains like Aspergillus oryzae, Aspergillus niger and Aspergillus fumigatus. This review 

describes the recent developments of genome editing technologies in Aspergillus the synthesis of heterologous proteins and 
secondary metabolites in the Aspergillus species.  
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Introduction 

Saprophytic filamentous fungi, especially 

Aspergillus genus, play a significant role in industrial 

biotechnology. This genus Aspergillus is consisting of 

over 300 species and have a significant influence on 

food synthesis, industrial biotechnology, and human 

health. The extensively studied genomics and 

metabolic functions of filamentous fungi make them 

extraordinary eukaryotic host for microbial cell 

factories
1,2

. The major advantage of a fungal 

production system involves its exceptional capability 

to synthesise and secrete a various variety of proteins 

and hydrolytic enzymes and its widespread use in 

fermentation technology
3,4

. They can cultivate on 

relatively cost-effective substrates like cellulosic 

biomass and also generate and secrete large number 

of enzymes and secondary metabolites.  

The large number of available whole genomes 

sequence from several filamentous fungal strains 

including Aspergillus spp., has enhanced the 

possibility of genome modifications in filamentous 

fungi
5
. Recent developments in genome manipulation 

technology like, various selection markers, enhanced 

transformation efficacy, and enhanced gene deletion 

proficiency, amongst others
4
, have significantly 

simplified the development of filamentous fungal 

productions hosts 
5
. The advent of genome editing 

technologies like Zinc-finger nucleases (ZFNs) 

technology, transcription activator-like effector 

nucleases (TALENs)  and clustered regularly 

interspersed short palindromic repeats (CRISPR) 

technology has revolutionised the area of filamentous 

fungal metabolic engineering for the production of 

eznymes and other secondary metabolites
6,7 

.  

—————— 
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In this review, we have highlighted recent advances 

in basic and applied elements of on genome editing 

tools especially CRISPR/Cas, technique, its current 

trends, as well as future strain development programs 

in Aspergillus. 

Genome editing in filamentous fungi and DNA double-

stranded break repair in Aspergillus 

Aspergilli are filamentous fungi that reproduce by 

asexual conidiospores and sexual ascospores
6
. 

Aspergillus fungi are distributed ubiquitously in 

different habitats of nature and are widely explored 

scientifically due to their importance in various fields. 

The advancements in molecular biology had made 

Aspergillus a potent substitute for eukaryotic hosts for 

the production of proteins of interest
7
. The industrially 

utilized strains of Aspergilli are improved beneficially 

with molecular tools so that the protein production 

can be controlled during transcription, post 

transcription, translation, and post-translation levels. 

Several transformation techniques has been 

developed for Aspergillus like electroporation
8
, 

biolistic transformation
9
, and Agrobacterium-

mediated transformation
10

 were successfully done in 

Aspergillus. The introduced DNA will multiply by 

genome integration or replicate individually. 

Hygromycin, oligomycin, bleomycin, and phleomycin 

are commonly used antibiotic selection markers for 

Aspergillus
11

. Whereas nutritional selection markers 

include acuD
12

, amdS
13

, prn
14

, trpC
15

, pkiA
16

, pyrG
17

 

and argB 
18

. 

Genetic engineering deals with genome manipulation 

by inserting new genes, deleting/disrupting existing 

genes, and inserting or repairing point mutations. The 

selective genetic alterations are directly related to 

cell-based DNA repair. Various pathways are 

employed by eukaryotic cells to settle the DNA 

damage. DNA damage may be single-stranded breaks 

(SSBs) or double-stranded breaks (DSBs)
19

. DSBs 

being the lethal one, cells reverse this damage using 

NHEJ (Non homologous end joining), MMEJ 

(Microhomology mediated end joining), and HDR 

(Homology directed repair)
20

. These pathways are 

widely exploited for genome editing
21

. DNA is one of 

the complex macromolecules which is continuously 

exposed to harmful agents
22

, and hence the genome 

stability strongly relies on the DNA repairing tools – 

NHEJ
23

, MMEJ
24

 and HDR
24

. NHEJ ties the ends of a 

DSB in a fallible way, with insertions and deletions. 

HDR copies the sequence from a repair template with 

flanking sequence homology for error-free DSB 

repair. In comparison, MMEJ makes use of short 

flanking regions (5-25 bp) of microhomology to 

repair DSB in DNA. 

NHEJ and HDR are the most common type of tools 

for DNA repair in eukaryotes
25

. Ku heterodimer 

(Ku70 and Ku80), DNA dependent protein kinase 

catalytic subunit, and DNA ligase IV-Xrcc4 are the 

components of the complex which arbitrate the NHEJ 

process
26

 resulting in random integration by the 

ligation of DNA strands sharing no homology
27

. The 

DSBs were identified by the Ku heterodimer which 

prevents further damage and signals to summon other 

units of the NHEJ pathway
28

. The strains of 

Aspergillus have enormous applications in industrial 

and clinical fields which are usually mutants lacking 

the Ku70 or Ku80 of NHEJ pathway. These fungal 

mutants are easily utilized for genetic modifications 

with better results due to the elevated frequency of 

homologous integrations. Genetic modifications by 

erasing NHEJ pathway components trigger the HDR 

pathway in mutants
29

. The deletion of human Ku 

heterodimer genes homologous in various Aspergillus 

species has been shown to activate the HDR pathway.  

Targeted integration of genes is achieved in HDR 

by the interaction between homologous sequences 

aided by the RAP and Rad proteins 
27
. In HDR 3′ 

overhangs are created by resection complex to which 

RPA is inducted which is further replaced by RAD51 

supported by Rad52. Rad51 along with Rad55 and 

Rad57 helps in strand invasion. However, the HDR 

pathway is not much capable of doing DNA repair in 

A. niger
29

. MMEJ is also known as the 'alternative

NHEJ' pathway and shares the conditions of the

NHEJ and HDR pathways. MMEJ begins with

resection and anneals the exposed microhomologies

by deleting the intermediary sequence. MMEJ usually

ends up with deletions, and sometimes results in

translocations and insertions
30

. The deletions

occurring in MMEJ are usually less protractile, as the

MMEJ pathway uses only a short length of homology

(5-25 bp) for repair 
28

.

Homologous recombination is an important and 

extensively adopted genomics tool for the production 

of gene knock-out mutants. However, the generation of 

homologous transformants in filamentous fungi like A. 

niger is tedious, as the frequency of homologous 

recombination is meagre in contrast to the 

Saccharomyces cerevisiae 
31

. One hundred percent 

increase in homologous recombination frequency was 

reported in Neurospora crassa
26

 by inactivating various 
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units of NHEJ pathway, and later the same strategy 

was well executed in other filamentous fungi
27

. MMEJ 

supports class switch recombination as it is 

independent of Ku and Lig D. The microhomology 

dependent MMEJ makes commodities that eliminate 

sequences among the microhomologies
20

. The list of 

Aspergillus species genetically modified by DNA 

repair mechanism is given in Table 1
12,28,31,34-73

 

Engineered nucleases 

Nucleases are enzymes that facilitate the cleavage 

of the phosphodiester bonds between nucleotides in 

DNA and RNA and are named as deoxyribonucleases 

(DNases) and ribonucleases (RNases), respectively
74

 

Nucleic acids can degrade single-stranded nucleic 

acids, double-stranded nucleic acids, or both. 

Exonucleases attack the 3′or the 5′ends of nucleic acid 

but not both. The endonucleases cleave the nucleic 

acid chain intermediately. Restriction enzymes are 

specific endonucleases that cut DNA at specific 

recognition sequences.  

The capability to alter the gene and protein 

performance is one of the key weapons used by 

molecular biologists to manipulate DNA for genome 

editing. This solely depends on the specificity of 

engineered nucleases that cleave precise genomic 

sequences in the target. Nucleases are the most 

successful reagents used in genome editing that 

specifically make DSBs in the target site
75

. The main 

nucleases used for genome editing are - Zinc Finger 

Nucleases (ZFN), Transcription Activator-like 

Effector Nucleases (TALEN), Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) 

nucleases, and Mega Nucleases (MN)
76,77

. These 

nucleases make DSBs in specific gene sequence and 

the cell will repair these DSBs by NHEJ or HDR 

pathways. 

Zinc finger nucleases 

ZFNs contains a DNA-binding domain, derivative 

of zinc-finger proteins (transcription factors), and 

coupled to the nuclease domain of FokI, a Type IIS 

restriction enzyme
78

. Each zinc finger (up to 6 

fingers) of the DNA-binding domain is intended to 

identify and bind three nucleotides in the DNA 

sequence of the gene of interest. Similar to the parent 

nuclease, ZFNs have to dimerize to attach in DNA 

and cut it amid the binding sites
79

, triggering the DNA 

repair tools – NHEJ or HDR. Natural FokI, secluded 

from Flavobacterium okeanokoites having DNA-

binding domain at N terminal and DNA cleavage 

domain at C terminal, identifies the 5′-GGATG-3′ 

sequence and cut delinquently the sense and antisense 

strand respectively later 9 nucleotides downstream 

and 13 nucleotides upstream of the recognition site
80

. 

However, when linked with zinc fingers the cleavage 

domain can be guided to a promptly preferred DNA 

sequence of our interest which will be different from 

that of FokI
81

. Researchers have developed various 

combinations of ZFNs to identify a large extent of 

target DNA sequences
82

. Monomers of ZFNs have to 

dimerize to become active
83

. The linker length 

between the nuclease domain and zinc finger and the 

spacer length among the binding sites are important in 

the formation of the dimer
84

. The higher time and 

energy consumption for developing ZFNs and its 

limited target specificity restricts the usage of ZFNs 

in genome editing. The use of ZFNs in Aspergillus is 

summarized in Table 2
62,85-92

. 

Meganucleases 

Meganucleases, also noted as homing endonucleases, 

usually identify 12 to 40 base pairs in the recognition 

Table 1 — Genetic modification by DNA repair in Aspergillus strains 

DNA repair tool Mechanism Organism with ref. 

Non-

homologous 

end joining 

Deletion of Ku 

heterodimer 

(Ku70/Ku80) 

A. nidulans41,42 

A. fumigatus43,44 

A. sojae45-48 

A. oryzae49-50

A. niger49,50

A. parasiticus51

A. flavus51

A. chevalieri var. intermedius52

Neurospora strains28

H. jecorina53

Inactivation of 

ligD 

A. oryzae54-56

A. luchuensis57

N. crassa58

Homologous 

recombination 

Agrobacterium 

tumefaciens–

mediated 

A. awamori12,59

A. fumigatus
60

A. giganteus61

A. carbonarius62

loxP site A. oryzae56

A. nidulans69

A. fumigatus
70

Cas9 A. niger34,38,39,71

A. aculeatus
34

A. brasiliensis
34

A. carbonarius
34

A. luchuensis
34

A. tubingensis
34

A. fumigatus
37

A. carbonarius
62

glaA deletion A. niger72 

Microhomology

-mediated end 

joining

CRISPR 

mutagenesis 
A. fumigatus

36,40

A. niger73

A. oryzae35
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site of the target DNA sequence
93

 and are therefore 

the most precise restriction enzymes existing 

naturally
94

. Meganucleases are found in phages, 

bacteria, archaebacteria and eukaryotes, and the same 

can be used to alter bacterial, fungal, animal or plant 

genome
93

. Even if meganuclease owns high level 

accuracy and a little toxicity, its target spectrum is 

narrow. Besides, the designing of meganucleases for 

interesting targets is difficult as the DNA-binding 

domain and nuclease domain is disheveled
95

. 

Depending on sequence and structure motifs 

meganucleases are classified into five families. The 

target specificity of meganucleases has been tried to 

increase by mutating definite residues. 

Various research groups have used I-CreI and 

I-SceI as a platform to create mutants with different

DNA recognition specificity
96

. The meganucleases 

used in genome editing create DSBs in the target 

DNA sequence and further activates the HDR DNA 

repair pathway
97

. I-AniI is a homing endonuclease 

from A. nidulans used for genome editing
98

. 

Engineered meganucleases have been used to 

introduce homologous recombination yeast. The 

meganuclease genome editing
97

 was established well 

from the experimental data obtained from budding 

yeast . However, to the best of our knowledge, we 

could not find any reports stating the use of 

meganucleases in Aspergillus. 

Transcription activator-like effector nucleases 

TALENs are structurally similar to that of ZFNs; 

with only disparity in the DNA binding domain which 

arrives from transcription activator-like effector 

(TALE) proteins from Xanthomonas, a plant 

pathogen
99

 The DNA-binding domain is a squad of 

subdomains with amino acid repeats of approximately 

34 amino acids with each recognizing a single base 

pair. The specificity of TALE is driven by the 12
th
 to 

13
th
 amino acids that are hypervariable and are known 

as the repeat variable dinucleotide – RVD
100

. These 

RVD decides the binding to the probable nucleotides, 

denoting that one TALE sticks to single base pair 

only. The RVDs denoted as HD, NG, NI, and NN 

match up with C, T, A, and G, respectively (Joung 

and Sander, 2013). The TALE domain can be fused 

with various nuclease domains a variety of proteins 

including the FokI
101

. TALENs dimerize to bind the 

target DNA sequence and create a cut in DNA, 

resulting in mutations. 

TALENs are known to generate heterogenous 

overhangs which elicit an increased rate of deletions 

in the target sequence
90

. TALENs are sometimes 

chosen over ZFNs due to ease in delivery, improved 

binding to the site of interest, and suppler than triplet 

confined zinc finger proteins. On the other hand, the 

TALE cloning with desired sequences is very much 

challenging. TALENs with nonRVD variations 

(4
th
 and 32

nd
 residues) have better activity than 

conservative TALENs and these known as Platinum 

TALENs
102

. TALEN induced double-stranded breaks 

were made in yeast to make the mutants
103

. However, 

there are not many reports on the TALEN induce 

double-stranded break in Aspergillus. 

CRISPR nucleases 

The latest progress in the area of genome editing is 

the recognition of clustered regularly interspaced 

short palindromic repeats (CRISPR) along with the 

CRISPR associated (Cas) protein and is yet faster as 

well as commutable than the ZFN, TALEN and 

meganucleases
104

. Hence, the same has been 

described extensively in the following sections. 

CRISPR/Cas9-mediated genome editing 

CRISPR-Cas9 is the current and extensively used 

method for genome modification
91

. This is part of a 

defense system seen in bacteria and archaea
105

. These 

small DNA repeats separated by spacer DNA were 

first identified by Ishino et al.
106

, in E. coli. Later in 

2005, various researchers identified that these small 

DNA repeats are part of the immune system as the 

spacer DNA is of plasmid or viral origin
107

. The 

CRISPR–Cas systems arbitrate protection against 

breaching genetic components through the following 

steps — adaptation, expression and interference. 

Small DNA fragments, homologous to plasmid/virus, 

were incorporated into the CRISPR site in the 

adaptation step. In the expression step long primary 

transcript of CRISPR site (pre-crRNA) is produced 

and refined into short crRNAs, and in the final stage 

the targeted alien genome particle is destroyed
108

. 

CRISPR-associated proteins (Cas) usually possess 

nuclease, RNA binding, polymerase and helicase 

domains and are ciphered by presumed operons next 

to CRISPR sequences
109

. This makes them essential 

techniques for genome manipulation. Depending on 

Table 2 — Engineered nucleases used for genome editing in Aspergillus 

Nucleases Aspergillus strain with refs. 

Zinc Finger Nucleases A. nidulans85-89 

Meganucleases -(no reports on Aspergillus) 

TALEN A. oryzae90 

CRISPR/Cas9 A. niger98

A. fumigates92

A. carbonarius62
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the involvement of Cas proteins, the CRISPR/Cas 

machinery was subdivided into Type I, II, and III
109

. 

The simple and broadly used type II CRISPR 

system
110

 made up of a Cas9 nuclease, a target-

recognizing CRISPR RNA (crRNA) and a non-coding 

trans-activating CRISPR RNA (tracrRNA) and 

RNaseIII
111

94. Later, crRNA and tracrRNA were 

connected together to make single guide RNA 

(sgRNA)
76

 (Fig. 1). The Cas9-sgRNA complex 

creates a break (DSB) in the intended DNA 

constituting a 20 bp sequence corresponding to the 

protospacer of the sgRNA and a downstream 

protospacer adjacent motif (PAM) sequence
112

. 

Typically, PAMs are simply a stretch of a few 

nucleotides and vary among variants of the 

CRISPR/Cas system
113

. The sgRNA navigates Cas9 

protein (having two DNA binding domains HNH and 

RuvC) to bind and cut the target sequence. The HNH 

domain cut the DNA strand dependent on crRNA, 

whereas the cleavage caused by the RuvC domain is 

independent of crRNA
114

. Thus, sgRNA identifies the 

20 bp sequence upstream of PAM (at the 3′-end), and 

Cas9 create blunt end breaks in the DNA 4 bp 

upstream of PAM
91

. Then the genomic DNA 

instigates ascetic restoration via NHEJ or HDR 

pathway which has discussed earlier.   

Various species have been subjected to genome 

editing extensively by using CRISPR/Cas9 
115

, with 

numerous applications in various fields
116

. 

CRISPR/Cas9 machinery helps to explore new levels 

of fungal research including filamentous fungi
117

. The 

technique was first initiated in Saccharomyces 

cerevisiae
118

 and later on Trichoderma reesei
112

, N. 

crassa
119

 and A. nidulans
34

. Thereafter, the 

CRISPR/Cas9 genome editing technique has been 

used for altering the filamentous fungi genome, 

especially Aspergillus. 

For fungal genome editing, the Cas9 codon is 

modified, a NLS signal is joined at 5′ and 3′ eds of the 

the Cas9 gene, and linked with sgRNA
34,112,120,121

. 

Usually, the Cas9 expression in the fungus is 

confirmed by the co-expression of a fused green 

fluorescent protein with Cas9
122-125

. Cas9 gene is 

usually transcribed by powerful constitutive 

promoters (trpC, gpdA, TEF1, xlnA, Ham34, amyB, 

niiA, Otef)
34-36,126-129

. However, for better 

controllability in the fungal system Cas9 is also 

transcribed under inducible promoters, such as Pcbh1 

and PniiA
112,127

. Optimization of sgRNA is also 

important in fungal genome editing
130

. Functional 

sgRNA can be transcribed in vivo under the promoters 

of RNA polymerase II and III
119,131

. For in vitro 

transcription of functional sgRNA, U6 and T7 

promoters of RNA polymerase III are used and finally 

form the ribonucleoproteins to cute the DNA
36

. 

For the fungal genome editing based on 

CRISPR/Cas system, Cas9 and sgRNA expression 

vectors must be incorporated in the fungal cells. The 

vectors can be delivered either as a single vector 

carrying both Cas9 and sgRNA or as individual 

vectors with each expression cassette of Cas9 and 

sgRNA. The efficacy of both the single and the dual 

vector system has been confirmed in A. fumigates and 

the results showed that the single-vector expression 

system is better in precision and effectiveness
36

. 

Hence, single vector system is preferred in fungal 

genome editing where fungal cells were initially 

transfected with vectors carrying Cas9 expression 

cassettes and further Cas9 positive cells were 

transfected with sgRNA expression 

cassettes
38,39,112,123

. Usually, the fifty percent of the 

CRISPR/Cas9 induced mutations are solitary 

insertions and the remaining are minor deletions up to 

50 bp
131,132

. The CRISPR/Cas9 machinery induced 

gene knockouts are predominantly single-gene 

insertions or small fragment deletions in case of 

Fig. 1 — Schematic description of CRISPR/Cas9 system used for 

genome editing. [CRISPR/Cas9 system is made up of a Cas9 

nuclease, a target recognizing CRISPR RNA and a non-coding 

trans activating CRISPR RNA. The Cas9-sgRNA complex 

generates double strand break in the intended DNA constituting a 

20 bp sequence corresponding to the protospacer of the sgRNA 

and a downstream protospacer adjacent motif (PAM) sequence. 

The CRISPR/Cas9 system activates either NHEJ or HDR pathway 

to repair the break in the DNA] 
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filamentous fungi
133

. The main drawback of the 

CRISPR/Cas9 system is its off-target specificity. PEG 

mediated transfer of stable Cas9 and sgRNA complex 

reduces off-target specificity in filamentous fungi
134

. 

Sequencing techniques such as ChIP, Digenome, and 

GUIDE can be utilized to detect the off target 

points
111,135,136

. Different Aspergillus strains 

engineered by CRISPR/Cas9 are as follows: 

A. niger
38,39,137

, A. oryzae
35

, A. fumigatus
40

,

A. aculeatus
34

, A. brasiliensis
34

, A. carbonarius
34

,

A. luchuensis
34

, A. nidulans
138

, A. luchuensis
139

 and

A. carbonarius
62

.

Implications of genome editing in Aspergillus cell factory 

development 

The advent of CRISPR/Cas9 technology has 

revolutionised the field of filamentous fungal genome 

engineering of various Aspergillus spp.
140

. 

CRISPR/Cas9 technology offer accurate gene editing 

and engineer fungal hosts for desired traits. Modified 

versions of CRISPR/Cas9 enzymes can also be used 

for many applications in epigenetic modification and 

DNA nicking
141

. CRISPR has the capability for 

extensive application in examining the expression of 

fungal genes, especially for the genes responsible for 

the biosynthesis of secondary metabolites. Many of 

the Aspergillus species are efficient producers of 

bioactive natural compounds. Many of the bioactive 

synthesis genes are clustered in a particular locus and 

not expressed under normal cultivation conditions
142

. 

Nonetheless, bioactive metabolites synthesised by a 

variety of cryptic clusters of metabolite genes also be 

elucidated. The advancement of CRISPR/Cas9 

technologies might help as an efficient tool for 

identifying the compounds synthesised by the clusters 

of secondary metabolite gene. While many of the 

recently established CRISPR/Cas9 platform were 

applied mainly for the function-based characterisation 

of variety of filamentous fungal genes, and other 

documented applications are in the development of 

Aspergillus cell factory, bioenergy production and 

investigating gene regulation
143

.  

Implications of CRISPR/Cas9-assisted gene disruption 

Initially advancements in CRISPR/CAS9 

technology in filamentous fungi applied typically on 

creating gene disruption using non-homologous end 

joining (NHEJ) and homologous recombination (HR) 

strategies. The abundance of large number of target 

genes in filamentous fungi makes the rapid 

developments in CRISPR/Cas easy. Typically, this 

genome editing system involves the targeting of genes 

involved in the production of pigments or antibiotic 

resistance genes, because they have observable 

phenoptypes after gene disruption. The different 

pigment synthesis genes that was disrupted involve 

A. nidulans yA gene, A. niger alba gene
34

,

A. fumigates pksP gene and
40

 A. alternate pksA

gene
144

. These findings showed that the most of

NHEJ's gene targeting involved either nucleotide

deletions or insertions at the cleavage site of Cas9

which results in frame shift mutations. Disruption of

coding sequence of target gene by HR involves the

incorporation of a dominant selection marker which

confers resistance to fungi in growth medium.

A. niger cell factory as a typical example

A. niger is the world’s largest producer of citric

acid and is applied in various industries like food and 

pharmaceutical. Advancement in the field of A. niger 

genomics and proteomics greatly enhanced the 

understanding of citric secretion in A. niger. The 

introduction of CRISPR/Cas9 system in filamentous 

fungi enables extremely proficient genome-level gene 

manipulation in A. niger. Nowadays, numerous 

CRISPR/Cas9 genome manipulation techniques were 

introduced in A. niger. Recently Nodvig et al.
34

 

described the foremost CRIPSR/Cas9 genome editing 

in A. niger. They constructed a single plasmid with 

expression cassette for Cas9 and sgRNA with the help 

of RNA polymerase II promoter pgpdA. The 

developed system allows the NHEJ-mediated targeted 

gene disruption. Kuivanen et al.
38,39

 developed a 

sgRNA expression cassette using T7 promoter and 

then sgRNA was co-transformed along with Cas9 

expression construct into the A. niger protoplast. The 

newly constructed gene editing platform was superior 

to attain fast editing of fungal genome, but the 

effectiveness was inclined by the sgRNA stability and 

efficiency of transformation
127

. Zheng et al. (2018)
137

 

introduced U6 promoter for sgRNA and verified the 

efficiency in disruption of gene. All the verified U6 

promoters allowed the transcription of sgRNA and 

subsequent gene disruption but with less 

transformants and low gene disruption efficiency. 

Later, they constructed anew CRIPSR/Cas9 system 

with promoter of 5S rRNA for sgRNA expression
145

. 

This resulted in the 100% gene disruption efficiency 

with homologous recombination. This newly 

developed system has been useful for design of 

chromosome, as established by the insertion of 

multiple genes and deletion of huge fragment of DNA 

to reduce the mycotoxin formation in A. niger. 
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Furthermore, CRISPR/Cas9 based editing of genome 

was applied along with transcriptome technique for 

the production of A. niger galactaric acid. 

Particularly, researchers identified six genes 

responsible for the catabolism of galactaric acid. Then 

they deleted all these genes by homologous 

recombination and found that galactaric acid 

production was blocked in these mutants. Then 

mutants with no galactaric catabolism was selected 

and engineered to enhance galactaric production
38

. 

Huang et al.
146

 developed a series of  single-base 

editing tools that convert cytidine to thymine without 

any double stranded in A. niger. This was done by 

combining cytidine deaminase and Cas9 nickase. 

They disrupted uridine pyrG auxotrophic gene 

(uridine) and pigment gene fwnA with high 

efficiency. 

A. nidulans and A. oryzae cell factories for bioactive secondary

metabolites

A. nidulans was tested as the heterologous host

platform for evaluating the A. fumigatus EAS 

pathway. Ergot producing EAS pathway is absent in 

A. nidulans. Chanoclavine-I was heterologously

expressed by the mutants of A. nidulans transformed

with heterologous genes like dmaW, easF, easE,

and easC from A. fumigatus EAS gene cluster

and the expression of genes are with the help of

native promoters. In order to examine the candidate

genes in the pathway, several A. nidulans mutants

were created by transforming the fungi with different

combination of gene cluster like easE, easC

and dmaW, easF. These mutations studies

indicated the importance of easE and easC for the

production of chanoclavine-I by the conversion of

N-Me-DMAT
147

.

Disruption of gene clusters responsible for 

secondary metabolite production decreases the 

chances of producing unwanted metabolites in the 

host strain. In a modified A. nidulans strain the gene 

clusters for secondary metabolites emericellamide, 

sterigmatocystin, asperfuranone, orsellinicacid, 

terrequinone and monodictyphenone were disrupted. 

pyrG from A. fumigatus was used as the selection 

marker. NR-PKS (Nonreducing polyketide synthase) 

secondary metabolite cluster genes from A. terreus 

were cloned in fragments combined with various 

selection markers, and transferred into the mutant of 

A. nidulans for HR mediated targeted gene integration

and the entire NR-PKS gene cluster was produced.

Asperfuranone (afo) biosynthetic pathway was

introduced in A. nidulans from A. terreus were 

studied. The genes were combined with strong 

promoters which are regulatable. This resulted in the 

finding of order of genes in the asperfuranone 

biosynthetic gene cluster which is foC, foD, and foF 

their role in biosynthesis. Thus A. nidulans is a 

versatile host for the production of fungal secondary 

metabolite gene clusters
148

. A. oryzae is another 

widely used expression host for heterologous protein 

because of GRAS status and exceptional secretion 

machinery for secreting various hydrolysing enzymes. 

Several non-ribosomal peptides, polyketides, 

terpenoids were heterologously expressed in modified 

strains of A. oryzae
149

. Trypacidin biosynthetic gene 

cluster was constructed in A. fumigatus with help of 

CRISPR/Cas9 and computational techniques. 

In this study they have used doxycycline-inducible 

tetON system for Cas9 gene expression
92

. Recently, 

Roux et al.
150

 established a CRISPR/dLbCas12a-

VPR-based gene disruption system and established 

the expression of a fluorescent reporter in A. nidulans. 

Then, they directed the native NRPS gene 

(nonribosomal peptide) micA in the chromosome. 

This enhanced the production of the secondary 

metabolite, microperfuranone. Lastly, multi-gene 

CRISPRa resulted to the detection of the mic gene 

cluster product as dehydromicroperfuranone. They 

also investigated the different parameters that affect 

the efficiency of CRISPRa in fungi. 

Conclusion 
Various species of Aspergillus possess potential 

characteristics and thereby exploited commercially 

for the synthesis of various organic acids, 

enzymes and recombinant proteins. Various genome 

editing techniques have been established in 

filamentous fungi which enhances the metabolite and 

enzyme production. To further improve the 

production capability and to study physiological 

aspects of Aspergillus spp. efficient implementation 

of genome editing tools are necessary. Genome 

editing with the ZFN, TALEN, mega nuclease, and 

especially CRISPR is an emerging field consistently 

yielding productive results by manipulation of the 

Aspergillus genome. These state-of-art techniques 

have contributed significantly to the enhancement in 

the expression of target genes and pathway.  
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