

Indian Journal of Natural Products and Resources Vol. 13(3), September 2022, pp. 274-286 DOI: 10.56042/ijnpr.v13i3.35856

Ethno medicinal plants with anticonvulsant activity through GABAergic mechanism-A review

Sachin Jangra¹, Manjusha^{1*} and Vikas Budhwar²

¹Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136118, Haryana, India ²Department of Pharmaceutical Sciences, Maharishi Dyanand University, Rohtak 124001, Haryana, India

Received 25 May 2020; revised received 21 May 2022; accepted 06 June 2022

Humanity has used immemorial plants for their relieving and healing powers from era and we still depend on their healing properties. Plants with number of active constituents have a direct therapeutic impact on various body organs. Brain is one of major organ linked to various disorders, one of them is epilepsy. Owing to undesirable side effects, high expense and reduced effectiveness of conventional drugs, traditional plants are deemed appropriate for the treatment of epilepsy. The potential of natural products for the treatment of epilepsy can be an excellent alternative for the development of safe and effective anti-epileptic drugs. The present bibliographic review presents the data upto 2021. Plants were screened for citing the research work done for epilepsy, efficacy of plants along with their mechanism of action, plant profile, part used, dose, extract used, toxicity study and model used. Also isolated compounds have been compiled along with their structure. A total of 120 review and research articles of plants which revealed their effective therapeutic effects on epilepsy through GABAergic transmission belonging to families lamiaceae(11), fabaceae(5), zingiberaceae(3), moraceae(3), verbenaceae(3), and apiaceae(2). The data discussed might be useful in formulating new chemical entity for the treatment of epilepsy. The documentation of isolated compounds may provide new drug molecules for market with lesser cost and more efficacy.

Keywords: Anticonvulsant, Epilepsy, GABA, Herbal medicine. IPC code; Int. cl. (2021.01)-A61K 36/00, A61P 25/00, A61P 25/08

Introduction

According to WHO, approximately 2.4 million annual cases are reported and about 50 million people are affected with epilepsy worldwide¹. Clinical study shows that 70% of epileptic patients can live seizure free if properly diagnosed and treated². One of the recent study showed that frequency of active epilepsy is estimated 6.38 per 1000 person and prevalence rate is 61.44 per 100,000 persons/years³. Epilepsy causes substantial impact on social, health and quality of life of patients⁴. Epilepsy is a common and usually destructive disorder, identified by the abnormal and periodic discharge of neurons within the brain. Epilepsy is a chronic neurological disorder identified by the unpredictable and periodic occurrence of seizures. Brain is unable to read the message and results in seizures, loss of consciousness, jerking in body muscle, contraction in muscle etc.⁵. The seizures may be due to imbalance between excitatory and inhibitory drive at synapse. Seizures can be inhibited by enhancing Na+ channel inactivation period, enhancing Gama-

*Correspondent author Email: manjushachoudhary@gmail.com aminobutyric acid GABA synaptic transmission and by inhibiting the opening of Ca+ channel. GABA and GABA receptors, which mediate antiepileptic effects of many herbal medicines, are one of the important targets well documented in the literature⁶.

GABAergic mechanism

Chief inhibitory neurotransmitter in the central nervous system is GABA and is released in about 40% of synapses in the brain. It is synthesized from glutamate by the action of the enzyme glutamic acid decarboxylase⁷. The release of GABA causes hyperpolarizing by acting on GABA_A, GABA_B, and GABA_C receptors. GABA_A and GABA_C receptors are ligand-gated ion channel. Chloride and bicarbonate are allowed to pass through GABA_A and GABA_C receptor's pores in response to GABA binding⁸. Mammalian GABA_A receptor consist of five independent protein subunits two α , two β and fifth may be γ or δ . GABA_A receptor mediating transient, continuously desensitizing currents at the synapse through α , β and γ subunits, whereas those at extra synaptic sites mediating long lasting and slowly desensitizing through α , β and δ subunits⁹.

 $GABA_B$ is G-protein coupled receptor (GPCR) mediates hyperpolarization of potassium channels and decreases calcium entry, therefore exhibiting both inhibitory and excitatory actions⁷.

 $GABA_C$ receptor contains tho subunit along with α and β subunits and is found in retina, spinal cord, pituitary, and gastrointestinal tract. This receptor is insensitive to bicuculline. As compare to $GABA_A$ receptor, its abundance and distribution is lesser in central nervous system¹⁰.

Various antiepileptic drugs are available for the treatment of epilepsy, but these drugs are unable to provide an ideal therapy as they possess many side effects¹¹. So, herbal therapies and complementary medicine are becoming increasingly popular as they have lesser side effects and are effective for long term treatments of seizures. India is a hub of medicinal plants and lots of plant extracts have been used in the treatment of epilepsy in Ayurveda, Unani, and Siddha. Lots of these traditionally used plants have been scientifically explored for the treatment of epilepsy¹². Therefore, herbs may help in development of antiepileptic drugs in future¹³. The present review provides an overview of traditionally used plants as antiepileptic through GABAergic mechanism.

Review of literature

The present bibliographic review was carried out up to 2021. The data was extracted from various offline sources like standard reference books of pharmacology, Indian Medicinal Plants, Materia Medica, Chinese Herbal Medicine, Nootropic (Medhya) Plants from Ayurvedic Pharmacopoeia. The online information was collected from various databases like Science Direct, Google Scholar, PMC, Research Gate, PubMed, Scopus, Agrocola, Mediline, Shodhganga, and WOS. A total of Total 52 research and 68 review articles from years 2001 to 2022 were thoroughly studied. We also searched about various isolated compounds from plants source useful in epilepsy. In this review, total 12 isolated compounds along with their structures have been compiled. The plants showing antiepileptic activity only through GABAergic transmission were selected for the present review. The data was included based upon:-

- 1. Plants investigated scientifically for epilepsy treatment with toxicity profile, extract, dose, mechanism of action and models used.
- 2. Isolated compounds from various plants along with their structure have been explained.
- 3. Plants native to India, China and other developing countries were mainly considered for the present review.

Role of herbs in the treatment of epilepsy

Medicinal plants are being searched for the treatment of epilepsy due to unwanted side effects, high cost, and less efficacy of synthetic drugs. Plants are cheaper, due to that most of developing countries are dependent on them¹⁴. List of medicinal plants explored for anti-epileptic activity is shown in Table 1.

Isolated phytoconstituents

Literature survey reveals that several plants phytoconstituents exhibit anti-epileptic activity.

	Table 1 — List of me	dicinal plants	inves	stigated for a	nticonvulsa	nt activity through C	GABAergic t	ransmission	
S. No.	Botanical name Family	Common name	Part	Acute toxicity	Extract & Dose (mg/kg)	Mechanism of action	Model	Results	Ref.
1	Ficus religiosa Moraceae L.	Ashwattha Tree	R	Safe up to 2000 mg/kg	Aq (25, 50 and 100)	Enhance GABA through GABAergic pathway	PTZIC	Dose-dependent effect was observed & extract showed complete inhibition of onset of seizures induced by PTZIC	
2	Trachyspermum Apiaceae ammi L.	Ajowan caraway	S	LD ₅₀ 831 mg/kg	M (50)	Enhance GABA neurotransmission at GABA _A receptor and increasing the chloride ion channel opening	SIC	Effective protection against seizures, percentage inhibition was 42.8 % as compared to control	16, 17
									(Contd.)

S. No.	Botanical name	e Family	Common name	Part	Acute toxicity	Extract & Dose (mg/kg)	Mechanism of action	Model	Results	Ref.
3	Valeriana officinalis L.	Valerianaceae	Garden heliotrope	R	DNF	Aq (200, 500 and 800)	Valepotriates and valerenic acid present in extracts showed GABA _A agonistic effect	SKP	Extract showed maximum protection at 500 mg/kg in temporal lobe epilepsy	18
4	Cymbopogon winterianus Jowitt.	Poaceae	Java citronella	L	LD ₅₀ 1953.8 mg/kg		GABAergic mechanisms, deteriorated autoregulation of glutamate release	PIC	Dose-dependent effect observed, and extract showed its maximum protection at 200 mg/kg	19, 20
5	Rosmarinus officinalis L.	Lamiaceae	Rosemary	F and L	Safe up to 2000 mg/kg	M (50, 100, 500 and 1000)	Increase GABA levels in the midbrain region	PIC	Maximum anticonvulsant activity was at 500 mg/kg dose and delayed the death rate but didn't change in mortality rate	21
6	Curcuma longa L.	Zingiberaceae	Rhizoma curcumae	Wp	Safe up to 3000 mg/kg	Eo (100)	Facilitation of GABA _A receptor, facilitation of recombinant GABA _A receptor and enhancement of phasic and tonic GABAergic inhibition	PIC	Effective protection against basal locomotor activity and chemically induced seizure activity	22
7	Passiflora incarnata L.	Passifloraceae	Maypop	and	Safe up to 2000 mg/kg	0.1, 0.2	Enhancement of GABAergic pathway	PTZIC	Mortality and seizure protection was 100% at 0.4 mg/kg	23
8	Bryonia alba L.	Cucurbitaceae	White bryony		250 mg/kg was found safer		Moderate affinity for benzodiazepine site at GABA receptor		Seizures were treated	24, 25
9	Caesalpinia bonducella	Fabaceae	Fever nut	S	LD ₅₀ 3000 mg/kg	Pe (400, 600 and 800)	Blockage of chloride channel linked to GABA _A receptor and inhibition entry of chloride channel in the brain, thus inhibit GABA neurotransmission	PTZIC	Higher dose showed significant effect on tonic clonic seizures	26
10	Cannabis sativa L.	Cannabaceae	Marijuana	Wp	mg/kg on	Ro (200 and 300)	Inhibition of the release GABA and glutamate	EIM	Maximum protection was observed at 300 mg	27, 28

S. No.	Botanical name	Family	Common name	Part	Acute toxicity	Extract & Dose (mg/kg)	Mechanism of action	Model	Results	Ref.
11	Mentha piperita L.	Lamiaceae	Peppermint	L	Safe up to 1500 mg/kg	(Hg/Rg) Ha (400, 600 and 800)	Extract prevented seizures by increasing GABA levels in the midbrain, limonene by affecting GABAA receptors and increasing GABA concentration `		Seizures inhibition was observed at 800 mg/kg (percentage inhibition 100%)	29, 30
12	Lavandula angustifolia Mill.	Lamiaceae	True laven der	Ap	Safe up to 2000 mg/kg		The effects of linalool on binding of N-methyl-D- Aspartate (NMDA) glutamate antagonist and GABAA agonist	PTZIC	Increase in seizure latency as well as protection effect was 66%	31,32
13	Bunium persicum Boiss.	Apiaceae	Black caraway	S	Safe up to 4000 mg/kg	M (500, 1000, 2000, 3000 and 4000)	Act through GABAergic mechanism and increase opening of chloride channel	PTZIC	Methanol extract of the plant increased the onset time of clonic and tonic convulsions at dose 3000 mg	33
14	Salvia miltiorrhiza Bge.	Lamiaceae	Red sage	R	Safe up to 64000 mg/kg	A (0.1, 1 and 10)	A propensity to interact with pathways irrelevant to GABA and related agonists	PTZIC	Dose-dependent effect observed maximum percentage inhibition at 10 mg	34, 35
15	Zingiber officinale Rosc.	Zingiberaceae	Red sage	R	Safe up to 5000 mg/kg	E (25, 50 and 100)	Inhibits chloride ion channel of GABA _A receptors	PTZIC	Doses were able to inhibit generalized tonic clonic seizures in dose dependent manner	36
16	Zizyphus jujube Mill.	Rhamnaceae	Adraka R	Fr	Safe up to 5000 mg/kg	M (100, 250, 500 and 1000)	Inhibition of glutamate-induced over excitation, a decrease in synaptic release of glutamate, inhibits effect of GABA and reduce the excitation	PTZIC	1000 mg/kg dose exhibited 100% protection against generalized tonic–clonic seizures in the PTZIC and 66.7% protection against tonic hindlimb extension in the MESIC	37-39

5.	Botanical nam	e Family	Common	Part	Acute		Mechanism of	Model	Results	Ref.
Jo.			name		toxicity	Dose (mg/kg)	action			
7	Annona senegalensis Per.	Annonaceae	Wild custard apple		LD ₅₀ 3000 mg/kg		Enhance GABA neurotransmission	MESIC & PTZIC	Extract prolonged the latency of convulsions and maximum inhibition was observed at 200 mg	40, 4
8	Bryophyllum Pinnatum Lam.	Crassulaceae	Ghamari	L	Safe up to 2000 mg/kg	Aq (50, 100 and 200)	Increase brain GABA content	PCTIC	No change was observed at 50 mg/kg but at 200 mg/kg dose it showed maximum anticonvulsant effect	42
9	Kalanchoe crenata Andr.	Crassulaceae	Neverdie	L	Safe up to 1000 mg/kg	M (150 and 300 and 600)	An antagonism of GABA synthesis	PTZIC	Increased latency period in seizures and maximum inhibition at 600 mg	43, 44
20	Bacopa monnieri L.	Plantaginaceae	Brahmi	St	Safe up to 1000 mg/kg	Aq, E and A (100, 200 and 300)	GABA agonist action	PTZIC	Dose-dependent effect observed, and maximum protection was seen at 300 mg/kg dose	45
1	Rosa damascena Mill.	Rosaceae	Damask rose	L	Safe up to 2000 mg/kg	Eo (250, 500, 750 and 1000)	Act on GABA _A receptors in the brain of rats/ enhancing the effects of benzodiazepines or GABA receptors	PTZIC	750 mg/kg dose delays the start of epileptic seizures	46
2	Argyreia speciose Lour.	Convolvulaceae	Hawaiian baby woodrose	R	Safe up to 2000 mg/kg	Ha (100, 200 and 400)	Glutamatergic transmission inhibition	PTZIC	Dose-dependent effect observed and maximum protection at both dose 200 and 400 mg/kg	47
23	Boerhaavia diffusa L.	Nyctaginaceae	Punarnava	R	Safe up to 2000 mg/kg		By inhibiting the activity of GABA at GABA _A receptors	PTZIC	Dose-dependent result was observed	48
4	Dorstenia arifolia L.	Moraceae	Grendelion	Ap	Safe up to 5000 mg/kg	Ea (10, 30 and 50)	Act through GABAergic mechanism	PTZIC	A significant decrease of the incidence of clonic convulsions and maximum inhibition was at 50 mg	49

JANGRA et al.: REVIEW ON ETHNO MEDICINAL PLANTS WITH ANTICONVULSANT ACTIVITY 27	79
---	----

S. No.	Botanical name	e Family	Common name	Part	Acute toxicity	Extract & Dose (mg/kg)	Mechanism of action	Model	Results	Ref.
25	Sutherlandia frutescens R. BR.	Fabaceae	Bitterblaar	Ap	Safe up to 1600 mg/kg	Aq (25, 50, 100, 200 and 400)	Enhancing GABAergic transmission in brain	PTZIC	Aqueous extract (50–400 mg/kg) produced dose- related, significant protection (<i>P</i> <0.05–0.001) of the mice against PTZ-induced seizures	50
26	Scutellaria lateriflora L.	Lamiaceae	Blue skullcap	R	DNF	Aq (30, 60, 90 and 150)	Showed high affinity for the benzodiazepine binding site of GABA _A receptor	PTZIC	The latency to seizure onset was significantly increased and maximum protection against observed at 90 mg	51
27	<i>Lippia</i> <i>citriodora</i> Kun.	Verbenaceae	Lemon verbena	L	Safe up to 2000 mg/kg	E (200, 400 and 800)	Antagonist of GABA /benzodiazepine receptor complex	PTZIC	800 mg/kg made the latency of seizure longer, compared to other two dose	52
28	Gemlina arborea Roxb.	Verbenaceae	Goomar teak	St	Safe up to 2000 mg/kg	M (250 and 500)	Involvement of GABAergic /by inhibiting the activity of GABA at GABA _A receptor.	PTZIC	Percentage protection was 60% and 80% at dose 250mg and 500 mg dose respectively	53
9	Alpinia officinarum Han.	Zingiberaceae	Lesser galangal	R	LD ₅₀ 7500-7700 mg/kg	Ha (200, 400 and 600)	Agonistic effect on GABAergic transmission	PTZIC	No effect was observed at 200 and 400 mg but at dose of 600 mg it was totally 100% protection against seizures	54, 55
50	Allium cepa L.	Amaryllidaceae	Bulb onion	DNF	Safe up to 2000 mg/kg	M (200 and 400)	Increase level of GABA modulation in whole brain	IIC	Extract (200 and 400 mg/kg) showed significant reduction in the duration of hind limb extensor phase	56
1	Butea monosperma Lam.	Fabaceae	Bastard teak	St	Safe up to 2000 mg/kg	M (100, 200 and 300)	Interacts with GABAergic neurotransmission basically through GABA _A mediated action	PTZIC and MESIC	Extract delayed all the parameters like onset of jerk, straub tail, onset of clonus and extensor phases in a dose dependent manner	57 (Contd

S. No.	Botanical name	Family	Common name	Part	Acute toxicity	Extract & Dose	Mechanism of action	Model	Results	Ref.
32	Antiaris toxicaria Pers.	Moraceae	Upas tree	В	Safe up to 3000 mg/kg	(mg/kg) Aq (200, 400 and 800)	By interacting with the GABA _A receptor significantly increase in GABA level	PIC	Dose produced significant effect on the latency to myoclonic jerks	58, 59
33	Benkara malabarica L.	Rubiaceae	Cholakara	R	Safe up to 500 mg/kg	M (25 and 50)	Extract possesses GABA-T inhibitory activity / GABA-T decreases the level of GABA in the brain and increases the level of l-glutamate		Effect of the extract was dose dependent.	60
34	Datura metel L.	Solanaceae	Devil's trumpet	L	Safe up to 2000 mg/kg	E (200 and 400)	By enhancing the GABA in GABAergic pathway	PTZIC	The extract significantly delayed the onset of myoclonic jerks and reduction in the duration of tonic convulsions at doses of 200 mg/kg and 400 mg/kg	61
35	Pseudospondias microcarpa A. Rich.	Anacardiaceae	Ochol	DNF	Safe up to 3000 mg/kg	E (30, 100, 300, 1000 and 3000) Vo (35)	GABAergic stimulation	PTZIC	Dose dependent result was observed	62, 63
36	<i>Acorus tatarinowii</i> Schott.	Acoraceae	Sweet flag	DNF	Safe up to 350 mg/kg	M (25, 50 and 75)	Enhance the level GABA in brain	KAIS	Dose given to animal showed significant effect on seizures	64
37	Corchorus olitorius L.	Malvaceae	Jute mallow	St	Safe up to 5000 mg/kg	M (50 and 75)	Increase GABA level in brain	SIC	Inhibition of seizures was observed in dose dependent manner	65, 66
38	<i>Albizzia lebbeck</i> Benth.	Fabaceae	Lebbek tree	L	Safe up to 5000 mg/kg	E (250, 500, 750 and 1000)	Enhance GABA level in brain	PTZIC	Dose dependent result was observed	67
39	Spathodea campanulata P. Beauv	Bignoniaceae	Nandi flame	L	LD ₅₀ 4500 mg/kg	E and M (300) E (100 mg/kg)	Enhancement in GABA inhibitory action	PTZIC	The extract reduced the duration of PTZ-induced convulsion in a dose-dependent manner	68
										(Contd.)

	Table 1 —	- List of medicina	al plants inv	estigat	ed for antico	nvulsant ac	tivity through GABA	Aergic transn	nission (Contd.)	
S. No.	Botanical name	Family	Common name	Part	Acute toxicity	Extract & Dose (mg/kg)	Mechanism of action	Model	Results	Ref.
40	<i>Lippia alba</i> Mill.	Verbenaceaeae	Matgrass	DNF	Safe up to 4000 mg/kg	O (5,10, 20, 40 mg/kg)	Inhibition of GABA binding and GABA uptake	PTZIC	Dose given to animal showed significant effect on seizures	69, 70
41	<i>Valeriana</i> <i>edulis</i> ssp. Procera	Valerianaceae	Valeriana mexicana	R	DNF	(125, 250, 500 mg/kg)	GABA _A and cannabinoid CB ₂ receptor Involvement	PTZIC	Reduction of excitatory activity in dose dependent manner	71
42	Zhumeria majdae (Rech.)	Lamiaceae	Mohrkhosh	ıL	3.09 g/kg; 3.94 g/kg	O (5,10, 20,40 mg/kg)	GABAergic mechanism and the NO signaling pathway	PTZIC	Increased chronic seizure threshold and latency while reduced frequency of convulsions and mortality	72
43	<i>Morus Nigra</i> L	.Moraceae	Black mulberry	L	Safe upto 2000 mg/kg	L (125, 250 and 500 mg/kg)	Potentiation of GABAergic and Glycinergic activity	SIC	Delayed latent of seizures, decrease in frequency and jerk's duration	73

Abbreviations: IIC (Isoniazid induced convulsion) - SIC (Strychnine induced convulsion) - SKP (Surgical and kindling procedure) - PIC (Pilocarpine induced convulsion) - PTZIC (Pentylenetetrazol induced convulsion) - IVBA (*In vitro* binding assay) - EIM (Electroshock in mice) - MESIC (Maximal electroshock induced convulsion) - PCTIC (Picrotoxin induced convulsion) - KAIS (Kianic acid induced seizure)

Aq (Aqueous), M (Methanol), Eo (Essential oil), E (Ethanol), Pe (Petroleum ether), Ro (Realm oil), Ha (Hydroalcoholic), Aw (Aromatic water), A (Acetone), Ea (Ethylacetate), Vo (Volatile oil)

R (Root), S (Seed), L (Leaves), F (Flower), Wp (Whole plant), Fr (Fruit), Ap (Aerial part), St (Stem), O (Oil) DNF (Data not found), GABA (Gamma-aminobutyric acid)

Phytochemicals are plant-derived chemicals used to identify number of secondary metabolic compounds present in the plants⁷⁴. Various phytoconstituents such as alkaloids, terpenes, triterpenoids, lipids, flavonoids etc. have been documented to possess anticonvulsant action (Fig. 1).

Tanshinone IIA is the chief constituent of plant *Salvia miltiorrhiza* (Family: Lamiaceae) showing anticonvulsant activity. Plant is also known as Danshen or Chinese red sage and is traditionally used in the Chinese medicine for treatment of cardiovascular, cerebrovascular, and neurological disorders. Tanshinone IIA was used to treat convulsions induced by PTZ-induced seizures animal model by agonizing the action of GABA_A receptor³⁴.

Limonene was isolated from plant *Mentha piperita* (Family: Lamiaceae). This plant is traditionally used as tranquilizer, stomach booster, pain reliever and anticonvulsant. Limonene was found to increase GABA concentration in PTZ induced convulsion

animal model specially by affecting $GABA_A$ receptor²⁹.

(±) **3-Menthone** is main chemical constituent of *Mentha piperita* (Family: Lamiaceae). *Mentha piperita* is found in most region of Iran (in northern and northeastern Iran). Several other components of peppermint are also isolated (±) 3-menthone, methyl acetate, menthol, neomenthol and 1,8 cincole. (±) 3-menthone was evaluated for anticonvulsive activity at dose 30, 100, and 300 mg/kg by using electroconvulsiometer and PTZ-induced convulsions. The compound was found very effective in elevating the level of GABA in mid brain^{29,62}.

Liriodendrin is the main chemical constituent of *Boerhaavia diffusa* (Nyctaginaceae :Family) and has been isolated from the methanol root extract of *Boerhaavia diffusa*. Many other components like punarnavine, boeravinones A–F, hypoxanthine 9-larabinofuranoside, ursolic acid, punarnavoside and punarnavoside have also been isolated from this plant.

Fig. 1 — Structure of isolated compounds for anticonvulsant activity.

Liriodendrin shows anticonvulsant effect by blocking calcium channels. PTZ-induced seizures animal model was used for evaluation of anticonvulsive activity and showed very good activity^{48,75}.

Linalool is one of the main constituents of *Lavandula angustifolia* (Family: Lamiaceae). Plant also possesses other pharmacological activities like anti-nociceptive, analgesic and anti-inflammatory. The anticonvulsant effect of linalool has been studied on mouse cortical membranes through binding of [3 H]MK801 and [3 H] muscimol. The mechanism of antiepileptic action was N-methyl-Daspartate (NMDA) glutamate antagonism and GABA_A agonism⁷⁶.

GABA (Gamma aminobutyric acid) was isolated from the plant *Sutherlandia frutescens*) :Family Fabaceae). Plant also contains other bioactive chemical constituents like amino acid, lcanavanine, pinitol, asparagines and some saponins. GABA inhibits seizures induced by PTZ and PCT-induced seizures by acting on GABA receptor or indirectly the GABAnergic neurotransmission in the brain⁵⁰.

-(+)-Pulegone was obtained from the plant *Mentha pulegium* (Family: Lamiaceae). Anticonvulsant effect of -(+)-pulegone was evaluated by using 300 mg/kg dose *i.p.* The anti-convulsant action of pulegone was through increase in the latency of PTZ-induced convulsions and its efficacy as anticonvulsant was similar to that of standard drug diazepam⁷⁷.

Thymoquinone is main active chemical constituent of *Nigella sativa* (Family: Ranunculaceae). A dose of 150 mg/kg of thymoquinone show protection in bicuculline-induced seizures through GABAergic transmission pathway probably through GABA_A receptor mediation⁷⁸.

Carvone is one of the major components (38%) of *Calamintha officinalis* (Family: Lamiaceae). It is used as flavoring agent in cosmetics and toothpaste. Carvone also possess other activities like antimicrobial, antifungal, antiseptic, cicatrizant etc. It reduces locomotor activity in animals and increase latency periods in PTZ-induced seizures⁷⁹.

Aconitine is the major component of *Aconitum* napellus (Family: Ranunculaceae) and showed anticonvulsant effect at doses 0.1 and 1 μ m in convulsions induced by PTZ and bicuculline induced convulsion models by blocking GABA_A receptor mediated inhibition⁸⁰.

Raubasine is obtained from the plant *Rauwolfia* serpentine (Family: Apocynaceae). It was used to

evaluate anticonvulsant activity in PTZ and bicuculline induced seizures models at 40.6 mg/kg dose. The compound exhibited very good antiepileptic activity through action on benzodiazepines as agonist⁸¹.

Vitexin was evaluated for anticonvulsant activity at doses 100 and 200 μ m in PTZ (90 mg/kg, *i.p*) induced seizures in rats. Vitex was found to increase the seizure onset time by interacting with GABA_A benzodiazepine receptor complex⁸².

Magnolol and honokiol were isolated from *Magnolia officinalis* (Magnoliaceae), a deciduous tree commonly known as magnolia plant. Magnolol and honokiol were evaluated for anticonvulsant activity in PTZ and ethylketopentenoate (EKP) Zebra Fish models. Both the compounds were found to be efficacious for antiepileptic activity⁸³.

Discussion

Herbal medications are currently the most usual to complementary and alternative approach medications, which play an important part in developing the new drug entity with lesser cost and side effects. In this review, a total of 120 review and research papers were reviewed articles thoroughly. About 40 articles were reviewed for the isolated compounds for antiepileptic activity along with their structure. 120 articles were checked for citing the research work done for epilepsy, efficacy of plants along with their mechanism of action, plant profile, part used, toxicity study, dose, extract used, and model used in research study. The plants reviewed for our research were mainly from the families moraceae(3), apiaceae(2), valerianaceae(1), poaceae(2), lamiaceae(11), zingiberaceae(3), passifloraceae(1), cucurbitaceae(1),fabaceae(5), cannabaceae(1),rhamnaceae(1), annonaceae(1),crassulaceae(2). plantaginaceae(1), rosaceae(1), convolulaceae(1), nyctaginaceae(2), verbenaceae(3), amaryllidaceae(1), rubluceae(1),solanaceae(1),anacordiaceae(1), acoraceae(1), malvaceae(1). bignoniaceae(1), ranunculaceae(2)and apocynaceae(1). From the above data it is shown that maximum number of plants belonged to families lamiaceae(11), fabaceae(5),zingiberaceae(3),moraceae(3), verbenaceae(3) and apiaceae(2). In above list, most commonly animal models used were pentylenetetrazol, isoniazid, strychnine and picrotoxin induced convulsions. From the literature survey it was observed that various parts of plants like roots, seeds, leaves, bark, flowers, fruits, aerial parts and stem were used. In this review, the authors mainly focused on the plants which revealed their action through GABAergic transmission. From the above data, it was also observed that maximum research is going on in developing countries. It is figured out that this review could be a huge assist to natural product researcher to select scientifically explored plants for further isolation of compounds that can be used to conduct clinical studies, so that a cheaper and side effects free novel medicines could be provided to society.

Conclusion

The potential of natural products for the treatment of epilepsy could be an excellent alternative for the development of safe and effective anti-epileptic drugs. The data discussed might be useful in formulating new chemical entity for treatment of epilepsy. The isolated compounds mentioned in the review may provide new drug molecules with lesser cost and more efficacy.

Conflict of interest

The authors do not have any conflict of interest.

References

- Bahou Y, Alzghoul L, Alajloni E M, Albliwi M A, Alsabatin N O, *et al.*, Knowledge and awareness among patients with epilepsy observed at Jordan University Hospital, *Epilepsy Behav*, 2020, **102**, 106697.
- 2 Khare C P, Indian medicinal plants: An illustrated dictionary, (Springer Science & Business Media), 2008.
- 3 Idrissi A J, Lamkaddem A, Boujraf S and Souirti Z, Awareness and attitudes toward persons with epilepsy among teachers: A Moroccan study, *Epilepsy Behav*, 2020, 102,106633.
- 4 Granbichler C A, Zimmermann G, Oberaigner W, Kuchukhidze G, Ndayisaba J P, *et al.*, Potential years lost and life expectancy in adults with newly diagnosed epilepsy, *Epilepsia*, 2017, **58**(11), 1939-1945.
- 5 Kumar S, Madaan R, Bansal G, Jamwal A and Sharma A, Plants and plant products with potential anticonvulsant activity–a review, *Pharmacogn Commun*, 2012, **2**(1), 3-99.
- 6 Tripathi K D, Essentials of medical pharmacology, (JP Medical Ltd), 2013, 30.
- 7 Treiman D M, GABAergic mechanisms in epilepsy, *Epilepsia*, 2001, **42**, 8-12.
- 8 Briggs S W and Galanopoulou A S, Altered GABA signaling in early life epilepsies, *Neural Plast*, 2011, **3**, 527605.
- 9 Pavlov I and Walker M C, Tonic GABAA receptor-mediated signaling in temporal lobe epilepsy, *Neuropharmacol*, 2013, 69, 55-61.
- 10 Johnston G A, Hanrahan J R, Chebib M, Duke R K and Mewett K N, Modulation of ionotropic GABA receptors by natural products of plant origin, *Adv Pharmacol*, 2006, 54, 285-316.

- 11 Reetesh M, Papiya B, Sunny S and Sonam J, Medicinal plants used in the treatment of epilepsy, *Int Res J Pharm*, 2011, **2**(2), 32-39.
- 12 Choudhary N and Singh V, Insights about multi-targeting and synergistic neuromodulators in Ayurvedic herbs against epilepsy: Integrated computational studies on drug-target and protein-protein interaction networks, *Sci Rep*, 2019, **9**, 1-23.
- 13 Sahranavard S, Ghafari S and Mosaddegh M, Medicinal plants used in Iranian traditional medicine to treat epilepsy, *Seizure*, 2014, **23**(5), 328-332.
- 14 Manchishi M S, Recent advances in antiepileptic herbal medicine, *Curr Neuropharmacol*, 2018, **16**, 79-83.
- 15 Patil M S, Patil C R, Patil S W and Jadhav R B, Anticonvulsant activity of aqueous root extract of *Ficus religiosa*, *J Ethnopharmacol*, 2011, **133**, 92-96.
- 16 Fatima H, Qureshi N A, Shaheen N, Rashid U and Qamar M F, *In-vivo* antiplasmodial potential of aqueous extracts of *Trachyspermum ammi* and *Punica granatum* seeds in male balb/c mice, *Acta Pol Pharm*, 2017, 74, 1781-1795.
- 17 Rajput M A, Khan R A and Feroz Z, Evaluation of antiepileptic activity of the methanol extract of *Trachyspermum ammi* (L.), *Arch Biol Sci*, 2013, 65, 815-819.
- 18 Rezvani M E, Roohbakhsh A, Allahtavakoli M and Shamsizadeh A, Anticonvulsant effect of aqueous extract of *Valeriana officinalis* in amygdala-kindled rats: Possible involvement of adenosine, *J Ethnopharmacol*, 2010, **127**, 313-318.
- 19 Silva M R, Ximenes R M, da Costa J G, Leal L K, de Lopes A A, et al., Comparative anticonvulsant activities of the essential oils (EOs) from Cymbopogon winterianus Jowitt and Cymbopogon citratus (DC) Stapf. in mice, Naunyn-Schmiedeb, Arch Pharmacol, 2010, 38, 415-426.
- 20 Leite B L, Souza T T, Antoniolli A R, Guimarãee A G, Siqueira R S, *et al.*, Volatile constituents and behavioral change induced by *Cymbopogon winterianus* leaf essential oil in rodents, *Afr J Biotechnol*, 2011, **10**, 8312-8319.
- 21 Heidari M R, Assadipour A, Rashid-Farokhi P, Assad H and Mandegary A, Effect of *Rosmarinus officinalis* L. extract on the seizure induced by picrotoxin in mice, *Pak J Biol Sci*, 2005, 8, 1807-1811.
- 22 Ding J, Wang J J, Huang C, Wang L, Deng S, et al., Curcumol from *Rhizoma Curcumae* suppresses epileptic seizure by facilitation of GABA (A) receptors, *Neuropharmacol*, 2014, **81**, 244-255.
- 23 Nassiri-Asl M, Shariati-Rad S and Zamansoltani F, Anticonvulsant effects of aerial parts of *Passiflora incarnata* extract in mice: Involvement of benzodiazepine and opioid receptors, *BMC Complement Altern Med*, 2007, 7, 26.
- 24 Jager A K, Gauguin B, Adsersen A and Gudiksen L, Screening of plants used in Danish folk medicine to treat epilepsy and convulsions, *J Ethnopharmacol*, 2006, 105, 294-300.
- 25 Singh R, Rajasree P H and Sankar C, Screening for antidiabetic activity of the ethanolic extract of *Bryonia alba* roots, *Int J Pharm Biol Sci*, 2012, **2**, 210-215.
- 26 Ali A, Shalam M D, Ashfaq M D, Rao N V, Gouda S, et al., Anticonvulsant effect of seed extract of *Caesalpinia* bonducella (Roxb.), 2009, 8, 51-55.

- 27 Reddy D S and Golub V M, The pharmacological basis of cannabis therapy for epilepsy, *J Pharmacol Exp Ther*, 2016, 357, 45-55.
- 28 Nahas G G, Toxicology and pharmacology of *Cannabis sativa* with special reference to delta-9-THC, *Bull Narc*, 1972, 24, 11-27.
- 29 Karampour N S, Arzi A and Rahimzadeh M, The effect of hydroalcoholic extract of *Mentha piperita* on pentylenetetrazol-induced convulsion in mice, *Natl J Physiol Pharm Pharmacol*, 2018, 8(2), 251-256.
- 30 Bayani M, Ahmadi-hamedani M and Javan A J, Study of hypoglycemic, hypocholesterolemic and antioxidant activities of Iranian *Mentha spicata* leaves aqueous extract in diabetic rats, *Iran J Pharm Res*, 2017, **16**, 75.
- 31 Alexa E, Danciu C, Radulov I, Obistioiu D, Sumalan R M, et al., Phytochemical screening and biological activity of Mentha piperita L. and Lavandula angustifolia mill. extracts, Anal Cell Pathol, 2018, 2018, 2678924.
- 32 Caputo L, Souza L F, Alloisio S, Cornara L and De Feo V, *Coriandrum sativum* and *Lavandula angustifolia* essential oils: Chemical composition and activity on central nervous system, *Int J Mol Sci*, 2016, **17**, 1999.
- 33 Mandegary A, Arab-Nozari M, Ramiar H and Sharififar F, Anticonvulsant activity of the essential oil and methanolic extract of *Bunium persicum* (Boiss). B. Fedtsch, *J Ethnopharmacol*, 2012, **140**(2), 447-451.
- 34 Buenafe O E, Orellana-Paucar A, Maes J, Huang H, Ying X, et al., Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models, ACS Chem Neurosci, 2013, 4(11), 1479-1487.
- 35 Wang M, Liu J, Zhou B, Xu R, Tao L, *et al.*, Acute and subchronic toxicity studies of Danshen injection in Sprague-Dawley rats, *J Ethnopharmacol*, 2012, **141**, 96-103.
- 36 Hosseini A and Mirazi N, Acute administration of ginger (*Zingiber officinale* rhizomes) extract on timed intravenous pentylenetetrazol infusion seizure model in mice, *Epilepsy Res*, 2014, **108**(3), 411-419.
- 37 Pahuja M, Mehla J, Reeta K H, Joshi S and Gupta Y K, Hydroalcoholic extract of *Zizyphus jujuba* ameliorates seizures, oxidative stress, and cognitive impairment in experimental models of epilepsy in rats, *Epilepsy Behav*, 2011, **21**(4), 356-363.
- 38 Pahuja M, Kleekal T, Reeta K H, Tripathi M and Gupta Y K, Interaction profile of *Zizyphus jujuba* with phenytoin, phenobarbitone, and carbamazepine in maximal electroshock-induced seizures in rats, *Epilepsy Behav*, 2012, 25(3), 368-373.
- 39 Hovanet M V, Ancuceanu R V, Dinu M, Oprea E, Budura E A, et al., Toxicity and anti-inflammatory activity of *Ziziphus jujuba* Mill. Leaves, *Farmacia*, 2016, 64(5), 802-808.
- 40 Konate A, Sawadogo W R, Dubruc F, Caillard O, Ouedraogo M, et al., Phytochemical and anticonvulsant properties of" Annona senegalensis" Pers.(Annonaceae), plant used in Burkina folk medicine to treat epilepsy and convulsions, BMC Pharmacol Toxicol, 2012, 3(5), 245-250.
- 41 Okoye T C, Akah P A, Omeje E O, Okoye F B and Nworu C S, Anticonvulsant effect of kaurenoic acid isolated from the root bark of *Annona senegalensis*, *Pharmacol Biochem Behav*, 2013, **109**, 38-43.

- 42 Salahdeen H M and Yemitan O K, Neuropharmacological effects of aqueous leaf extract of *Bryophyllum pinnatum* in mice, *Afr J Biomed Res*, 2006, 9(2), 101-107.
- 43 Nguelefack T B, Nana P, Atsamo A D, Dimo T, Watcho P, et al., Analgesic and anticonvulsant effects of extracts from the leaves of Kalanchoe crenata (Andrews) Haworth (Crassulaceae), J Ethnopharmacol, 2006, 106, 70-75.
- 44 Fonseca A G, Dantas R, Fernandes J M, Zucolotto S M, Lima A A N, et al., *In-vivo* and *in-vitro* toxicity evaluation of hydroethanolic extract of *Kalanchoe brasiliensis* (Crassulaceae) leaves, *J Toxicol*, 2018, 2018, 1-8.
- 45 Mishra A, Mishra A K, Tiwari P O and Jha S, Pharmacognostic, physicochemical and phytochemical investigation of *Bacopa monnieri* L. stem and its anticonvulsant potential in laboratory animals, *Int J Epilepsy*, 2015, **2**(01), 19-27.
- 46 Kheirabadi M, Moghimi A, Rakhshande H and Rassouli M B, Evaluation of the anticonvulsant activities of *Rosa damascena* on the PTZ induced seizures in wistar rats, *J Biol Sci*, 2008, 8(2), 426-430.
- 47 Vyawahare N S and Bodhankar S L, Anticonvulsant activity of Argyreia speciosa in mice, Indian J Pharm Sci, 2009, 71(2), 131-134.
- 48 Kaur M and Goel R K, Anti-convulsant activity of Boerhaavia diffusa: Plausible role of calcium channel antagonism, Evid Based Complement Altern Med, 2011, 2011, 1-7.
- 49 Zapata-Sudo G, Mendes T C, Kartnaller M A, Fortes T O, Freitas N F, et al., Sedative and anticonvulsant activities of methanol extract of *Dorstenia arifolia* in mice, *J Ethnopharmacol*, 2010, **130**(1), 9-12.
- 50 Ojewole J A, Anticonvulsant property of *Sutherlandia frutescens* R. BR. (variety Incana E. MEY.) [Fabaceae] shoot aqueous extract, *Brain Res Bull*, 2008, **75**(1), 126-132.
- 51 Zhang Z, Lian X Y, Li S and Stringer J L, Characterization of chemical ingredients and anticonvulsant activity of American skullcap (*Scutellaria lateriflora*), *Phytomed*, 2009, 16(5), 485-493.
- 52 Rashidian A, Farhang F, Vahedi H, Dehpour A R, Mehr S E, et al., Anticonvulsant effects of Lippia citriodora (Verbenaceae) leaves ethanolic extract in mice: Role of GABAergic system, Int J Prev Med, 2016, 7, 97.
- 53 Acharya N S, Acharya S R, Kumar V and Barai P, Anticonvulsant and antioxidant effects of methanol extract of stems of *G. arborea* Roxb., *J Nat Remedies*, 2015, 15(1), 23-32.
- 54 Nejad S R, Motevalian M, Fatemi I and Shojaii A, Anticonvulsant effects of the hydroalcoholic extract of *Alpinia officinarum* Rhizomesin Mice: Involvement of benzodiazepine and opioid receptors, *J Epilepsy Res*, 2017, 7(1), 33-38.
- 55 Alajmi M F, Mothana R A, Al-Rehaily A J and Khaled J M, Antimycobacterial activity and safety profile assessment of *Alpinia galanga* and *Tinospora cordifolia*, *Evid Based Complement Altern Med*, 2018, **2018**, 2934583.
- 56 Pitchaiah G, Anusha V L, Hemalatha C H, Kumar A and Sravani K, Anxiolytic and anticonvulsant activity of methanolic extract of *Allium cepa* Linn (Onion) bulbs in Swiss albino mice, *J Pharmacogn Phytochem*, 2015, 4(3), 131-135.

- 57 Das M K, Mazumder P M and Das S, Antiepileptic activity of methanol extract of *Butea monosperma* (Lam.) Kuntze and its isolated bioactive compound in experimentally induced convulsion in swiss albino mice, *J Pharm Sci Res*, 2015, 7(12), 1066-1072.
- 58 Mante P K, Adongo D W and Woode E, Anticonvulsant effects of *Antiaris toxicaria* aqueous extract: investigation using animal models of temporal lobe epilepsy, *BMC Res Notes*, 2017, **10**(1), 1-9.
- 59 Mante P K, Adongo D W, Kukuia K K, Ameyaw E O and Woode E, Neuropharmacological assessment of an aqueous bark extract of *Antiaris toxicaria* (Pers.) Lesch.(Moraceae) in rodents, *Am J Pharmacol Toxicol*, 2012, 7(4), 123-134.
- 60 Mishra N, Oraon A, Dev A, Jayaprakash V, Basu A, et al., Anticonvulsant activity of *Benkara malabarica* (Linn.) root extract: *In vitro* and *In vivo* investigation, *J Ethnopharmacol*, 2010, **128**(2), 533-536.
- 61 Bhawana C, Sushil S and Amit S, Evaluation of antiepileptic activity of datura metel leaf extract in experimental animal, *Int J Res Pharm Chem*, 2016, **6**(3), 451-457.
- 62 Jain J, Kumar Y, Sinha R, Kumar R and Stables J, Menthone aryl acid hydrazones: A new class of anticonvulsants, *Med Chem*, 2011, 7(1), 56-61.
- 63 Adongo D W, Mante P K, Kukuia K K, Benneh C K, Biney R P, et al., Toxicological assessment of *Pseudospondias microcarpa* (A. Rich.) Engl. hydroethanolic leaf extract in rats: Haematological, biochemical, and histopathological studies, *Sci World J*, 2018, 2018, 4256785.
- 64 Chen L and Liao W P, Changes of amino acid content in hippocampus of epileptic rats treated with volatile oil of *Acorus tatarinowii*, *China J Chin Materia Medica*, 2004, 29(7), 670-673.
- 65 Gupta M A, Mazumder U K, Pal D, Bhattacharya S and Chakrabarty S U, Studies on brain biogenic amines in methanolic extract of *Cuscuta reflexa* Roxb. and *Corchorus olitorius* Linn. seed treated mice, *Acta Pol Pharm*, 2003, **60**(3), 207-210.
- 66 Orieke D, Ohaeri O C, Ijeh I I and Ijioma S N, Identification of phytocomponents and acute toxicity evaluation of *Corchorus olitorius* leaf extract, *European J Med Plants*, 2018, 23, 1-6.
- 67 Kasture V S, Kasture S B and Pal S C, Anticonvulsant activity of *Albizzia lebbeck* leaves, *Indian J Exp Biol*, 1996, 34(1), 78-80.
- 68 Ilodigwe E E, Akah P A and Nworu C S, Anticonvulsant activity of ethanol leaf extract of *Spathodea campanulata* P. Beauv (Bignoniaceae), *J Med Food*, 2010, **13**(4), 827-833.
- 69 Neto A C, Netto J C, Pereira P S, Pereira A M, Taleb-Contini S H, et al., The role of polar phytocomplexes on anticonvulsant effects of leaf extracts of *Lippia alba* (Mill.) NE brown chemotypes, *J Pharm Pharmacol*, 2009, 61(7), 933-939.

- 70 Aziz M A, Mehedi M, Akter I, Sajon S R, Mazumder K, et al., In-vivo and in-silico evaluation of analgesic activity of Lippia alba, Clin Phytosci, 2019, 5(1), 38.
- 71 Gonzalez-Truzano M E, Conteras-Murillo G, Lopez-Najera C A, Hidalgi-Flores F J, Navarette-Castro A, *et al.*, Anticonvulsant activity of Valeriana edulis roots and valepotriates on the pentyltetrazole induced seizures in rats, *J Ethnopharmacol*, 2021, **265**, 113299.
- 72 Aghamiri H, hafaroodi H and Asgarpanah J, Anticonvulsant activity of essential oil from Leaves of *Zhumeria majdae* (Rech.) in mice: The role of GABA_A neurotransmission and the nitric oxide pathway, *Clin Transl Sci*, 2020, **13**, 785–797.
- 73 Zehra T, Sarfaraz S and Ikram R, Dose dependent anticonvulsant activity of *Morus nigra* strychnine induced seizures model, *Pak J Pharm Sci*, 2021, 34, 2167-2171.
- 74 Vaghasiya Y, Dave R and Chanda S, Phytochemical analysis of some medicinal plants from western region of India, *Res J Med Plant*, 2011, 5(5), 567-576.
- 75 Sahu A, Damiki L, Nilanjan G and Dubey S, Phytopharmacological review of *Boerhaavia diffusa* Linn.(Punarnava), *Pharmacogn Rev*, 2008, **2**(4), 14-22.
- 76 Silva Brum L F, Elisabetsky E and Souza D, Effects of linalool on [3H] MK801 and [3H] muscimol binding in mouse cortical membranes, *Phytother Res*, 2001, **15**(5), 422-425.
- 77 Sousa D P, Nóbrega F F, Lima M R and Almeida R N, Pharmacological activity of (R)-(+)-pulegone, a chemical constituent of essential oils, *Z Naturforsch C*, 2011, **66**(7-8), 353-359.
- 78 Raza M, Alghasham A A, Alorainy M S and El-Hadiyah T M, Potentiation of valproate-induced anticonvulsant response by *Nigella sativa* seed constituents: The role of GABA receptors, *Int J Health Sci*, 2008, **2**(1), 15-25.
- 79 Monforte M T, Tzakou O, Nostro A, Zimbalatti V and Galati E M, Chemical composition and biological activities of *Calamintha officinalis* Moench essential oil, *J Med Food*, 2011, 14(3), 297-303.
- 80 Ameri A, Gleitz J and Peters T, Aconitine inhibits epileptiform activity in rat hippocampal slices, *Naunyn-Schmiedeb Arch Pharmacol*, 1996, **354**(1), 80-85.
- 81 Charveron M, Assie M B, Stenger A and Briley M, Benzodiazepine agonist-type activity of raubasine, a *Rauwolfia serpentina* alkaloid, *Eur J Pharmacol*, 1984, 106(2), 313-317.
- 82 Abbasi E, Nassiri-Asl M, Shafeei M and Sheikhi M, Neuroprotective effects of vitexin, a flavonoid, on pentylenetetrazole-induced seizure in rats, *Chem Biol Drug Des*, 2012, **80**(2), 274-278.
- 83 Li J, Copmans D, Partoens M, Hunyadi B, Luyten W, et al., Zebrafish-based screening of antiseizure plants used in traditional Chinese medicine: *Magnolia officinalis* extract and its constituents magnolol and honokiol exhibit potent anticonvulsant activity in a therapy resistant epilepsy model, *ACS Chem Neurosci*, 2020, **11**(5), 730-742.