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In order to reduce collision avoidance accidents and improve the safety of ship navigation, a dynamic collision 
avoidance algorithm based on deep reinforcement learning is proposed in this paper. In order to avoid the fuzziness and 
uncertainty in the encounter process, the degree of risk is formulated to quantify the collision risk. International regulations 
for preventing collisions at sea (COLREGs) are quantified reasonably. Considering the factors of collision, position, speed, 
course and compliance with the COLREGs, the reward function of the algorithm is designed to ensure that the collision 
avoidance decision is safe and effective and meet the requirements of the COLREGs. Based on DDPG algorithm, the sample 
data processing mechanism is improved, the utilization rate of experience is improved, and the problems of long learning 
time and unstable training are solved. The navigation and collision avoidance for multiple ships are simulated respectively. 
The results show that this method can effectively avoid obstacle ships under the requirements of COLREGs, and it has good 
real-time performance and safety. 
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Introduction 
Various collision accidents during navigation are 

the core issues that researchers should pay attention 
to1. 89 – 96 % of collision accidents for ships are 
caused by human factors2. Therefore, the research on 
intelligent automatic collision avoidance method is of 
great significance to reduce human errors in 
accidents. The actual navigation environment is 
changing rapidly, which requires the Unmanned 
Surface Vehicle (USV) to have the ability to avoid 
sudden obstacles. 

Abdallah et al.3 used nonlinear optimization 
method to solve the collision avoidance problem of 
two ships. Ni et al.4 carried out research on auxiliary 
decision-making. Cheng5 introduced the fuzzy logic 
method into the control system of USV. Xu et al.6 
proposed a dynamic collision avoidance algorithm via 
layered artificial potential field with collision cone. 
Shen et al.7 proposed an intelligent collision 
avoidance method for USVs based on deep Q-
learning and A* algorithm. Further, Cheng & Zhang8 
proposed a concise obstacle avoidance algorithm with 
the deep Q-networks architecture. All the above 
studies are summarized in the Table 1. 

There are still many challenges to be solved in the 
research of ship autonomous collision avoidance. 
Such as the wind, waves and current in the marine 
environment change greatly with time9,10, many 
complex navigation scenes are difficult to be 
designed8. The collision avoidance action in unknown 
environment also needs to comply with the actual 
COLREGs constraints; analytical methods are 
difficult to solve this problem. 

At present, with the rapid development of artificial 
intelligence technology, it has the characteristics of 
simple model, strong robustness and self-learning to 
adapt to the environment. Deep reinforcement learning 
technology11 is widely used in the research of intelligent 
collision avoidance and path planning. This paper 
proposes an intelligent dynamic collision avoidance 
algorithm for multiple encounter scenarios for USVs. 
This algorithm is used to train agents, and the 
effectiveness of this method is verified by simulation of 
multiple ships and multiple encounter scenes. 
 
Collision avoidance model 

Ship motion is the complex six degree of freedom 
motion, which not only moves along the body-fitted 
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coordinate axis, but also rotates around the body-fitted 
coordinate axis. For different research objectives, ship 
motion can usually be reasonably simplified12,13. For 
most ships, the motion of the surge, sway and yaw is 
mainly concerned in the process of collision avoidance. 
The influence of heave, pitch and roll on collision 
avoidance is very small, that is, collision avoidance 
studies the motion of ships in the horizontal plane. 
Therefore, the plane motion of ship is considered in 
this paper. It is assumed that the USV can be regarded 
as a rigid body and the geodetic coordinate system is a 
typical inertial coordinate system. 
 

Collision risk model 
The dynamic model and relevant parameters of the 

ship used in this simulation are shown in literature14. 
In order to simplify the expression, the owner USV is 
abbreviated as OU and the target obstacle ship is 
abbreviated as TS. The coordinates of OU is ሺ𝑥ை ,𝑦ைሻ, 
heading angle is 𝜑ை, the speed is 𝜑ை. The coordinates 
of TS is ሺ𝑥் ,𝑦்ሻ and the heading angle is 𝜑், the 
speed is 𝑣். The intersection angle of heading is 𝐶்; 
where, 𝐶் ൌ 𝜑் െ 𝜑ை. If 𝐶் ൏ 0, then 𝐶் ൌ 𝐶் ൅ 360°. 
The relative azimuth angle of OU is 𝜃ை, the relative 
azimuth angle of TS is 𝜃். 𝑣ோ is the relative velocity. 
The angle between the connecting line of the 
positions for two ships and the direction of 𝑣ோ is α. It 
is shown in Figure 1. DCPA is the Distance of Closest 
Point of Approach (CPA) between OU and TS, 
𝐷𝐶𝑃𝐴 ൌ 𝑅் ∗ 𝑠𝑖𝑛α. TCPA is the Time to Closest 
Point of Approach (CPA), 𝑇𝐶𝑃𝐴 ൌ 𝑅் ∗ 𝑐𝑜𝑠𝛼/𝑣ோ

15. 
When 𝑇𝐶𝑃𝐴 ൏ 0, TS has passed the CPA for the two 
ships, it is no longer a threat to OU. When 𝑇𝐶𝑃𝐴 ൐ 0, 
TS has not passed the CPA for the two ships, so the 
collision risk remains. 

 
 

Fig. 1 — Description of motion variables for ships 
 

In this paper, the working space of the USV is 
divided into safety area and warning area, which 
changes from time to time. In the safe area, the only 
task of the USV is to sail to the target, and the 
corresponding state is safe sailing state. The 
calculation formula given in Zhao16 is adopted for the 
safety area: 

𝑅௦௔௙௘ ൌ 𝑣ோሺ𝑇௡ ൅
Θൈேൈௌ஽஺

௩ೃ
ሻ … (1) 

where, 𝑣ோ is the relative velocity, 𝑇௡ is the time 
required for our USV to turn 90° at full rudder, Θ is 
the coefficient, N is the visibility coefficient. SDA is 
the safe distance of approach of two ships16.  

𝑆𝐷𝐴 ൌ ሺ𝐿௢ ൅ 𝐿்ሻ ൅ 2 ൈ 𝑃 ൅ ሺ𝐿௢ ൈ 𝜋/ 135 ൅ 𝐿் ൈ 𝜋/45ሻ … (2) 

Table 1 — Performance summary of different collision avoidance methods 
Current collision 
avoidance algorithms 

Applicable characteristics Aspects that need to be improved 

Nonlinear optimization 
method 

It takes rules as constraints and uses model predictive 
control to solve the optimization problem 

The model is complex and it is difficult to establish an 
accurate and reliable model 

Auxiliary decision-
making method 

It can avoid multiple dangerous target ships It requires artificial expert experience, and it is difficult to 
establish a better decision for the complex multi ship 
encounter situation 

Fuzzy logic method It can avoid obstacles accurately and quickly  
in complex environment 

It is only applicable to avoid static obstacles, and dynamic 
obstacles need to be considered 

Artificial potential 
method 

The algorithm is simple and efficient The problem of local minima needs to be avoided 

Deep Q-learning 
algorithm 

It has strong learning ability and can solve complex
problems. 

It needs a large amount of calculation, and can only deal with 
the limited state and action space, but it can not deal with the 
infinite space effectively. 

A* algorithm It is simple, effective and accurate The space requirement is too large and the optimal search path 
cannot be guaranteed when there are multiple minimum values 

Velocity obstacle 
method 

It can avoid static and dynamic obstacles  
at the same time 

It is difficult to integrate the COLREGs 
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Among them, 𝐿௢ 𝐿் is the length of OU and TS, 𝑃 
is the variance of kalman filter. 

When the obstacle ship is within the warning area, 
the corresponding state of USV is collision avoidance 
state. The USV needs to comply with the COLREGs 
and take corresponding collision avoidance actions. 
Then, in order to prevent it from entering the collision 
avoidance state again, the keeping state is set, that is, 
its heading angle is constant in this state until the 
USV successfully avoids the obstacle ship. 

In order to quantify the degree of collision risk, it is 
defined as follows: 

Ω ൌ 𝑚𝑖𝑛൫𝑅்௜/𝑅௦௔௙௘൯ … (3) 

𝑅்௜ is the distance between OU and target ship 
𝑇௜ (i = 1,2,…,n), which is applicable to collision 
avoidance for multi ships, the collision risk degree is 
determined by calculating the Ω value of each TS. 
When Ω > 1, the USV is in the safe state and its task 
is to drive to the target. When Ω ≤ 1, the USV is in 
collision avoidance state, it shall give priority to the 
ship with the smallest 𝑅்௜/𝑅௦௔௙௘. 
 
COLREGs model 

This algorithm only studies the case that OU is 
give-way ship. Φ is the parameter of COLREGs17. 
When the two ships do not constitute an encounter 
situation, Φ ൌ 0, other cases are defined as follows: 

(1) Head-on (Φ ൌ 1): Both ships are directly in 
front of each other at an angle of ±5°. The relative 
azimuth of OU 𝜃ை satisfies the condition 𝜃ை ൑ 5° or 
𝜃ை ൒ 355°. The relative azimuth 𝜃் ൑ 5° or 𝜃் ൒ 355°. 
In Figure 2, OU's velocity is pointing due north,  
and TS's position falls in the yellow area, OU should 
turn right to avoid TS.  

(2) Starboard crossing: i) Starboard crossing-small 
angle (Φ ൌ 2): The condition 𝜃் ൑ 45°, 185° ൑ 𝐶் ൏
210° is satisfied. The position of TS falls in the pink 
sector area, and its velocity direction falls in the gray 

sector area. In this case, OU should turn right to  
avoid TS. ii) Starboard crossing-large angle (Φ ൌ 3): 
The condition 𝜃் ൑ 112.5°, 210° ൑ 𝐶் ൑ 360° is 
satisfied, OU should turn left to avoid TS. 

(3) Overtaking: When the encounter situation is 
overtaking, the condition 112.5° ൑ 𝜃் ൑ 247°  
is satisfied, and the velocity component of  
OU in TS’s direction is larger than that of TS,  
that is 𝑣ை ൐ 𝑣் ∗ 𝑐𝑜𝑠𝐶். i) Overtaking 1(Φ ൌ 4):  
When α ൏ 90°, DCPA＞0, OU should turn right. ii) 
Overtaking 2(Φ ൌ 5): When 270° ൏ 𝛼 ൑ 360°, 
DCPA≤0, OU should turn left. 
 
Algorithm design 
 

Design of state space 
The state space of this algorithm contains the linear 

velocity 𝑣ை, angular velocity ω୓, heading angle Φ. 
The distance between 𝑇𝑆௜ and OU 𝑅், azimuth angle 
of 𝑇𝑆௜ relative to OU 𝜃், azimuth angle of OU 
relative to 𝑇𝑆௜ 𝜃଴. Encounter situation of two ships is 
Φ. Distance between OU and target is 𝑅ீ೟. That is 
𝑆௧ ൌ ሺ𝑣ை,ω୓,𝜓,𝑅் ,𝜃் ,𝜃௢ ,σ௜ ,𝑅ீ೟ሻ. All states in the 
algorithm are normalized, and the normalized range  
is [-1,1]. 
 
Selection of action set 

USVs should have the ability to respond quickly to 
complex environments; USVs must realize three basic 
skills: acceleration, deceleration and turning. In order 
to ensure that the collision avoidance decision output 
by the algorithm has good operability, the thrust 
(acceleration and deceleration) and rudder angle (left 
and right turns) are taken as the action space of the 
agent, namely 𝑎 ൌ ሾ𝜏௨, 𝛿ሿ. 
 

Design of reward function 
The reward function18-20 in this paper includes 

position reward function, heading angle reward 
function and speed reward function. 

 
 
Fig. 2 — Encounter situation when OU is give-way ship: (a) Head-on, (b) Starboard crossing-small angle, (c) Starboard crossing-large 
angle, (d) Overtaking 1, and (e) Overtaking 2 
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Position reward function 
In the unknown environment of an obstacle ship, 

the unmanned ship should not only avoid the obstacle 
ship, but also reach the target quickly. Therefore, the 
position reward function designed in this paper 
consists of two parts: collision avoidance item and 
target guidance item.  

(1) Collision avoidance item: this paper establishes 
a collision avoidance item model based on Gaussian 
distribution. The relative distance between the USV 
and obstacle ship is RTi. The collision avoidance term 
is described by formula (4) 

𝑓௖௢௟௟௜௦௜௢௡ ൌ ቐെ
ଵ

√ଶగ
𝑒
ିሺଵି

ೃ೅೔
ೃೞೌ೑೐

ሻమ

,𝑅்௜ ൑ 𝑅௦௔௙௘
0 ,𝑅்௜ ൐ 𝑅௦௔௙௘

 … (4) 

(2) Target guidance item: in order to enable the 
unmanned ship to avoid obstacles and quickly 
approach the target point, the target guidance item is 
shown in formula (5) 

𝑓௧௔௥௚௘௧ ൌ െ൬
ோ೅೟
ோ೅బ

൰
ଶ
 … (5) 

𝑅
೟்
 represents the distance between the USV and 

the target at time t, and 𝑅
బ்
 is the initial distance 

between the USV and the target. 
(3) Arrival item: When the distance between the 

USV and the target is less than 𝑅௔௥௥௜௩௘, it is 
considered that the USV reaches the target point. 
Therefore, arrive reward is defined as follows: 

𝑓௔௥௥௜௩௘ ൌ ൜
10,𝑅ீ೟ ൑ 𝑅௔௥௥௜௩௘  

0,𝑅ீ೟＞𝑅௔௥௥௜௩௘
 … (6) 

 
Heading angle reward function 

In order to shorten the navigation time, it should 
avoid being in a state of deviation from the course, that 
is, ensure that it drives towards the destination. 
Therefore, the design of the heading reward function is 

𝑓ℎ௘௔ௗ௜௡௚ ൌ ൝
𝑒𝑥𝑝 ൤െ

௠

ሺట೐ሻమା൫ట೐ሶ ൯
మ൨ , 𝑖𝑓 𝜓௘ ൐ 𝜓௞

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 … (7) 

where, 𝜓௘ ൌ 𝜓െ𝜓ௗ, which is the deviation of the 
heading angle, and 𝜓௞ is the threshold of deviation, m 
defines the parameters of the exponential function that 
relate to the convergence speed. 
 
Speed reward function 

(1) Destination item: In order to prevent the USV 
from moving too fast near the target point, the 
destination reward function is defined as: 

𝑓௦௣௘௘ௗ ൌ ൝
ି|௩೚|

௩೚೘ೌೣோೀಸ
,𝑅ீ೟ ൑ R ௩

0 ,𝑅ீ೟ ൐ R௩

 … (8) 

where, 𝒗𝒐 is the speed of USV, 𝒗𝒐𝒎𝒂𝒙 is the 
maximum speed of USV, and 𝑅்௧ is the distance 
between USV and the target point. We define that 
when the distance between the USV and the 
destination is Rv, the USV begins to decelerate. 

(2) Sway item: In order to make the USV sail to the 
destination at the heading angle towards the target, the 
speed of sway should not be too large. 𝑢 and 𝑣 are the 
speeds of surge and sway respectively. Therefore, the 
sway function is 

𝑓௦௪௔௬ ൌ ቄିచ,௜௙ |௨|ழ|௩|
଴,௢௧ℎ௘௥௪௜௦௘  … (9) 

where, 𝜍 is a positive.  
 
COLREGs function 

In addition to ensuring the safety and effectiveness 
of collision avoidance, the reward function for 
whether the collision avoidance decision meets the 
COLREGs is designed. 

𝑓஼ை௅ோாீ௦ ൌ ൜
0,𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝐶𝑂𝐿𝑅𝐸𝐺𝑠 

െ𝜚,𝐴𝑔𝑎𝑖𝑛𝑠𝑡 𝐶𝑂𝐿𝑅𝐸𝐺𝑠  … (10) 

where, ϱ is positive, which is the punishment for 
violating COLREGs. 

Combined with the weight 𝜆௖௢௟௟௜௦௜௢௡, 𝜆௧௔௥௚௘௧ ,   𝜆௔௥௥௜௩௘ , 
𝜆௛௘௔ௗ௜௡௚ ,  𝜆௦௣௘௘ௗ ,  𝜆௦௪௔௬ ,    𝜆஼ை௅ோாீ௦, the comprehensive 
expression of the reward function is as follows: 

𝑅 ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜆௖௢௟௟௜௦௜௢௡
𝜆௧௔௥௚௘௧
𝜆௔௥௥௜௩௘
𝜆௛௘௔ௗ௜௡௚
𝜆௦௣௘௘ௗ
ఒೞೢೌ೤

ఒ಴ೀಽೃಶಸೞ ⎦
⎥
⎥
⎥
⎥
⎥
⎤
்

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑓௖௢௟௟௜௦௜௢௡
𝑓௧௔௥௚௘௧
𝑓௔௥௥௜௩௘
𝑓௛௘௔ௗ௜௡௚
𝑓௦௣௘௘ௗ
௙ೞೢೌ೤

௙಴ೀಽೃಶಸೞ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 … (11) 

 
Improved sample data processing mechanism 

Deep Deterministic Policy Gradient (DDPG) 
algorithm21-23 is an algorithm based on Actor-Critic 
framework. Because the experience of agent is not 
equally important for the learning of network model, 
the experience with high immediate return24 and TD-
error25 are more important than other experiences, and 
these experiences should be used more efficiently. 
Based on DDPG, this paper improves the sample data 
processing mechanism, which can make the 
experience take into account the immediate return 
mechanism and TD-error priority mechanism as much 
as possible. 
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Firstly, TD-error needs to be calculated, and its 
formula is as follows: 

δ௧ ൌ 𝑟௧ାଵ ൅ 𝛾𝑄గሺ𝑠௧ାଵ,𝑎௧ାଵሻ െ 𝑄గሺ𝑠௧,𝑎௧ሻ  … (12) 

where, 𝑟௧ାଵ ൅ 𝛾𝑄గሺ𝑠௧ାଵ,𝑎௧ାଵሻ is the pre-estimated 
state action value function, 𝑄గሺ𝑠௧ ,𝑎௧ሻ is the state 
action value function at the current time, indicates that 
the agent follows the policy π, starts in the current 
state 𝑠௧ and takes action 𝑎௧. 

Secondly, the priority needs to be determined, and 
its formula is as follows: 

𝑌௜ ൌ 𝑟௧ ൅ 𝜀𝑌௝ ൌ |δ௧| ൅ 𝜀   … (13) 

where, 𝑌௜ and 𝑌௝ are the priority based on immediate 
return priority mechanism and the priority based on 
TD-error priority mechanism respectively; 𝑟௧ is the 
immediate return of experience; 𝜀 is a positive 
constant to ensure that each transfer message has a 
non-zero priority. 

Finally, according to order of the priority, 𝑌௜ and 𝑌௝ 
are arranged from large to small, and 𝑟𝑎𝑛𝑘ሺ𝑖ሻ and 
𝑟𝑎𝑛𝑘ሺ𝑗ሻ are obtained, and also get the empirical 
composite average ranking. 

𝑢ሺ𝑘ሻ ൌ
௥௔௡௞ሺ௜ሻା௥௔௡௞ሺ௝ሻ

ଶ
  … (14) 

The priority of the composite is calculated: 

𝑌௞ ൌ ሾ1/𝑢ሺ𝑘ሻሿఉ … (15) 

where, the parameter 𝛽 represents the degree of 
priority used by the algorithm, and its range value is 
[0,1]. When, 𝛽 ൌ 0, it represents uniform sampling. 

The probability of sampling is 

𝑃௞ ൌ
௒ೖ

∑ ௒೙೙
 … (16) 

Where, n is the number of experience. 

Design of network 
The network structure has two hidden layers. The 

nodes of each hidden layer are 400 and 300, 
respectively, and the output action matrix. The state 
matrix is input into the critic network, which has 400 
nodes in the second layer and 300 nodes in the third 
layer. The action matrix is also input to the critic 
network. There are 300 neuron nodes in the second 
layer. The neurons in the third layer of the network 
input by the state space matrix and the neurons in the 
second layer of the network input by the action matrix 
are combined for linear transformation and input to 
the neuron nodes in the fourth layer. There are  
300 neuron nodes in this layer, and finally the  
value of the action is output. The connection mode 
between all neuron nodes of the network is full 
connection mode, and the network structure diagram 
is shown in Figure 3. Based on the above definition, 
the pseudo code is shown in Table 2. 
 

Simulation 
Real ship test has the disadvantages of high risk, 

long debugging cycle and high cost, and it takes a 
long time to build the algorithm test platform. In order 
to reduce the waste of time, make researchers focus 
on the algorithm, and test the effectiveness of the 
algorithm conveniently and quickly. In this paper, the 
mathematical model of ship motion with three degrees 
of freedom is used to design an algorithm simulation 
system which can provide an algorithm similar to the 
actual situation at sea. This is helpful for researchers 
to better test the proposed collision avoidance control 
algorithm and apply it to engineering practice. 

In this part, the effectiveness of the algorithm is 
verified by simulation. The computer configuration is 

 
 

Fig. 3 — Structure of network 
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as follows: Intel Core i7-9750H six core processor, 
NVIDIA GTX1660Ti 6 GB graphics card, 16 GB 
DDR3L memory. The optimization of neural network 
parameters uses Adam optimizer, learning rate of 
actor network is 𝛼ఓ ൌ 1 ൈ 10ିସ, learning rate of 
critic network is 𝛼ொ ൌ 1 ൈ 10ିଷ. The discount  
factor is 𝛾 ൌ 0.99, the soft replacement coefficient 
𝜏 ൌ 0.001. The parameters are updated every  
10 episodes, the hidden layer of the neural network 
uses modified nonlinear elements, the final output 
layer of the actor network is tanh layer. In Gaussian 
distribution σ ൌ 0.2, the maximum number of time 
steps in each episode is 500 (that is, when the time 
step reaches 500, the episode ends). The size of the 
experience pool is 300000 samples, and the size after 
sampling is 10000. The simulation environment is a 
rectangular area of 600×500 m. 𝐿௢ , 𝐿் is all 1.8 m, 
which is the length of our USV and the target ship, 
respectively. 𝑣ை௠௔௫ ,   𝑎௠௔௫ ,   𝜔௠௔௫ ,   𝛼௠௔௫ are the 
maximum linear velocity, linear acceleration, angular 
velocity and angular acceleration of our USV, 
which is 3.5 m/s, 0.4 m/s2, 0.2 rad/s, 0.05 rad/s2, 
respectively. 𝑣்௠௔௫ is the maximum velocity of the 
target ship, which is 3.5 m/s. 
 
The task of path planning 

It is trained with 1000 episodes, the maximum 
number of steps in each episode is 600, and the 
network is saved every 10 episodes. It can be seen in 
Figure 4 that at the beginning of the training, the USV 
does not know how to navigate, and it turns around 

near the starting point. After training 50 episodes, the 
initial sailing direction of the USV is wrong, but then 
sails towards the target, but does not reach the target 
accurately in the end. After training 200 episodes, the 
USV can drive to the target, but its track fluctuates 
greatly. After training 1000 episodes, the USV have 
learned to sail towards the target, compared with the 
previous track, it is the smoothest and shortest. 

In order to compare the learning efficiency and 
oscillating amplitudes of the improved DDPG 
algorithm (improved sample data processing 
mechanism) and the original DDPG algorithm more 
conveniently, the two algorithms are both trained for 
20 times. The results of the first 1000 episodes are 
extracted, and the average cumulative reward of the 
two methods is calculated. The results are shown in 
Figure 5. One can clearly see from the figure that 
initially the USV is in the exploratory learning phase 
and does not map the relationship between state and 
action very well, resulting in a relatively low average 
reward for the USV. Figure 5 shows the improved 
algorithm before 80th episode has almost the same 
oscillating amplitude extent as the DDPG algorithm. 
However, with increased training, the USV can 
successfully map the relationship between state and 
optimal action and the average reward obtained 
gradually increases. In the later stages of training, the 
USV effectively uses the learned knowledge to reach 
the goal position safely, resulting in an overall positive 
return. The learning efficiency of the improved 
algorithm is higher, because the average score of the 

Table 2 — The pseudo code of the algorithm 
Initialize experience buffer, initialize the parameters of Online Policy Net μሺ𝑠;𝜃ఓሻ and Online Q Net 𝑄ሺ𝑠, 𝑎; 𝜃ொሻ, assign the parameter to 
Target Policy Net and Target Q Net，that is 𝜃ఓ′ ← 𝜃ఓ, 𝜃ொ′ ← 𝜃ொ. 
Initialize a random normal distribution N with 𝑣𝑎𝑟ଶ variance, which is used to interfere with actions to explore the environment. 

For episode=1:M 
Get the initial state s1 
For step=1:T 
According to the existing strategies and explored interference, input st and output at, 𝑎௧~𝑁ሾ𝜇ሺ𝑠௧/𝜃ఓሻ,𝑣𝑎𝑟ሿ 
The agent makes action at, obtains return rt and subsequent state st+1, and calculates TD-error  
Sort the experience according to priority 𝑌௜ ൌ 𝑟௧ ൅ 𝜀 from large to small to get 𝑟𝑎𝑛𝑘ሺ𝑖ሻ 
Sort the experience according to priority 𝑌௝ ൌ |δ௧| ൅ 𝜀 from large to small to get 𝑟𝑎𝑛𝑘ሺ𝑗ሻ 

Make a compound average ranking of experience, get 𝑢ሺ𝑘ሻ ൌ
௥௔௡௞ሺ௜ሻା௥௔௡௞ሺ௝ሻ

ଶ
 and calculate the priority 𝑌௞ ൌ ሾ1/𝑢ሺ𝑘ሻሿఉ of experience 

Empirical sampling probability 𝑃௞ ൌ
௒ೖ

∑ ௒೙೙
, where n is the number of experiences. m experiences are sampled with probability 𝑃௞ and 

stored in experience buffer 1 
Sample experience from experience buffer 1 for network learning  
Calculate the gradient obtained by time difference of experience, update the network parameters 

Calculate the policy gradient   and update the parameters of the actor network 𝜃ఓ ൌ 𝜃ఓ ൅ 𝛼∇, where α is the learning rate 

Every J episodes, the network parameters of the actor network are assigned to the actor target network 𝜃ఓ′ ← 𝜏𝜃ఓ ൅ ሺ1 െ 𝜏ሻ𝜃ఓ′. 
Every K episodes, the network parameters of the critic network are assigned to the critic target network 𝜃ொ′ ← 𝜏𝜃ொ ൅ ሺ1 െ 𝜏ሻ𝜃ொ′.  
End for  
End for  
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improved algorithm is better than the DDPG algorithm 
most of the time. After about 220th episodes, the 
reward of the DDPG algorithm is still volatile, while 
the improved algorithm is still in the process of 
continuous optimization. Accordingly, the improved 
algorithm overcomes problems associated with 
oscillating amplitudes and low learning efficiency. 

Dynamic collision avoidance of multiple USVs 
Combined with the collision avoidance task,  

6 obstacle ships with random initial velocity and 
position. When the obstacle ship reaches the boundary 
of the designated area, it will sail in the form of 
specular reflection. 

Figure 6(a) represents the trajectory of all ships. TS 
1, 2, 3, 4, 5 and 6 are generated at the same time. The 
USV detects TS 6, and the encounter situation is 
overtaking 1. As shown in Figure 6(b), in step  
21th, the USV enters the collision avoidance state, 
and TS 6 is at the center of the sector. The USV takes 
a right turn to avoid and escapes the danger in step 
24th. Then the USV detects TS 3, but it does not pose 
a threat to the USV, so it does not need to be 
considered. The USV detects TS 1 during sailing, and 
the encounter situation is overtaking 2. As shown in 
Figure 6(c), in step 71th, the USV enters the collision 
avoidance state, and the USV takes a left turn to 
avoid. In step 75th, it enters keeping state. In step 
84th, the USV returned to safe sailing state and sails 
to the target. In the figure, the USV avoided two 
obstacle ships, its collision avoidance actions 

 
 
Fig. 4 — Training effect of path planning task: (a) Test after 1 training episode, (b) Test after 50 training episodes, (c) Test after
200 training episodes, and (d) Test after 1000 training episodes 
 

 
 

Fig. 5 — The comparison part of average cumulative reward 
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complied with the COLREGs, and finally reached the 
target safely, with a total of 118 steps. The velocity 
and thrust curves of USV during the whole collision 
avoidance process are shown in Figure 6(d). 

Through the verification of the encounter situation, 
when the encounter situation of two ships is 
overtaking 1 and overtaking 2, the algorithm has the 
ability to avoid dynamic obstacle ships according to 
COLREGs. 

In Figure 7, Figure 7(a) is the trajectory of all ships. 
In step 21th, OU enters the collision avoidance state 
and forms the starboard crossing-small angle situation 
with TS 6. In step 21, OU enters the keeping state, and 
in step 31th, it enters the safe sailing state. In step 71th, 
the USV detects TS 1, and the encounter situation is 
starboard crossing-large angle. As shown in Figure 
7(c), OU took a left turn to avoid, successfully avoided 
the TS 1 and successfully reached the target, with a 
total of 119 steps in the whole process. 

Through the verification of the encounter situation, 
when the encounter situation of the two ships are 
starboard crossing-small angle and starboard crossing-
large angle, the algorithm has the ability to avoid 
dynamic obstacle ships according to COLREGs. 

The current study defines that if the USV  
complies with the COLREGs and finally reaches  
the target, the voyage is regarded as a success,  
and otherwise it is a failure. We extracted the success 
rate of the first 5000 episodes of training, which 
includes five situations. The final success rate of each 
situation reaches 95 %. It can be seen that this 
algorithm can control USV to plan the path 
reasonably and comply with the COLREGs to avoid 
dynamic obstacle ships. 

Above all, we can see that this algorithm can avoid 
multiple burst dynamic ships and complies with 
COLREGs, which has the ability of dynamic collision 
avoidance. 

 

 
 
Fig. 6 — Encounter scenario 1: (a) Trajectory of the OU and TS, (b) The 3D view of avoiding for the first time, (c) The 3D view of
avoiding for the second time, and (d) The curve of velocity and thrust 
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Conclusion 
A dynamic collision avoidance algorithm under 

COLREGs constraints base on DDPG is proposed. By 
analyzing and quantifying the collision risk and 
collision avoidance time, the calculation method of 
risk degree is formulated, and COLREGs is divided in 
detail and quantified. According to the real-time 
navigation information obtained between ships, the 
state set and action set of avoidance process are 
designed to ensure the integrity and computability of 
navigation information in the input neural network. 
Combined with the requirements for safety and 
compliance with COLREGs in avoidance decision-
making, reward function is design. Based on DDPG 
algorithm, the sample data processing mechanism is 
improved to improve the utilization of experience. 
The deep neural network is used to train the agent. 
After training 2000 episodes, the USV learned to sail 
towards the target, compared with the previous track, 
it is the smoothest and shortest. Then multi ship 

encounter scene is simulated, 6 obstacle ships with 
random initial velocity and position is set. The first 
5000 episodes of training are extracted and the final 
success rate reaches 97 %. It is verified that the 
algorithm has the characteristics of real-time and 
security when avoiding multi burst ships. 

This paper studies the collision avoidance 
algorithm in open sea area. For more complex or 
dangerous navigation sea area, USVs need to navigate 
according to special requirements. At present, there is 
little research on collision avoidance in this aspect, 
and there are some challenges. However, it is a 
problem that must be solved by USVs (especially 
unmanned transport ships), which is also the direction 
of our follow-up efforts. 
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