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The nonrelativistic quark model and a new baryon mass formula have been applied to study the baryon octet and 
decuplet masses. To describe the quark-quark interacting forces inside baryons, a suitable phenomenological form of the 
potential and quantum isotonic oscillator potential have been proposed. A comparison between calculations reported in this 
study and the available experimental data is investigated. The description of the spectrum shows that the position of the 
Roper resonances of the nucleon, the ground states and the excited multiplets up to three GeV are in general well 
reproduced. 
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1 Introduction 
The baryons have been made up of three 

constituent confined quarks and there are several 
attempts to calculate the baryon masses in various 
models1-8. The hypercentral Constituent Quark 
Models (hCQM) have been recently widely applied to 
the description of baryon properties and most 
attention has been devoted to the spectrum. The 
baryon spectrum is usually described well, although 
the various models are quite different. Common to 
these models is the fact that the three quark 
interaction can be divided in two parts. First, 
containing the confinement interaction is spin and 
flavour are independent and is therefore SU (6) 
invariant, while the second violates the SU (6) 
symmetry1,9-12. It is well known that the Gürsey 
Radicati mass formula13 describes quite well the way 
SU (6) symmetry is broken, at least in the lower part 
of the baryon spectrum. In this work we want to apply 
the generalized Gürsey Radicati (GR) mass formula 
which is presented by Giannini et al14 to calculate the 
baryon masses. The model we used is a simple CQM 
where the SU (6) invariant part of the Hamiltonian is 
the same as in the hypercentral constituent quark 
model (hCQM)15,16 and where the SU (6) symmetry is 
broken by a generalized GR mass formula. The exact 
solution of the Schrodinger equation for the isotonic 
oscillator potential via wave function ansatz is given 

and the generalized GR mass formula is introduced. 
The obtained results have been analyzed by fitting the 
parameters of the generalized GR mass formula to the 
octet and decuplet baryon masses and the spectrum 
with the experimental data is compared.  
 
2 Theoretical Model  

In the six-dimensional, the Schrödinger equation 
for a system containing three particles with a potential 

( )V r  and by considering of 5/2 ( )r R r     can be 
written as: 
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where 2   . ( )R r   , r  and   are the 
hyperradial wave function, the hyperradius and the 
grand angular quantum number, respectively.   is 
also given by 2 , 0n l l n         with the 
angular momenta l  and l  which are associated 

with the Jacobi coordinates ( 
  and 


 )17 and   

denotes the number of nodes of the space three quark 
wave functions. In Eq. (1) m is the reduced mass18 

which is defined as 2m m
m

m m
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. The search for exact 

solutions to quantum-mechanical models with rational 
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potentials has been a very significant research aspect 
in the past decades. However it is well recognized that 
only a very limited number of models in quantum 
mechanics can be solved exactly. The hypercentral 
potentials could be of any form19,20 (e.g., linear, log, 
power law, etc.) but all of these proposed potentials 
are not complete and perfect. In our model, the 
interaction potential is assumed as:  
 

 
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Goldman and Krivchenkov demonstrated that the 
energy spectrum of the potential 2

0( ) ( ) , 0r aV r V r
a r

    

is isomorphous to the harmonic oscillator spectrum, 
i.e., it consists of an infinite set of equidistant energy 
levels. For this reason this oscillator called “the 
isotonic oscillator”21,22. Recently, the generalized 
quantum isotonic oscillator Hamiltonian known by 
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 is studied 

analytically to find eigenvalues and spectrum of this 
Hamiltonian by some of researches23-26. The interests 
of these problems lay on the fact that it is exactly 
solvable for certain values of the parameters, namely 
g=2 and 2 1

2
a   where it is the case of 

supersymmetric problem of the harmonic oscillator23. 
Kraenkel and Senthilvelan applied the problem with a 
position dependent effective mass, which, with 
adequate mass distributions, may represent different 
problems encountered in semiconductor physics24. 
Sesma transformed the Schrödinger equation 
regarding to quantum isotonic oscillator Hamiltonian 
into a confluent Heun equation using a Mobius 
transformation and thereby obtain an efficient 
algorithm to solve the Schrödinger equation 
numerically25. Generalized isotonic oscillators can be 
seemed as possible representations of realistic 
quantum dots25. The behavior of the quantum isotonic 
oscillator can be seen in Fig. 1.  

By substituting Eq. (2) in to Eq. (1) we obtain the 
following equation: 
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Fig. 1–V(r) (in MeV) with 2, 1, 0.1g a     
 

We suppose the following form for the wave  
function 
 

( ) ( ) exp( ( ))R r g r f r      ... (4) 
 

In the quasi-exact ansatz technique, which is in fact 
a special case of Lie algebraic approach, an ansatz 
solution is proposed based on an associated Riccati 
differential equation. Next, by inserting the proposed 
ansatz in the equation and obtaining a set of 
equations, the unknown coefficients in the wave 
function are determined. However, just like any quasi-
exact approach, the technique has its limitation, 
namely, it imposes some restrictions on the potential 
parameters and that the calculation of higher-state 
solutions is a rather cumbersome task due to the 
arising set of equations. In fact, the ansatz method is 
useful only for the very low0lying states. 

Now for the functions ( )f r  and ( )g r  we make 
use of the ansatz27-30:  
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From Eq. (4) we obtain: 
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and from Eq. (5) we have: 
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Substitution of Eq. (7) into Eq. (6) leads to: 
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after some simplicity. From Eq. (3), we have: 
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By Comparing Eqs. (9) and (10), it can be found  
that:  
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Eq. (11) immediately yields: 
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and the energy can be obtained by: 
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The hypercentral constituent quark model is  
fairly good for description the baryon spectrum31, but 
in some cases the splitting within the various SU (6) 
multiplets are too low. The preceding results12,15,32 

show that both spin and isospin dependent terms  
in the quark Hamiltonian are important. Description 
of the splitting within the SU (6) baryon multiplets  
is presented by the Gürsey Radicati mass  
formula13: 
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where M0 is the average energy value of the SU (6) 
multiplet, C2[SUS (2)] and C2[SUI (2)] are the SU (2) 
(quadratic) Casimir operators for spin and isospin, 
respectively, and C1[UY (1)] is the Casimir operator 
for the U (1) subgroup generated by the hypercharge 
Y 33,34. This mass formula has tested to be successful 
in the description of the ground state baryon masses, 
however, as stated by the authors themselves, it is not 
the most general mass formula that can be written on 
the basis of a broken SU (6) symmetry. In order to 
generalize Eq. (14), Giannini et al14 considered a 
dynamical spin-flavor symmetry SUSF (6) and 
described the SUSF (6) symmetry breaking mechanism 
by generalizing Eq. (14) as: 
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In Eq. (15) the spin term 2 2( [ (2)])CC S represents  
the spin-spin interactions, the flavor term 

2[ (3)]( )FBC SU  denotes the flavor dependence of the 
interactions, and the SUSF (6) term 2 [ (6)]( )SFAC SU  
depends on the permutation symmetry of the  
wave functions, represents "signature-dependent" 
interactions33. The last two terms 

2
2 1

1
[ [ (2)] ( [ (1)]) ]

4
( )I YE C SU C U  represent the 

isospin and hypercharge dependence of the masses. 
The eigenvalues of the Casimir operators in Eq. (15) 
are: 
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The generalized Gürsey Radicati mass formula  

Eq. (15) can be used to describe the octet and decuplet 
baryons spectrum, provided that two conditions are 
fulfilled. The first condition is the feasibility of using 
the same splitting coefficients for different SU (6) 
multiplets. This seems actually to be the case, as 
shown by the algebraic approach to the baryon 
spectrum1. The second condition is given by the 
feasibility of getting reliable values for the 
unperturbed mass values M0

14. For this purpose we 
regarded the SU (6) invariant part of the hCQM, 
which provides a good description of the baryons 
spectrum and used the Gürsey Radicati inspired SU 
(6) breaking interaction to describe the splitting 

within each SU (6) multiplet. Therefore, the baryons 
masses are obtained by three quark masses and the 
eigen energies ( )E   of the radial Schrödinger 
equation with the expectation values of HGR as 
follows: 

 
3 GRM m E H       … (17) 

 
In order to simplify the solving procedure, the 

constituent quarks masses are assumed to be the same 
for up, down and strange quark 
flavors ( )u d sm m m  , therefore, within this 
approximation, the SU (6) symmetry is only broken 
dynamically by the spin and flavour dependent terms 
in the Hamiltonian. We determined E  by exact 
solution of the radial Schrödinger equation for the 
hypercentral Potential Eq. (2). The expectation values 
of HGR, ( )G RH is identified by Eq. (16). For 
calculating the baryons mass according to Eq. (15), 
we need to find the unknown parameters. For this 
purpose we choose a limited number of well-known 
resonances and express their mass differences using 
HGR and the Casimir operator expectation values: 
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 Leading to the numerical values C=38.3, D=-197.3  

MeV and E=38.5 MeV. We determined m, g and    
( in Eq. (11) ) and the two coefficients A and B of Eq. 
(15) in a simultaneous fit to the 3 and 4 star 
resonances of Table 2 which have been assigned as 
octet and decuplet states. The fitted parameters  
are reported in Table 1. The corresponding  
numerical values are given in table 2, column 

o u r C al cM . The percentage of relative error for our 
calculations is between 0 and 8 % (column 6, in  
table 2). Comparison between our results and the 
experimental masses35 show that the octet and 
decuplet baryon spectrums are, in general, fairly well 
reproduced. 
 

Table 1–The fitted values of the parameters of the Eq. (17) for N, Δ,  and   baryons, obtained with resonances mass differences  
and global fit to the experimental resonance masses35 

A B C D E m g ω 
-17.891 MeV 17.989 MeV 38.300 -197.300 MeV 38.500 MeV 271 MeV 0.289 0.321 
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Table 2 – Mass spectrum of baryons resonances (in MeV) calculated with the mass formula Eq. (17). The column Our Ca lcM  contains 

our calculations with the parameters of Table 1 and column 6 indicates the percentage of relative error for our calculations 

Baryon Status Mass(exp)35 State 
Our Ca lcM  Percent of relative 

error 
N(938) P11 **** 938 281/2[56, 0+] 938.00 0% 

N(1440) P11 **** 1410-1450 281/2[56, 0+] 1450.31 2.858% - 0.021% 
N(1520) D13 **** 1510-1520 283/2[70, 1-] 1524.98 0.992% - 0.320% 
N(1535) S11 **** 1525-1545 281/2[70, 1-] 1524.98 0.001% - 1.295% 
N(1675) D15 **** 1670-1680 485/2[70, 1-] 1774.43 6.253% - 5.620% 
N(1700) D13 *** 1650-1750 483/2[70, 1-] 1774.43 7.541% - 1.396% 
N(1710) P11 *** 1680-1740 281/2[70, 0+] 1740.59 3.606% - 0.033% 
N(2190) G17 **** 2100-2200 287/2[70, 3-] 2199.08 4.718% - 0.041% 
N(2220) H19 **** 2200-2300 289/2[56, 4+] 2280.49 3.658% - 0.848% 
N(2250) G19 **** 2200-2350 489/2[70, 3-] 2313.98 5.180% - 1.532% 
N(2600) I1,11 *** 2550-2750 2811/2[70, 5-] 2739.62 7.436% - 0.377% 
Δ (1232) P33 **** 1231-1233 4103/2[56, 0+] 1232.37 0.111% - 0.051% 
Δ (1620) S31 **** 1600-1660 2101/2[70, 1-] 1694.45 5.903% - 2.075% 
Δ (1700) D33 **** 1670-1750 2103/2[70, 1-] 1694.45 1.464% - 3.174% 
Δ (1905) F35 **** 1865-1915 4105/2[56, 2+] 1890.23 1.352% - 1.293% 
Δ (1910) P31 **** 1870-1920 4101/2[56, 2+] 1890.23 1.081% - 1.550% 
Δ (1950) F37 **** 1915-1950 4107/2[56, 2+] 1890.23 1.293% - 3.065% 

Δ (2420) H3, 11 **** 2300-2500 41011/2[56, 4+] 2294.76 0.227% - 8.209% 
 (1116)P01 **** 1116 281/2[56, 0+] 1116.05 0.004% 
 (1600)P01 *** 1560-1700 281/2[56, 0+] 1649.36 5.728% - 2.978% 
 (1670)S01 **** 1660-1680 281/2[70, 1-] 1703.03 2.592% - 1.370% 
 (1690)D03 **** 1685-1695 283/2[70, 1-] 1703.03 1.070%- 0.473% 
 (1800)S01 *** 1720-1850 481/2[70, 1-] 1817.93 5.693% - 1.733% 
 (1810)P01 *** 1750-1850 281/2[70, 0+] 1837.58 5.004% - 0.671% 
 (1820)F05 **** 1815-1825 285/2[56, 2+] 1918.64 5.710% - 5.130% 
 (1830)D05 **** 1810-1830 485/2[70, 1-] 1817.93 0.438% - 0.659% 
 (1890)P03 **** 1850-1910 283/2[56, 2+] 1918.64 3.710%- 0.452% 
 (2110)F05 **** 2090-2140 485/2[70, 2+] 2087.21 0.133% - 2.466% 
*(1405) S01 **** 1402-1410 211/2[70, 1-] 1514.78 8.044% - 7.431% 
*(1520)D01 **** 1518-1520 213/2[70,1-] 1514.78 0.212% - 0.343% 
 (1193)P11 **** 1193 281/2[56, 0+] 1193.05 0.004% 
 (1660)P11 *** 1630-1690 281/2[56, 0+] 1632.33 0.142% - 3.412% 
 (1670)D13 **** 1665-1685 283/2[70, 1-] 1780.03 6.908% - 5.639% 
 (1750)S11 *** 1730-1800 281/2[70, 1-] 1780.03 2.891% - 1.109% 
 (1775)D15 **** 1770-1780 485/2[70, 1-] 1760.65 0.528% - 1.087% 
 (1915)F15 **** 1900-1935 285/2[56, 2+] 1860.91 2.057% - 3.828% 
 (1940)D13 *** 1900-1950 283/2[56, 1-] 1928.26 1.487% - 1.114% 
 *(1385)P13 **** 1383-1385 4103/2[56, 0+] 1361.92 1.524% - 1.666% 
 *(2030)F17 **** 2025-2040 4107/2[56, 2+] 2029.78 0.236% - 0.500% 

 

3 Conclusions 
In this article a nonrelativistic quark model is used 

to study the spectrum of the octet and decuplet baryon 
systems (N, Δ, Λ and Σ baryons). We have solved the 
Schrödinger equation numerically to obtain the 
energy eigenvalues under the isotonic oscillator 
interaction potential. Then, we fitted the generalized 

GR mass formula parameters to the baryons energies 
and calculated the baryon masses. The overall good 
description of the spectrum which we obtain by our 
proposed model shows that our theoretical model can 
also be used to give a fair description of the energies 
of the excited multiplets up to 3 GeV and not only for 
the ground state octets and decuplet. Moreover, our 
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model reproduces the position of the Roper 
resonances of the nucleon and negative-parity 
resonance. There are problems with the reproduction 
of some hyperons, in particular for the  (1670)S01, 
 (1820)F05 and *(1405)S01 the resonances that 
come out degenerate and above the experimental 
values. There are still problems in the reproduction of 
the experimental masses in  N (1675)D15, 
 (1915)F15 and   (1670)D13 turn out to have 
predicted mass about 100 MeV above the 
experimental value. In our calculations the constituent 
quarks are considered to be the same for up, down and 
strange quark flavors ( ),u d sm m m  within this 
approximation some errors Occurs. A better 
agreement may be obtained either using the square of 
the mass1 or trying to include a spatial dependence in 
the SU (6)-breaking part.  

 
References 
1 Bijker R, Iachello F & Leviatan A, Ann Phys, 236 (1994) 69.  
2 Giannini M M & Santopinto E, Chin J Phys, 53 (2015) 

020301. 
3 Chakrabarti B, Bhattacharya A, Mani S & Sagari A, Acta 

Phys Polonica B, 41 (2010) 95.  
4 Santopinto E & Giannini M M, Phys Rev C, 86 (2012) 

065202. 
5 Abou-Salem L I, Adv High Energy Phys, 2014 (2014) 

196484. 
6 Sun Z F & Vicente Vacas M J, Phys Rev D, 93 (2016) 

094002. 
7 Hassanabadi H, Rahmani S & Zarrinkamar S, Phys Rev D, 

89 (2014) 114027. 
8 Kezerashvili R Y, Narodetskii I M & Veselov A I, Phys Rev 

D, 79 (2009) 034003. 
9 Bali GS, Phys Rev, 62 (2000) 054503. 

10 Alexandrou C, Forcrand P de & Jahn O, Nucl Phys B, 119 
(2003) 667. 

11 Santopinto E, Iachello F & Giannini M M, Eur Phys J A, 1 
(1998) 307. 

12 Giannini M M, Santopinto E & Vassallo A, Eur Phys J A, 12 
(2001) 447. 

13 Gürsey F & Radicati L A, Phys Rev Lett, 13 (1964) 173. 
14 Giannini M M, Santopinto E & Vassallo A, Eur Phys J A, 

25(2005) 241. 
15 Salehi N & Rajabi A A, Mod Phys Lett A, 24 (2009) 2631. 
16 Salehi N & Rajabi A A, Phys Scr, 85 (2012) 055101. 
17 Salehi N, Hassanabadi H & Rajabi A A, Eur Phys J Plus, 

128 (2013) 27. 
18 Murthy M V N, Z Phys, C31 (1986) 81. 
19 Salehi N & Hassanabadi H, Int J Mod Phys E, 24 (2015) 

1550002. 
20 Salehi N, Adv High Energy Phys, 2016 (2016) 5054620.  
21 Goldman I & Krivchenkov V D, Problems in quantum 

mechanics, (Pergamon, London), 1961. 
22 Weissman Y & Jortner J, Phys Lett, 70 (1979) 177. 
23 Cariñena J F, Perelomov A M, Rañada M F & Santander M, 

J Phys A: Math Theor, 41 (2008) 085301. 
24 Kraenkel R A & Senthilvelan M, J Phys A: Math Theor, 42 

(2009) 415303. 
25 Sesma J, J Phys A: Math Theor, 43 (2010) 185303. 
26 Saad N, Hall R L, Ciftci H & Yesiltas O, Adv Math Phys, 

2011 (2011) 750168. 
27 Znojil M, J Math Phys, 31 (1990) 1955. 
28 Rajabi A A, Indian J Pure Appl Phys, l41 (2003) 89. 
29 Rajabi A A &  Salehi N, Iranian J Phys Res, 8(3) (2008) 

169. 
30 Panahi H, Zarrinkamar S & Baradaran M, Chin Phys B, 24 

(2015) 060301. 
31 Ferraris M, Phys Lett B, 364 (1995) 231.  
32 Hassanabadi H & Rajabi A A, Mod Phys Lett A, 24 (2009) 

1043. 
33 Squires F J, Nuovo Cimento, 25 (1962) 242. 
34 Bijker R, Giannini M M & Santopinto E, Eur Phys J A, 22 

(2004) 319. 
35 Olive K A, Chin Phys C, 38 (2014) 090001. 

 


