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In this study, three known flavonols, namely kaempferol (1), ombuin (2), and quercetin (3), and three known 1,2-
diphenylethanes, namely 5-(2-hydroxyphenethyl)-3-methoxy-2-methylphenol (4), 2-(3,5-dimethoxyphenethyl) phenol (5) 
and 2-(2-hydroxyphenethyl)-4,6-dimethoxyphenol (6) from the methanolic extract (ME) of Bauhinia vahlii were identified 
and sucessfully isolated. They were also evaluated for in vitro antioxidant, anti-inflammatory, anti-gout and anticancer 
effects. Compound 3 (26.00±2.17 µg/mL) showed an almost equivalent IC50 value of standard drug (25.55±2.80 µg/mL) 
against superoxide free radicals. Moreover, compound 3 showed significant inhibition of COXs and 5-LOX enzymes, while 
compounds 1, 2, 4 and 5 exhibited good inhibition of XO enzymes. Except for compound 5, all compounds showed a 
significant reduction of cell growth lysis of MCF-7, DLD-1, HeLa, and A549. Besides, all the metabolites and ME showed a 
very weak degree of specificity against NHME, indicates less toxicity to normal cells. The results suggest that B. vahlii can 
be a favourable natural source for the treatment of oxidative stress, inflammation, gout and cancer, and these actions are 
linked to the natural active compounds 1, 3, 4 and 6. 
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Introduction 
The genus Bauhinia belonging to the family 

Fabaceae is well recorded in the flora of India, Nepal, 
and Pakistan1. Bauhinia vahlii Wight & Arn. is a 
strong climbing shrub, usually called Camel’s foot 
creeper in English, Asamantaka in Sanskrit, and 
Adattige in Telugu2,3. In the folklore, Bauhinia 
species have wide applications in treating microbial 
infections, oxidative stress, inflammation, diabetes, 
and tumours. Mainly, the Indian tribes used B. vahlii 
in the treatment of microbial infections, oxidative 
stress, chronic inflammation and cancer1,3. 
Biologically, Bauhinia has been reported to have 
antifungal4,5, anti-mycobacterial4, anti-
inflammatory4,6, anticancer4,7, anti-malarial4,8, 
antioxidant9–11, and anti-diabetic9 activities.  

Particularly, B. vahlii is reported to have 
antibacterial2,12, antioxidant3,13, anti-inflammation14, 
tyrosinase inhibitory3 and anti-diabetic14 activities. 
Besides, a chemical examination of the leaves of B. 
vahlii reported having triterpenes, flavonoids, 

phenolic acids, and sterols15. To date, no proper 
chemical investigation has been attempted to evaluate 
the chemical constituents of the whole plant of B. 
vahlii. So, the current investigation aimed to evaluate 
the chemical composition of the whole plant B. vahlii 
using chromatography and to screen its methanolic 
extract and isolated metabolites for antioxidant, anti-
inflammatory, anti-gout, and anticancer properties.  

Material and Methods 

Plant collection 
The whole plant of B. vahlii was collected at 

Seshachalam hills, Tirupati, Andhra Pradesh, India, in 
February 2019, and a voucher specimen (DB-SVU-
2019-3478) was deposited in the Department of 
Botany, Sri Venkateswara University, Tirupati, 
Andhra Pradesh, India.  

Extraction and isolation 
The whole plant (1 kg) was dried and powdered 

and extracted using maceration method16 with 
methanol (90%, 3 × 1 L × 7 days) at 25 ˚C. All 
combined and evaporated under low pressure using 
rotavapor (Shimadzu Rotation evaporator QR 2005-S, 
Japan) to obtain a methanolic extract of B. vahlii 
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(ME, 34 g, 34%w/w) as a darkish brown solid. By 
using column chromatography (CC, sintered disc 
column, 600 mm × 45 mm; Product code: 6101067, 
Borosil, India) and silica gel (100 g, mesh size 100-
200, Merck), ME extract (20 g) was fractionated 
using a hexane/ethyl acetate solvent system (step 
gradient flow from 100:0, 95:5, 90:10, 5:95, 0:100), 
which yielded six main fractions, namely F1-6. 
Similarly, F1 (2.0 g) subjected to CC (sintered disc 
column, 300 mm × 18 mm; Product code: 6101062, 
Borosil, India) using the above parameters yielded 1 
(450 mg) as a yellow solid. By using step gradient 
flow (from 100:0, 95:5, 90:10, …, 5:95, 0:100) 
dichloromethane/ethyl acetate solvent system, F2 (2.5 
g) gave 2 (250 mg) as a yellow solid. Similarly, with 
the dichloromethane/ethyl acetate solvent system, F3 
(1.5 g) yielded 3 (800 mg) as a yellow solid, F4 (1.2 
g) yielded 4 (300 mg) as a white solid, F5 (1.4 g) 
yielded 5 (620 mg) as a pale yellow solid, and F5 (2.1 
g) yielded 6 (240 mg) as a creamy solid.  
 
Antioxidant activity 
 
DPPH assay  

By employing the 1,1-diphenyl-2-picrylhydrazyl 
(DPPH) assay17,18, the metabolites and extract were 
exposed to antioxidant activity in triplicate. To 
0.004% DPPH, known concentrations of the test 
samples are added and incubated for 30 minutes at 37 
˚C and then measured absorbance at 517 nm against 
the blank. Ascorbic acid was used as a reference drug. 
 
Superoxide radical scavenging assay  

By employing superoxide radicals19,20, the 
secondary metabolites and extract were exposed to 
antioxidant activity in triplicate. To prepared NADH, 
PMS and NBT added know concentrations of the test 
sample and incubated for 30 minutes at 37 ˚C. 
Absorbance was measured at 562 nm against the 
blank. Ascorbic acid was used as a reference drug. 
 
Anti-inflammatory assays 
 
Cyclooxygenase (COX1/2) inhibitory assay 

The abilities of compounds (1-6) and ME to inhibit 
isoenzymes COX-1/2 were performed using COX 
(ovine/human) inhibitor assay21 kit (Cayman, No.: 
560131). To 10 μL of either COX1 or COX2 added 
960 μL of 0.1 M Tris-HCl buffer and different 
concentrations of test samples and incubated for 10 
minutes at 37 ºC. Later, 10 μL of 100 μM arachidonic 
acid, after 2 minutes 1 M HCl of 50 μL and Ellman’s 
reagent, were added. The absorbance was noted 

spectrophotometrically at 410 nm against the blank. 
The percentage of inhibition was calculated with the 
OD values by which IC50 values were determined by 
linear regression. Indomethacin and diclofenac were 
used as reference drugs for COX1 and COX2, 
respectively. 
 
5-lipoxygenase (5-LOX) inhibitory assay 

The compounds (1-6) and ME were tested against 
5-LOX (human recombinant) using 5-LOX assay21 kit 
(No. 437996, Sigma Aldrich). To 90 μL of 5- LOX 
enzyme solution added different test sample 
concentrations, 100 μL of de chromogen, and finally 
added 10 μL of the substrate (arachidonic acid) and 
gently shake or 10 min and absorbance was recorded 
at 490 nm against the blank. The percentage of 
inhibition was calculated with the OD values by 
which IC50 values were determined by linear 
regression. Zileuton was used as a reference drug. 
 
Anti-gout assay 
 
Xanthine oxidase (XO) inhibitory assay 

All the isolated compounds (1-6) and ME were 
subject to XO inhibitory assay21 using Sigma Aldrich 
assay kit. To 10 μL of the substrate (xanthine, 5 mM), 
added of sodium phosphate buffer (470 μL), different 
test sample concentrations, and 10 μL of XO enzyme 
and incubated for 5 minutes at room temperature and 
absorbance was recorded at 295 nm against the blank. 
The percentage of inhibition was calculated with the 
OD values by which IC50 values were determined by 
linear regression. Allopurinol was used as a reference 
drug. 
 
Cytotoxicity assay 

Utilizing the SRB assay22,23, the secondary 
metabolites (1-6) and ME were implemented for their 
in vitro anticancer activity in triplicate (n = 3) using 
four cancer cells: MCF-7 (Breast), DLD-1 (Colon), 
HeLa (Cervical), A549 (Lung), and one normal cell 
line: normal human mammary epithelial (NHME). All 
the cells are purchased in good order from National 
Centre for Cell Science, Pune, and preserved 
according to Haritha et al24, and performed as per the 
established protocol22,23. Doxorubicin was used as a 
reference drug. 
 
Results and Discussion 
 
Chemistry 

Three known flavonols (1-3) and three known 1,2-
diphenylethanes (4-6) were successfully identified 
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from the ME by utilizing chromatographic and 
analyses of their spectral NMR data and elemental 
composition. The obtained data were interrelated with 
those reported in the previous literature (Fig 1). 

Compound 1 [Kaempferol]25 (Fig. 1): M.p.: 275-
276; Rf: 0.6 (hexane:ethyl acetate, 1:1); 1H NMR (400 
MHz, DMSO-d6): 2.27 (s, 1H, OH), 2.98 (s, 1H, OH), 
3.93 (s, 1H, OH), 5.03 (s, 1H, OH), 6.35 (s, 1H, Ar-
H), 6.45 (s, 1H, Ar-H), 7.12-7.13 (d, 2H, J= 4 Hz, Ar-
H), 7.61-7.63 (d, 2H, J= 8 Hz, Ar-H) (Fig. S1). 13C 
NMR (400 MHz, DMSO-d6): 94.96 (C-8), 100.15 (C-
6), 104.82 (C-4), 116.49 (C-12/14), 122.48 (C-10), 
131.48 (C-11/15), 136.89 (C-2), 146.42 (C-1), 158.13 
(C-9), 160.36 (C-13), 160.49 (C-5), 164.68 (C-7), 
175.78 (C-3) (Fig. S2). CHNS analysis for C15H10O6: 
calcd. C-62.94%, H-3.52%, found C-62.96%, H-
3.54(%). ESI-MS: calcd. m/z for C15H10O6: 286.24 
[M], found 285.14 [(M+H+), positive mode], 287.24 
[(M-H+), negative mode] (Fig. S3).  

Compound 2 [Ombuin]26 (Fig. 1): M.p.: 202-203; 
Rf: 0.5 (hexane:ethyl acetate, 1:1); 1H NMR (400 
MHz, DMSO-d6): 2.97 (s, 1H, OH), 3.55 (s, 1H, OH), 
3.85 (s, 3H, OCH3), 3.87 (s, 3H, OCH3), 5.03 (s, 1H, 
OH), 6.23 (d, 1H, J= 1 Hz, Ar-H), 6.24-6.25 (d, 1H, 
J= 4 Hz, Ar-H), 6.85-6.87 (d, 1H, J= 8 Hz, Ar-H), 
7.02-7.06 (m, 2H, Ar-H) (Fig. S4). 13C NMR (400 
MHz, DMSO-d6): 57.07 (C-10), 57.81 (C-17), 93.54 
(C-8), 98.70 (C-6), 106.03 (C-4), 113.24 (C-15), 
116.39 (C-12), 121.00 (C-16), 124.86 (C-11), 138.13 
(C-2), 146.92 (C-13), 147.87 (C-1), 150.82 (C-14), 
159.09 (C-9), 161.63 (C-5), 166.42 (C-7), 176.27 (C-
3) (Fig. S5). CHNS analysis for C17H14O7: calcd. C-

61.82%, H-4.27%, found C-61.76%, H-4.24(%). ESI-
MS: calcd. m/z for C17H14O7: 330.29 [M], found 
331.63 [(M+H+), positive mode], 329.20 [(M-H+), 
negative mode] (Fig. S6). 

Compound 3 [Quercetin]25 (Fig. 1): M.p.: 316-
317; Rf: 0.4 (hexane:ethyl acetate, 1:1); 1H NMR (400 
MHz, DMSO-d6): 2.77 (s, 1H, OH), 3.01 (s, 1H, OH), 
3.50 (s, 1H, OH), 3.87 (s, 1H, OH), 5.01 (s, 1H, OH), 
6.19 (d, 1H, J= 1 Hz, Ar-H), 6.19-6.20 (d, 1H, J= 4 
Hz, Ar-H), 6.77-6.78 (d, 1H, J= 4 Hz, Ar-H), 6.98-
7.01 (m, 2H, Ar-H) (Fig. S7). 13C NMR (400 MHz, 
DMSO-d6): 94.81 (C-8), 99.99 (C-6), 104.66 (C-4), 
116.36 (C-11), 116.67 (C-14), 122.01 (C-15), 122.19 
(C-10), 137.48 (C-2), 145.68 (C-12), 147.21 (C-1), 
148.73 (C-13), 157.97 (C-9), 160.34 (C-5), 164.52 
(C-7), 175.62 (C-3) (Fig. S8). CHNS analysis for 
C15H10O7: calcd. C-59.61%, H-3.34%, found C-
59.62%, H-3.34(%). ESI-MS: calcd. m/z for 
C15H10O7: 302.24 [M], found 303.66 [(M+H+), 
positive mode], 301.25 [(M-H+), negative mode]  
(Fig. S9). 

Compound 4 [5-(2-hydroxyphenethyl)-3-methoxy-
2-methylphenol]4 (Fig. 1): M.p.: 320-321; Rf: 0.6 
(hexane: CH2Cl2, 1:1); 1H NMR (400 MHz, DMSO-
d6): 3.62 (s, 1H, OH), 6.35 (s, 2H, Ar-H), 3.00 (s, 4H, 
CH2), 3.86 (s, 3H, OCH3), 2.32 (s, 3H, CH3), 2.90 (s, 
1H, OH), 6.82-6.92 (m, 2H, Ar-H), 7.04-7.10 (m, 2H, 
Ar-H) (Fig. S10). 13C NMR (400 MHz, DMSO-d6): 
8.26 (C-9), 30.25 (C-7), 37.79 (C-8), 57.60 (C-10), 
104.62 (C-4), 109.86 (C-6), 112.14 (C-2), 117.46 (C-
3’), 121.05 (C-5’), 128.41 (C-1’), 128.61 (C-4’), 
130.69 (C-6’), 141.63 (C-5), 155.68 (C-2’), 159.06 

 

 
 

Fig. 1 — Chemical representation of isolated flavonols (1-3) and 1,2-diphenylethanes (4-6) from Bauhinia vahlii. 
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(C-1), 159.70 (C-3) (Fig. S11). CHNS analysis for 
C16H18O3: calcd. C-74.40%, H-7.02%, found C-
74.46%, H-7.04(%). ESI-MS: calcd. m/z for 
C16H18O3: 258.32 [M], found 259.19 [(M+H+), 
positive mode], 257.15 [(M-H+), negative mode] (Fig. 
S12). 

Compound 5 [2-(3,5-dimethoxyphenethyl)phenol]4 
(Fig. 1): M.p.: 230-23; Rf: 0.5 (hexane: CH2Cl2, 1:1); 
1H NMR (400 MHz, DMSO-d6): 2.39 (s, 1H, OH), 
2.99 (s, 4H, CH2), 3.86 (s, 6H, OCH3), 6.48 (s, 1H, 
Ar-H), 6.53 (d, 2H, J= 0.8 Hz, Ar-H), 6.83-6.84 (d, 
1H, J= 4 Hz, Ar-H), 6.90-6.92 (d, 1H, J= 8 Hz, Ar-
H), 7.04-7.09 (m, 2H, Ar-H) (Fig. S13). 13C NMR 
(400 MHz, DMSO-d6): 30.20 (C-7), 37.74 (C-8), 
56.80 (C-10/9), 97.95 (C-4), 108.00 (C-2/6), 117.41 
(C-5’), 121.00 (C-13), 128.36 (C-4’), 128.56 (C-1’), 
130.64 (C-2’), 145.32 (C-1), 155.63 (C-6’), 162.57 
(C-3/5) (Fig. S14). CHNS analysis for C16H18O3: 
calcd. C-74.40%, H-7.02%, found C-74.49%, H-
7.05(%). ESI-MS: calcd. m/z for C16H18O3: 258.32 
[M], found 259.16 [(M+H+), positive mode], 257.30 
[(M-H+), negative mode] (Fig. S15). 

Compound 6 [2-(2-hydroxyphenethyl)-4,6-
dimethoxyphenol]4 (Fig. 1): M.p.: 342-343; Rf: 0.4 
(hexane:CH2Cl2, 1:1); 1H NMR (400 MHz, DMSO-
d6): 2.83 (s, 1H, OH), 2.97 (s, 4H, CH2), 3.68 (s, 1H, 
OH), 3.83 (s, 6H, OCH3), 6.26-6.27 (d, 1H, J= 4 Hz, 
Ar-H), 6.33-6.34 (d, 1H, J= 4 Hz, Ar-H), 6.79-6.81 
(d, 1H, J= 8 Hz, Ar-H), 6.87-6.89 (d, 1H, J= 8 Hz, 
Ar-H), 7.01-7.07 (m, 2H, Ar-H) (Fig. S16). 13C NMR 
(400 MHz, DMSO-d6): 29.63 (C-7), 30.07 (C-8), 
56.40 (C-9), 57.14 (C-10), 97.02 (C-5), 107.22 (C-3), 
117.00 (C-3’), 120.60 (C-5’), 127.95 (C-4’), 128.15 
(C-1’), 129.84 (C-2), 130.23 (C-6’), 140.02 (C-1), 
150.83 (C-6), 153.38 (C-4), 155.22 (C-2’) (Fig. S17). 
CHNS analysis for C16H18O4: calcd. C-70.06%, H-
6.61%, found C-70.07%, and H-6.64(%). ESI-MS: 
calcd. m/z for C16H18O4: 274.32 [M], found 275.97 
[(M+H+), positive mode], 273.93 [(M-H+), negative 
mode] (Fig. S18). 
 
Antioxidant activity 

Initially, ME examined against DPPH and 
superoxide assays and its IC50 values were found to be 
75.07±5.50 and 79.75±4.50 µg/mL, respectively, 
compared to standard (ascorbic acid) with 27.05±2.50 
and 25.55±2.80 µg/mL, respectively (Fig. 2). Based 
on the preliminary antioxidant analysis of ME, we 
subjected its metabolites (1-6) for antioxidant activity. 
Among all the tested compounds, only compound 3 
showed an almost equivalent IC50 value of superoxide 

radicals with 26.00±2.17 µg/mL (Fig. 2). For DPPH 
free radical, the IC50 values for 1, 2, 3, 4, 5, and 6 
remained to be 56.25±3.34, 60.0±2.75, 40.00±1.45, 
53.00±2.02, 50.50±2.50, and 53.50±2.33 µg/mL, 
respectively. The concentration of 1, 2, 4, 5 and 6 
needed for 50% inhibition of superoxide radicals was 
determined to be 62.50±5.13, 80.00±7.41, 
37.25±2.00, 36.00±2.50, and 48.00±2.57 µg/mL, 
respectively (Fig. 2). 
 
Anti-inflammatory and anti-gout activity 

The in vitro anti-inflammatory and anti-gout effects 
of isolated compounds (1-6) were performed using 
COX-1 & 2, 5-LOX, and XO enzymes and the results 
were reported in IC50 values (Table 1). The 
concentration required for 50% inhibition of COX1 
enzyme for 3 and ME were found to be 49.58±0.21 
and 32.11±1.13 µg/mL, respectively, whereas the 
 

 
 
Fig. 2 — IC50 values of 1-6 and ME against DPPH and 
superoxide free radicals. Values were provided in mean±SD 
(n=3); *p <0.05, **p <0.01 and ***p <0.01 as compared with the 
standard group using one-way ANOVA with Student-Newman-
Keuls post hoc test. 
 

Table 1 — Effects of 1-6 and ME on COX1/2, 5-LOX, and XO 
enzymes 

Sample IC50 values (µg/mL)* 

COX1 COX2 5-LOX XO 
1 >100 42.18±2.96a >100 66.17±2.17b 
2 >100 >100 49.38±0.28a 52.30±0.12b 
3 49.58±0.21a 55.25±0.54b 68.56±0.11b >100 
4 >100 66.75±0.42b 75.18±0.97b 80.17±0.66c 
5 >100 >100 71.14±2.17b 82.17±2.24c 
6 >100 >100 >100 >100 
ME 32.11±1.13a 50.15±1.15b 69.18±1.87b 82.16±2.18c 
Standard 5.74±0.68 6.17±0.71 7.00±0.74 9.10±0.64 

*Mean±SD values (n=3); ap <0.05, bp <0.01 and cp <0.01 as 
compared with the standard group using one-way ANOVA with 
Student-Newman-Keuls post hoc test.  
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reference drug, indomethacin with 5.74±0.68 µg/mL 
(Table 1). From the results of COX2 enzyme inhibitory 
assay, it was noticed that the 1, 3, 4 and ME showed 
significant inhibition efficiency on COX2 enzyme with 
the IC50 of 42.18±2.96, 55.25±0.54, 66.75±0.42  
and 50.15±1.15 µg/mL, respectively, compared to 
diclofenac with 6.17±0.71 µg/mL (Table 1). Moreover, 
the IC50 values of compounds 1, 2, 4, 5 and 6 on COX1 
and compounds 2, 5 and 6 on COX2 were above  
100 µg/mL (Table 1).  

The concentration of 2, 3, 4, 5 and ME needed to 
inhibit 5-LOX activity at 50% was found to be 
49.38±0.28, 68.56±0.11, 75.18±0.97, 71.14±2.17 and 
69.18±1.87 µg/mL, respectively, while that of 
zileuton was 7.00±0.74 µg/mL (Table 1). The isolated 
compounds 1, 2, 4, 5 and ME exhibited significant 
inhibition of XO enzyme with IC50 values of 
66.17±2.71, 52.30±0.12, 80.17±0.66, 82.17±2.24 and 
82.16±2.18 µg/mL, respectively, whereas allopurinol 
with 9.10±0.64 µg/mL (Table 1). The concentration 
of compounds 3 and 6 required for 50% reticence of 
the XO enzyme was found to be above 100 µg/mL 
(Table 1). 
 
Cytotoxicity studies 

Firstly, ME were tested against MCF-7, DLD-1, 
HeLa, and A549 cancer cell lines at 100 µg/mL 
concentration. From the primary screening of SRB 
assay, it noticed that ME showed a prominent 
specificity against the series of cancer cells. Later, all 
the isolated metabolites (1-6) were subjected to 
cytotoxicity studies on the same cancer cell lines. From 
the SRB assay, except 5, all metabolites showed 
significant specificity against all the tested cancer cells.  

The IC50 values of 1, 2, 3, 4, 6 and ME on MCF-7 
were determined to be 46.52±1.89, 83.84±0.23, 
26.40±1.11, 80.60±1.47, 70.91±1.24 and 44.95±1.19 
µg/mL, respectively, whereas standard, doxorubicin 

with 4.40±0.80 µg/mL (Table 2). Moreover, from the 
results of SRB assay on DLD-1, the IC50 values of 1, 
2, 3, 4, 6 and ME found to be 52.57±3.80, 
74.91±0.70, 14.00±1.12, 85.40±1.54, 67.80±1.15 and 
72.23±3.58 µg/mL, respectively, whereas doxorubicin 
with 5.57±0.97 µg/mL (Table 2). Furthermore, the 
concentration of 1, 2, 3, 4, 6 and ME needed for 50% 
cell death of HeLa found to be 48.75±1.25, 
89.17±1.78, 27.90±1.16, 56.80±2.17, 92.55±0.79 and 
70.17±4.61 µg/mL, respectively, whereas doxorubicin 
with 5.55±0.24 µg/mL (Table 2). Similarly, the 
concentration needed for 50% cell death of A549 of 1, 
2, 3, 4, 6 and ME determined to be 44.14±1.67, 
82.33±2.82, 36.12±2.00, 60.80±2.45, 87.01±0.93 and 
74.83±2.47 µg/mL, respectively, while doxorubicin 
with 8.50±0.77 µg/mL (Table 2). Besides, all the 
isolated compounds (1-6) and ME showed a very 
mild degree of specificity against NHME indicates 
that the samples are non-toxic to normal human cells. 
 
Discussion 

In the present study, six known secondary 
metabolites (1-6) were identified from the methanolic 
extract of B. vahlii (Fig. 1). This identification of 
flavonols (1-3) and 1,2-diphenylethanes (4-6) 
provides new information on the phytochemical 
profile of B. vahlii. Also, the biological profile of B. 
vahlii justified its natural ability to fight against free 
radicals, inflammation and cancer. From the DPPH 
and superoxide free radical assay, it observed that all 
the metabolites (1-6) from ME inhibited them 
prominently (Fig. 2). Also, the in vitro enzymatic 
screening of ME proved its aptitude to treat 
inflammation and gout. It was even justifying that 
compounds 3 and 4 have potent inhibition of COXs, 
5-LOX and XO enzymes (Table 1).  

Inflammation is regulated by higher levels of 
eicosanoids, namely prostaglandins, thromboxanes, 

 

Table 2 — Cytotoxicity studies of 1-6 and ME on four different cancer cell lines 
Sample 

IC50 values (µg/mL)* 

MCF-7 DLD-1 HeLa A549 
1 46.52±1.89b 52.57±3.80b 48.75±1.25b 44.14±1.67b 
2 83.84±0.23c 74.91±0.70c 89.17±1.78c 82.33±2.82c 
3 26.40±1.11a 14.00±1.12a 27.90±1.16a 36.12±2.00b 
4 80.60±1.47c 85.40±1.54c 56.80±2.17b 60.80±2.45b 
5 >100 >100 >100 >100 
6 70.91±1.24c 67.80±1.15b 92.55±0.79c 87.01±0.93c 
ME 44.95±1.19b 72.23±3.58c 70.17±4.61c 74.83±2.47c 
Doxorubicin 4.40±0.80 5.57±0.97 5.55±0.24 8.50±0.77 

*Mean±SEM values (n=3); ap <0.05, bp <0.01 and cp <0.01 as compared with the standard group using one-way ANOVA with Student-
Newman-Keuls post hoc test. 
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and leukotrienes in the human body27,28. COXs and 5-
LOX are key enzymes that catalyze the production of 
prostaglandins, thromboxanes and leukotrienes, and 
hydroperoxy fatty acids from arachidonic acid29,30. 
Significantly, inhibition of any one of the eicosanoids 
will activate the other pathway and prolongs 
inflammation31. For instance, inhibition of only 
prostaglandins will lead to elevated levels of 
leukotrienes by activation of the alternative path, i.e., 
5-LOX pathway. Thus, routes of COXs and 5-LOX 
are chosen for the rate-limiting steps to reduce pain 
and inflammation32. Therefore, COX and 5-LOX 
(dual inhibitors) drugs inhibit the production of 
eicosanoids (prostaglandins, thromboxanes, and 
leukotrienes) and entirely prevent inflammation by 
lesser adverse effects31–33. Generally, NSAIDs are the 
drugs of choice to control the production of 
eicosanoids, and eventually relief from 
inflammation34. The outcomes of our study exhibited 
that isolated compound 3 act as both COX and 5-LOX 
(dual) inhibitors, whereas compounds 1 and 4 
prominently inhibit COX2 enzyme (Table 1).  

On the other hand, XO is an enzyme that catalyzed 
purines xanthine/hypoxanthine to form uric acid. To 
some extent, the formation of uric acid does not cause 
any biological effects in human body35. Beyond the 
limits, the higher deposition of uric acid, especially in 
the joints of the human body, leads to painful 
inflammation in joints, termed as gout35,36. Also, XO 
is an excellent source for free radicals (containing 
oxygen) that cause inflammatory-related diseases 
such as atherosclerosis and cancer36. Hence, inhibition 
of XO results in controlling gout, as well as its related 
conditions. This study suggests that isolated 
compounds 1, 2, 4, and 5 possess prominent XO 
inhibitory effects (Table 1) that might be supportive 
in the treatment of gout and its complications. Taken 
together, B. vahlii scientifically proved as a potential 
source for the management of oxidative stress, 
inflammation and gout. This observation helps to 
investigate the anticancer ability of B. vahlii, and the 
outcomes of SRB assay showed that compounds 1, 2, 
3, 4, and 6 have a significant degree of specificity 
against MCF-7, DLD-1, HeLa, and A549 (Table 2).  

Earlier research studies have reported that 
oxidative stress is the key causative factor in chronic 
inflammation and various types of cancers37,38. 
Usually, the longer the existence of free radicals, the 
greater is the risk of cancer. In general, chronic 
exposure to free radical mediators leads to a sharp 

increase in mutagenesis, cell propagation, and 
activation of the oncogene, eventually causes cell 
proliferation that lost control over normal growth39,40. 
So, as metabolites and ME showed good 
antioxidative properties, we further investigated their 
anticancer abilities using the SRB assay. From the 
outcomes, it is justified that compound 4, 5, and ME 
has an ability to lysis the cells of breast, colon, lung, 
and cervical cancer cell lines. Also, all the metabolites 
and ME are less toxic towards the human cell lines. 
 
Conclusion 

To conclude, the results of the present study 
indicated that the flavonols (1-3) and 1,2-
diphenylethanes (4-6) from methanolic extract of B. 
vahlii displayed antioxidant activity by inhibiting 
DPPH and superoxide free radicals, anti-
inflammatory activity by inhibiting COXs and 5-
LOX, anti-gout activity by XO inhibition, and 
anticancer activity by inhibiting the growth of MCF-
7, DLD-1, HeLa, and A549. The key metabolite 
responsible for in vitro activities claimed to be 
compounds 1, 3, 4, and 6. The results provide 
evidence that supports the traditional uses of B. vahlii. 
Also, these findings suggest that the plant B. vahlii 
can take an account as a good natural source of 
remedial medicine for oxidative stress, inflammation, 
gout and cancer. Hence, the results of the current 
study remain useful for further research to identify the 
potential bioactive molecules from Bauhinia genus. 
The future scope is to identify the binding affinity of 
compounds 1, 3, 4, and 6 against tested cancer cell 
lines using in silico studies, which eventually helps in 
selective derivatization of the parent moieties. 
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