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In this paper, a dedicated recursive least squares algorithm combining forgetting and weighted factors (FW-RLS) is 
proposed to identify parameters for the second-order K-T equation of marine robot in horizontal motion. First, the Abkowitz 
model in horizontal motion is converted into an equivalent second-order K-T equation to reduce the number of identification 
parameters. Second, a dedicated FW-RLS algorithm based on the equivalent second-order K-T equation is proposed. 
Finally, the superiority of the FW-RLS algorithm is verified by comparative numerical simulations, which show the  
FW-RLS algorithm has the online identification capability, higher identification accuracy, and faster convergence rate 
compared with the traditional batch least squares method. 
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Introduction 
With the development of communication 

technology and artificial intelligence, marine robots 
have been increasingly used in civil, scientific, and 
military fields1-4. At present, the motion control of the 
marine robot, especially its horizontal motion control, 
is essential for accurate control5-8. It is well known 
that establishing a precise motion model of a marine 
robot is the basis for achieving the accuracy of motion 
control9-10. However, when the marine robot operates 
in a complex maritime environment, its dynamics  
will be influenced by hull shape and external 
environmental factors such as sea wind, waves, and 
current flow. Therefore, the motion model of the 
marine robot is complicated11. For this reason, how  
to obtain accurate motion models of marine robots 
deserves further research. 

Currently, the following methods are available to 
obtain the ship’s motion model parameters: self-
propelled model test12, direct numerical simulation 
methods based on computational fluid dynamics 
(CFD)13, and parameter identification (PI)14-16. Among 
them, the self-propelled model test requires special 
test equipment and a large amount of experimental 
data. Apart from that, the CFD method is used to 
obtain the ship’s motion parameters in a purely 

numerical way by first solving the equations of fluid 
motion and rigid body motion jointly and then 
numerically simulating the ship’s maneuvering 
motion in a time-stepping method. However, the CFD 
method is time-consuming. Besides, the PI is a 
method of considering the ship motion as a dynamic 
response system, and the system inputs (rudder angle, 
etc.) and outputs (speed, angular velocity, etc.) are 
obtained by maneuverability experiments17. Based on 
the above input and output data, the coefficients in the 
mathematical motion model are accessed using the 
system identification algorithm. This approach has 
powerful capabilities in hydrodynamic coefficient 
prediction and provides a powerful tool for ship 
maneuvering motion dynamics modeling18-19.  

Traditionally, the commonly used identification 
techniques in marine engineering include the extended 
Kalman filter20, support vector machine15-18, least 
squares (LS) 21,22, and so on. In particular, the LS 
algorithm has the advantages of simplicity and 
robustness, which is the most widely used 
identification method23. For instance, the weighted 
least squares method is proposed to speed up the 
convergence of the identification algorithm24. 
However, when data length is large in the traditional 
LS, it causes data saturation, making the algorithm  
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lose the ability to correct. Therefore, the LS with 
forgetting factor is proposed to overcome data 
saturation25,26. It is expected that the algorithm 
performance will be further enhanced if both the 
forgetting factor and the weighted factor are integrated 
into the LS algorithm. To the best of our knowledge, 
the recursive least squares algorithm combining 
forgetting and weighted factors (FW-RLS) has not 
been applied to the identification of motion parameters 
of marine robots, so it is worthy of an in-depth study. 

In this paper, a dedicated FW-RLS is proposed to 
implement the parameter identification for the marine 
robot's K-T equation in horizontal motion, and 
numerical simulations are presented to demonstrate 
the superiority of the algorithm. The highlights of this 
paper are as follows: 1) A second-order K-T equation 
that contains only four parameters is transformed 
from the Abkowitz model with many parameters. 
Then it is utilized for parameter identification of 
marine robot’s maneuvering equation to obtain the 
heading hydrodynamic characteristics with fewer 
parameters to be identified; and 2) A dedicated FW-
RLS algorithm is proposed to identify the inherent 
parameters of the marine robot’s K-T equation in 
horizontal motion, which has faster convergence 
speed, slight overshoot, high identification accuracy, 
and strong predictive capability. 
 
Materials and Methods 
 

Maneuvering model 
For a better description of the motion of marine 

robot, the Abkowitz model will be used as the basis to 
construct its maneuvering equation in horizontal 
motion. The Abkowitz model views the vessel as a 
whole part, and the forces acting on the vessel as a 
function of the motion state variables and control 
variables and expands them in the Taylor series form, 
as follows: 
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where, m  is the marine robot’s mass; Gx  is the 

vertical coordinate of marine robot’s center of gravity; 
, ,u v r  denote the surge speed, sway speed, and yaw 

angular velocity, respectively; * * *, ,X Y N are the fluid 

accelerations; 
1 2 3, ,f f f  are nonlinear functions of the 

velocity (angular velocity) and rudder angle. 
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Remark 1: The above model is from the Remote 
Environmental Monitoring UnitS (REMUS) model27. 
The REMUS was developed by the Woods Hole 
Oceanographic Institution, and is a small autonomous 
underwater vehicle that was designed to work in near-
shore waters. 

From equations (1)-(4), it can be seen that the 
Abkowitz model contains nonlinear terms, which 
cause difficulties in parameter identification. 
Therefore, ignoring the nonlinear terms, the Abkowitz 
model is transformed into a horizontal second-order 
KT model by combining the second and third 
equations in (1) and is shown below: 
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where, 
1 2, ,T T K  and 

3T  are the maneuvering indices, 

which are expressed as: 
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For further parameter identification, the variables 

in equation (5) are treated using the differentiation 
method, namely: 
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where, h is the time interval between two sample points; 
( )y k is the increment of the yaw angle at moment k . 
Therefore, from equations (5) and (7), it is obtained that: 
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Equation (8) is rewritten in matrix form and can be 
expressed as Y ( ) ( )H qTk k= , where 
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2 1 3[ ] TT T K T  … (10) 

( ) 2 ( 1) ( 2)Y ( )k y k y k y k      … (11) 
 
Dedicated FW-RLS algorithm 

The core of the FW-RLS algorithm is based on the 
traditional batch least square (BLS) algorithm, so the 
following criterion function for the BLS algorithm is 
constructed as: 
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where, M is the number of data sets used for 
parameter identification; ( , )M k  is the factor which 
is constructed as: 

( , ) ( )LM kM k k   … (13) 

where,   represents the forgetting factor and satisfies 

0 1  ; ( )L k  means the weighted factor, which is 
positively defined and well selected according to the 
different time stamp k . 

Remark 2: When the weighted factor ( )L k  is not 

considered, the forgetting factor   makes the weight 
of the data change with the time stamp, i.e., the 
weight of the data at k  decays by   compared to 

1k  . When 1k  , the weight value is minimum and 
is 1M  ; when k M , the weight value is maximum 
and is 1. Therefore, the forgetting factor can not only 
overcome the effect of data saturation, but also 
suppress the amount of overshoot at the early stage of 
identification, leading to a smoother parameter 
identification process. 

Remark 3: The weighted factor ( )L k  is used to 
obtain the average characteristics of the system and 
adjust the convergence speed by taking a different 
value at each time stamp k. 
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The derivation of the FW-RLS algorithm is based 
on the following steps: 

i. Let 
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Then, it can be converted as: 
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iii. Substituting (16) into (17), it is obtained that: 

1 )
ˆ ˆ

ˆ ( 1) ( ) ( 1)
( ) ( )[ ( ) ] ( ) (YL

 
Q

q q
q

H
H

TM M M
M M M M M 

  

 … (18) 

iv. To avoid the operation of the inverse matrix of 

Q , the following variable is constructed: 
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Lemma 1 (Matrix inversion lemma) Let 
, , ,n n m m n m m n      A B C D , and the 

matrices A  and B  are invertible, then the following 
equation holds: 

1 1 1 1 1 1 1( ) ( )A C B D A A C B D A C D A           … (20) 

Therefore, (19) can be converted to the following 
equation: 
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v. From equations (18), (19), and (21), the core of 
the dedicated FW-RLS algorithm is finally expressed 
as follows: 
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Results and Discussion 

In order to verify the performance of the proposed 
FW-RLS algorithm, the following simulation results 
will be presented to visualize the superiority of the 
FW-RLS algorithm. 
 

Modelling and simulation parameters 
The following simulation is designed based on the 

REMUS model, whose modeling data are shown in 
Table 1. It is worth mentioning that in this simulation, 
the rudder angle to the right is specified as positive,  
so the values of uuY  and 

uuN  are taken as 

kg/(m rad)9.64   and kg/rad6.15  instead of 

kg/(m rad)9.64   and kg/rad6.15  .  
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Table 1 — Model parameters of the REMUS marine robot 

Parameter Value Units 
m  29.9 kg  

Gx  0 m  

u  1.5 m s  

zI  3.45 2kg/m  

vY  -35.5 kg  

rY  1.93 kg m/rad  

uvY  -28.6 kg/m  

urY  5.22 kg/rad  

uuY  -9.64 kg/(m rad)  

vN   1.93 kg m  

rN   -4.88 2kg m /rad  

uvN  -24 kg  

urN  -2 kg m/rad  

uuN  6.15 kg/rad  

 

To integrate the parameters in the maneuvering 
model and represent the relationship between rudder 
angle and yaw angular velocity more intuitively, the 
REMUS model will be transformed into the 
equivalent second-order K-T equation as shown in 
equation (5). With the help of equation (6), its 
maneuvering equation in horizontal motion can be 
expressed as: 

2.2256 2.9686 2.2071 2.2309 r r r       … (23) 

The parameters of the FW-RLS algorithm in the 
simulation are listed in Table 2. 
 
Zigzag maneuvering 

This subsection shows the parameter identification 
results when the rudder is adjusted as a zigzag shape 
and neglecting the environment disturbance. 

In Figure 1, the variation of the yaw angle of 
REMUS is shown when the rudder is adjusted in 
20/20 deg zigzag shape, namely, when the yaw angle 

exceeds 20  with the help of 20  rudder angle, the 

rudder angle is changed as 20  , and vice versa.  
In addition, to better reflect the performance of the 

FW-RLS algorithm, the recursive least squares (RLS) 
method will be used as a benchmark, where the 
difference between these two algorithms is that the 
RLS method has no weighted factor and forgetting 
factor, and ( , )M k  is chosen as 1.  

Table 2 — Simulation parameters 

Parameter Value Units 

M  20 s  

dt  0.1 s  

P  1010eye(4) \  

(0)q  10-10[1;1;1;1] \  

  0.999 \  

L( )k  20 \  
 

 
 

Fig. 1 — Zigzag maneuvering results regarding rudder angle and 
yaw angle 
 

 
 

Fig. 2 — Identification results for 1T  and 
2T

 
 

The results of parameter identification using  
FW-RLS and RLS are shown in Figures 2 & 3. The 
figures show that both algorithms can achieve parameter 
identification for the maneuvering model. However, 
FW-RLS has a faster convergence rate and a minor 
overshoot than RLS. Taking 3T  as an example, RLS 

costs about 4 s  to converge and its overshoot is 7.2 , 
while FW-RLS takes only 1.6 s  to converge and its 

overshoot is only 0.84 . Furthermore, Figures 4 & 5 
show the error curves of parameter identification; where 

,  e identification realX X X  1 2 3, , ,X T T K T . It can be 
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seen that FW-RLS has faster convergence rate and 
higher identification accuracy than RLS. 
 
Algorithm predictive ability 

To verify the predictive ability of the algorithm, the 
zigzag maneuvering with different rudder angles was 
used and the corresponding identification data were 
obtained, as shown in Table 3. Without loss of 
generality, rudder angles are chosen as 10 , 15  and 20 . 

Additionally, the real values in Table 3 are obtained by 
equation (6). As can be seen from the table, the difference 
in the parameters obtained from the identification against 
different rudder angles is within 0.01 . 

Ulteriorly, to visualize the predictive ability of the 
algorithm, the maneuvering equation is constructed 
using the identification results obtained by different 
rudder angles, as shown in Figure 6. It can be 
visualized from the figure that identification curves 
showed little difference from the actual curves. 
Furthermore, Figure 7 shows the error curves of 
Figure 6, where   e identification real  , and it can be 

 
 

Fig. 3 — Identification results for 
3T  and K  

 

 
 

Fig. 4 — Identification errors for 
1T  and 

2T
 

 

 
 

Fig. 5 — Identification errors for 
3T  and K  

 

 
 

Fig. 6 — Algorithm prediction in sinusoidal shape maneuvering 
 

 
 

Fig. 7 — Algorithm prediction errors in sinusoidal shape 
maneuvering 
 

Table 3 — Parameter identification with different maneuvering 
rudder angles 

Parameter 1
1  ( )sT   2

2  ( )sT   2
3  ( )sT   3 ( )sK   

10    2.2293 2.9718 2.2112 2.2305 

15    2.2265 2.9694 2.2082 2.2308 

20    2.2209 2.9647 2.1020 2.2315 

25    2.2251 2.9682 2.2066 2.2310 
Real Value 2.2256 2.9686 2.2071 2.2309 
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seen that the errors of the yaw angles from the models 
with identification parameters are within 2 , which 
shows that the FW-RLS has the good predictive 
ability and identification accuracy. 
 

Conclusions 
To obtain the parameters of horizontal 

maneuvering equations of marine robot, FW-RLS is 
proposed in this paper for parameter identification of 
the maneuvering equation. Firstly, the second-order 
K-T equation in horizontal motion, which has only 
four parameters to be identified, is used as the marine 
robot’s maneuvering equation. Secondly, with the 
help of the traditional batch least squares method, the 
FW-RLS algorithm is proposed. Finally, the 
superiority of the FW-RLS algorithm is verified by 
numerical simulations. Namely, the convergence rate 
of the FW-RLS algorithm is twice as much as the 
RLS algorithm, and the overshoot is about one-tenth 
of the RLS algorithm. Moreover, FW-RLS has higher 
identification accuracy and better predictive ability.  

Nevertheless, the current algorithm validation is 
only by numerical simulation, so the algorithm’s 
performance will be further verified in the 
experiments in the future. In addition, the effect of 
environmental disturbance is not considered in the 
horizontal second-order K-T equation, which will 
degrade the modeling accuracy to some extent, so the 
subsequent work will take the disturbance into 
account to further improve the modeling accuracy. 
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