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Sea-surface target detection is investigated for the visual image-based autonomous control of an Unmanned Surface 
Vessel (USV). A traditional way is to dehaze for sea-surface images in the previous target detection algorithms. However, it 
would cause a problem that the image dehaze performance and detection speed are difficult to be balanced. To solve the 
above problem, a YOLO (You Only Look Once) based target detection network with good anti-fog ability is proposed for 
sea-surface target detection. In this proposed method, the target detection network is trained off-line to obtain a good anti-
fog ability and the target detection is performed on-line. A hazed sample generation model is built based on atmospheric 
single scattering inverse model to obtain sufficient samples for the off-line training in the proposed method. And then, the 
target detection network is trained based on the generated samples to obtain good anti-fog ability according to a new 
learning strategy. Finally, comparative experimental results demonstrate the effectiveness of the proposed target detection 
algorithm. 
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Introduction 
Sea-surface target detection is one of the core 

technologies of autonomous control of an Unmanned 
Surface Vessel (USV)1-3. In the sea-surface 
environment, the images collected by the vision 
system of USV are usually foggy. At present, target 
detection of foggy images always includes two steps, 
i.e., dehaze at first and then target detection4. There 
are mainly two methods to process hazed images  
at present5,6, including dark channel prior and  
neural network. 

An image dehaze method is proposed based on 
dark channel prior7, and then some improved versions 
of the dark channel prior algorithms, e.g., guided 
filtering method, were proposed successively in He et 
al.8. These algorithms have good performances in 
terms of dehaze, but it is not suitable for visual image 
processing for USVs due to the real-time requirement. 
Cai et al.9 proposed the first deep learning-based 
dehaze neural network named Dehaze-Net. In this 
method, images are dehazed by integrating the 
propagation and mapping mode of dehaze medium 
into the network structure, which presented good 
dehaze performance, but images cannot be real-time 
processed. A lightweight dehaze network named 
AOD-Net (All-in-One Dehazing Network) is 

proposed10. In addition, Wang et al.11 proposed the 
SC-R-CNN (Scene Classification Region 
Convolutional Neural Network) to detect objects in 
foggy weather. This algorithm was applied to satellite 
remote sensing images of sea surface on foggy 
weather to test the performance of the developed 
algorithm. 

YOLO (You Only Look Once), as the 
representative of the one-stage algorithm, has good 
detection speed12,13. A target detection algorithm was 
provided by combining with DenseNet and YOLOv3 
to improve the detection accuracy for USVs under 
different environment conditions14. An improved 
YOLOv3 based sea-surface target detection algorithm 
was proposed for USVs15, which can provide a good 
balance between the detection speed and detection 
accuracy. In order to improve the YOLO network to 
obtain good anti-fog ability, but not to add extra 
computation burden, a common way is to find suitable 
and sufficient samples to train the YOLOv3 network. 
However, most of the samples used for sea-surface 
target detection are fog-free. In addition, sea-surface 
images are affected by many factors, including fog 
concentration, different target objects. As a result, it is 
difficult to find suitable and sufficient training 
samples for the YOLOv3 with good anti-fog ability. 
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According to the above analysis, a YOLO based 
target detection network with good anti-fog ability is 
developed for autonomous control of USVs under 
foggy environment so as to obtain good balance 
between the detection accuracy and detection speed, 
where the target detection network is trained to off-
line obtain the anti-fog ability first and then target 
detection is performed on-line. In order to overcome 
the problem of the insufficient samples, a hazed 
sample generation model is built based on 
atmospheric single scattering inverse model, where 
sea-surface images under fog-free condition are hazed 
and transformed into the samples with different 
visibilities. Then, the target detection network is 
trained based on the generated samples to obtain good 
anti-fog ability, where a new learning strategy is 
obtained by the single target detection network 
YOLOv2, and then this strategy is used to train the 
YOLOv3 with multi-scale mapping target detection 
network, to overcome the difficulties in anti-fog 
enhancement learning in the YOLOv3. Finally, 
comparative experiments are performed on many 
hazed images to verify the advantages of the 
developed scheme in terms of detection accuracy in 
comparison with other traditional schemes. 
 
Materials and Methods 
 

Procedures of the proposed target detection method 
At present, dehaze preprocessing is always used for 

the target detection in a sea-surface image obtained 
under fog condition. However, the balance between 
the dehaze performance and detection speed should be 
considered when adopting this strategy to detect sea-
surface target. Specifically, the dehaze method with 
fast processing speed has poor dehaze effect, and vice 
versa. In order to meet the real-time requirements of 
autonomous control of USVs and obtain satisfactory 
detection accuracy, a YOLO based target detection 
network with good anti-fog ability is developed in this 
paper, shown as Figure 1. 

The description about the procedures is given as 
follows: 

(1) The samples with different visibilities are 
generated through images without fog under the 
action of a suitable model. 

(2) The target detection network YOLOv3 with 
multi-scale mapping has good detection performance. 
However, since YOLOv3 has a complex structure and 
strict requirements on training samples, it is difficult 
to obtain good learning strategy if directly training 

YOLOv3 with the samples. In this paper, YOLOv2 
with relatively simple structure is trained off-line 
according to the generated samples to obtain a 
satisfactory learning strategy, and then the strategy is 
also used to train YOLOv3 off-line. 

(3) YOLOv3 after training is used to on-line detect 
surface target according to the new images. 
 
Generation of training samples 

The existing methods to generate fog-scene images 
includes confrontation neural network, virtual scene 
construction (or special simulator), and atmospheric 
single scattering model. Among these methods, the 
atmospheric single scattering model can establish the 
mapping relationship between fog-free and fog 
images with known 3D information by constructing 
the imaging relationship of light source, object, 
medium and camera16. 

Here, to obtain the samples to train the target 
detection network to have anti-fog ability, a fog-scene 
image generation method based on the atmospheric 
single scattering model combined with the structure 
characteristics of sea-surface images. At first, it 
expounds the principle of generating fog-scene 
images by the atmospheric single scattering model 
and then the approximate distance of each pixel 
relative to the shooting position is obtained by 
analyzing the specific structure characteristics. 
Finally, the distance information is used to generate 
fog-scene images in different contrast ratio, treated as 
samples. 
 
(1) Atmospheric single scattering model 

The atmospheric single scattering model is 
expressed by the following equations9,17 

 

Fig. 1 — Basic procedures of the proposed method 
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I(x)= J(x)t(x) + A∞ (1- t(x))                  … (1) 

 
t(x) = exp(-β(λ) d(x))t(x)                    … (2) 
 

Where, I(x) is the hazed image collected by the 
camera; J(x) the real image to be recovered; t(x) is the 
medium transmission; A∞ is the global atmospheric 
light; β(λ) is scattering coefficient; d(x) is distance 
from the scene point to the camera; λ is wavelength of 
light; x is pixels in the observed image I(x). 

From the Eqs. 1 – 2, it can be seen that t(x) is only 
related with pixels and scattering coefficient. The 
global atmospheric light can be estimated from 
adaptation through the overall brightness of the 
samples. And the scattering coefficient is only related 
with the size of the scattered particles in the 
atmosphere and usually is considered as a constant in 
the model. If the distance of each scene point in an 
image relative to the camera is obtained, the hazed 
picture of the specified visibility can be generated 
through the fog-free image. 
 
(2) Estimated distance of each pixel 

In this paper, we manually select 1466 images with 
typical features of sea-surface environment from the 
MSCOCO database18, and most of the sea-surface 
images are taken on the ground with the average 
height being 3 m. Then the distance from camera to 
the sea-sky boundary line can be estimated by sea-sky 
region segmentation. The angle between the optical 
axis and the sea level can be calculated according to 
the camera shooting height h and the distance from 

camera to the sea-sky boundary line. Finally, the 
distance d(x) from the scene point to the camera is 
obtained by structural geometric relation, which will 
be introduced into the model Eq. 2 to generate the 
hazed images with the specified visibility. 
 
(3) Generation of fog-scene samples with different visibilities 

According to the atmospheric single scattering 
model and the estimated distance of each pixel to the 
camera, we can generate the hazed images with 
different visibilities. Some of them are shown in 
Figure 2, where the readings of the scale VR represent 
visibility with unit m. 
 
(4) Determination of appropriate visibility to training detection 
network 

To obtain the satisfactory training performance, it 
is necessary to set the upper and lower limits of 
visibility during the generation of hazed images. Now 
inputting the hazed images into the detection network 
YOLOv2, the following results are obtained. For the 
case with the visibility being 300 m, the detection 
confidence rate of YOLOv2 decreases by 12 % in 
average, at this time, the corresponding haze degree is 
light. For the case with the visibility being 200 m, the 
detection confidence rate of YOLOv2 decreases by 35 % 
in average, being the medium haze degree. For the 
case with the visibility being 100 m, the detection 
confidence rate of YOLOv2 decreases by 86 % in 
average, with high haze degree. In this paper, we use 
the atmospheric single scattering model to generate 
the haze images with visibilities being 300 m, 200 m 

 

Fig. 2 — Hazed images with different visibilities 
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and 100 m, respectively. Part of the generated images 
are shown in Figure 3. 
 
Learning strategy 

This section is to present a learning strategy of 
target detection network. Specifically, we input the 
generated samples with different visibilities into the 
YOLOv2 network, to obtain a basic learning strategy. 
And then, the learning strategy is used to train the 
YOLOv3 network to acquire better detection 
performance. 
 
Simple description of target detection network 

The target detection technology based on deep 
learning can be divided into two categories, including 
signal target detection network and multiple target 
detection networks. The single target detection 
network can directly infer the target category and 
location without regional optional steps. For the 
multiple target detection networks, it has good 
detection performance, but requires more time, which 
does not adapt to the mobile platform such as 
unmanned ships with high real-time requirement19. 

Among the single target detection neural networks, the 
YOLO and its variant and SSD (Single Shot MultiBox 
Detector) have the best detection accuracy and real-time 
performance20,21. Considering the accuracy and 
complexity of the model, YOLO is selected as the 
detection network. YOLOv3 has more complex model 
structure and inference rules, but the detection accuracy 
is also better, compared with YOLOv2. In this paper, the 
basic learning strategy is obtained by using the YOLOv2 
network with less parameters, and then the learning 
strategy is used to the YOLOv3 with more parameters to 
achieve the better anti-fog ability. 
 
Learning strategy of target detection network YOLOv2 

In this subsection, the target detection network 
YOLOv2 is trained according to the hazed images to 
obtain a learning strategy.  
 
(1) Brief introduction of YOLOv2 

The output of the YOLOv2 used in this paper is a 
C23 feature map with a shape of 19×19×425. Each 
point on the C23 feature map has five anchor 
frames22. The five anchor frames are obtained by 

 
 

Fig. 3 — Part of hazed samples for training: a) Part of sample pictures in 100 m visibility, b) Part of sample pictures in 200 m visibility, 
and c) Part of sample pictures in 300 m visibility 



INDIAN J GEO-MAR SCI, VOL 50, NO 11, NOVEMBER 2021 
 
 

964

clustering among all the sizes of the samples. When 
the object falls into the center of the 19×19 feature 
map, one of the five anchor frames that are most 
similar to the shape of the object is responsible for 
the position prediction of the object. The object 
position offset is the deviation corresponding to the 
anchor frame. According to the output probability 
resulted from the C23 feature map, the network 
filters out the overlapping target detection box by 
using the non-maximum suppression method, and 
then the detection box with confidence probability 
higher than the threshold is regarded as the final 
output result. 
 
(2) Determination of training samples 

In order to make the target detection network have 
the satisfactory anti-fog ability, different 
combinations of sea-surface images with different 
visibilities are used to train the target detection 
network, so as to obtain an optimal learning strategy. 

By using the target detection network YOLOv2 
which has been initially trained by the ordinary 
images, the sea-surface images with 100 m visibility, 
200 m visibility and 300 m visibility are used to train 
the YOLOv2, respectively. From the experiment 
results, it is found that the training sample in 100 m 
visibility can have gradient explosion. Therefore, the 
sea-surface images with 200 m visibility and 300 m 
visibility are selected to train the YOLOv2. 
 

(3) Learning strategy and results 
To get the satisfactory training performance, 

different learning strategies are designed as follows. 
The first two strategies to train the YOLOv2 only 
according to the sea-surface images with 200 m 
visibility and 300 m visibility, respectively. The third 
one is to train the YOLOv2 by the samples in 300 m 
visibility at first and then trained by the samples in 
200 m visibility, which is also called as gradient 
learning strategy. The last one is to train the YOLOv2 
by the samples in 300 m visibility, 200 m visibility, 
and their corresponding haze-free images, which is 
also denoted as mixed learning strategy. 

Here, two indexes, including average precision 
(mAP) and recall, are used to evaluate the 
performance of the detection network16. The training 

results of the four different learning strategies are 
shown in Table 1.  

Table 1 show that the mixed learning strategy has 
the best detection performance in terms of “mAP” and 
“Recall”, in comparison with the other learning 
strategies. Therefore, this paper also selects the mixed 
learning strategy to train the detection network.  

After train the YOLOv2 based on the mixed 
learning strategy, the next is to train the YOLOv3 
with more complex network. 

 
Training of the YOLOv3 

Since the YOLOv3 has the more complex network, 
we use the mixed learning strategy to train the YOLOv3. 
 
(1) Brief introduction of YOLOv3  

Compared with the YOLOv2, the YOLOv3 is 
improved mainly by composing backbone neural 
network with residual structure and feature pyramid 
network with multi-scale mapping23. The gray part 
represents the backbone neural network with residual 
structure, and the three output parts of the network 
represent the characteristic pyramid network. Feature 
maps of each feature pyramid network are equivalent to 
one output of the YOLOv2. The difference is that the 
output feature maps have different scales, specifically; 
objects of different sizes are outputted by feature maps 
of different scales. 

The main idea of residual structure is to use 
residual connection to solve the problem of gradient 
disappearance and gradient explosion in deep neural 
network training. Its structure module is given in the 
reference24. Because of this “residual” connection, 
when the gradient of the intermediate layer is close to 
0, the backpropagation of the gradient with a partial 
derivative of 1 can also be guaranteed, remaining the 
concept of the gradient. 

The feature pyramid network takes advantage of the 
topological characteristics of the feature map. And the 
feature maps of the loop from bottom to top become 
smaller and the encoded information is more and more 
advanced, while the feature maps of the loop from top to 
bottom become larger and the resolution is higher and 
higher. In this way, the feature maps in smaller size at 
the top of the pyramid are suitable for processing 
complex features, while the feature maps in higher 

Table 1 — Results of different learning strategies 

 Original network Sample Aa Sample Bb Sample Cc Sample Dd 
mAP 28.61% 40.03% 46.36% 42.73% 76.26% 
Recall 42.13% 52.91% 60.10% 59.33% 81.45% 
a: only samples in 200 m visibility; b: only samples in 300 m visibility; c: Gradient learning strategy; and d: Mixed learning strategy 
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resolution at the bottom of the pyramid are suitable for 
processing objects with smaller and simpler actual size. 
By arranging several feature maps in different sizes to 
form pyramids with different size gradients, the 
detection effect of the network on multi-scale objects 
can be greatly improved 25. 
 
(2) Training effects of the YOLOv3 

Compared with the YOLOv2, YOLOv3 has 
stronger feature expression ability. The specific 
training results are shown in Table 2. 

It can be seen from Table 2 that the YOLOv3 after 
trained by the mixed learning strategy have strong 
anti-fog ability. 
 

Experimental verification 
In order to verify the effectiveness of the proposed 

target detection algorithm, experimental verifications 
are presented in this section. In this paper, two of the 
most representative dehaze methods are selected for 
comparative experiments: the dehaze method based 
on dark channel prior5 and the dehaze method based 
on AOD convolutional neural network8. The test 
images for experiments are from the Internet. 
 
Performance of the dark channel prior method 

The experimental results of the dehaze 
enhancement method based on the dark channel prior 
are shown in Figure 4. The left, middle and right 
groups of Figure 4 show the detection effects of 
samples with different visibilities, respectively. From 
top to bottom in Figure 4, the pictures are, 

Table 2 — Training effects of YOLOv2 and YOLOv3 by using 
the mixed learning strategy 

Target 
detection network 

Indicators Pre-training After training 

YOLOv2 mAP 28.6% 76.2% 
Recall 42.1% 81.4% 

YOLOv3 mAP 31.7% 78.8% 
Recall 52.2% 89.9% 

 
 

Fig. 4 — Detection results of dark channel prior based dehaze enhancement method 
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respectively, original images, images after dehaze, 
and detection results according to dehaze images. 

It can be seen from Figure 4 that the accuracy rate 
of target detection network adopting dehaze 
enhancement method based on dark channel prior is 
improved to 29.2 % after dehaze processing. 
However, this method requires relatively more 
processing time, up to 1.524 s, i.e., its real-time 
performance is poor. 
 
Performance of AOD network method 

The experimental results of the detection method 
based on AOD network are shown in Figure 5. The 
left, middle and right groups of Figure 5 show the 
processing results on samples with different 
visibilities, respectively. From top to bottom in Figure 
5, the pictures are, respectively, original images, 

images after dehaze, and detection results according 
to dehaze images. 

As can be seen from Figure 5 that the improvement 
in the accuracy of target detection network is poor, 
only 15.4 %, however, the additional time based on 
AOD network is less, only 0.037 s. 
 

Detection performance of the developed method 
The developed method based on the improved 

YOLOV3 network is tested using the same fog-
scene test dataset of YOLOv2. Part of the image 
results are shown in Figure 6. 

The top, middle and bottom groups of Figure 6 are 
the results for sea-surface images with different 
visibilities. And the left, middle and right groups of 
Figure 6 are, respectively, original images, images of 
YOLOv2 without anti-fog enhancement, and 

 
 

Fig. 5 — Detection effect of dehaze enhancement method based on AOD network 
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YOLOv2 with anti-fog enhancement. The detection 
accuracy rates are 99.9, 99.4, and 99.7 %, 
respectively. Compared with network YOLOv2, the 
detection accuracy is improved. In addition, this 
method does not require dehazing at first, so there is 
no additional time. 
 
Conclusions 

Under the background of autonomous control of 
USVs based on visual images, this paper investigates 
visual detection method for sea-surface targets. Sea-
surface visual images are mostly hazed. The existing 
methods are to using the dehaze processing at first and 
then detect the targets, which has a problem that the 
dehaze performance and processing time are difficult to 

be balanced. Hence, a YOLO based target detection 
network with good anti-fog ability is proposed for 
autonomous control of USVs under foggy environment. 
Specifically, the target detection network is offline 
trained to have satisfactory anti-fog ability and then is 
used to detect targets online. The comparative 
experimental results show that the proposed method has 
higher detection accuracy, and no additional time is 
required. The results satisfy the real-time requirements 
of autonomous control of USVs.  

In this paper, the training samples are taken from 
MSCOCO database, and the test samples are from 
Internet. In future, we need to use the surface-sea 
images captured from USVs to perform target 
detection. In addition, it investigates how to 

 
 

Fig. 6 — Detection effect of YOLOv3 network 
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differentiate between the training samples of fog-
scene images with the blurry images. 
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