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Based on the extended homoclinic test technique and the Hirota’s bilinear method, the (2+1)-dimensional Boiti-Leon-
Manna-Pempinelli equation is investigated which describes the fluid propagating and can be considered as a model for an 
incompressible fluid. With the aid of symbolic computation, we introduce two new Ansätz functions to discuss the multiple 
periodic-soliton solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Some entirely new periodic-
soliton solutions are presented. The figures corresponding to these solutions are illustrated to show abundant physics 
structures. 
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1 Introduction 
Many significant phenomena in physics, chemistry, 

biology and mechanics are described by nonlinear 
partial differential equations (NPDEs)1. Solving exact 
solutions of NLEEs has been attractive in nonlinear 
physical phenomena. With the aid of symbolic 
computation2-10, many methods have been discussed, 
such as Hirota’s bilinear method11, homogeneous 
balance method12-14, F-expansion method15, the 
similarity transformation method16, three-wave 
approach17-22 and etc. In this paper, with the help of 
the extended homoclinic test technique, the Hirota’s 
bilinear method and symbolic computation, we will 
research the following (2+1)-dimensional Boiti-Leon-
Manna-Pempinelli equation19: 

,033  xxyxyxxxxyyt uuuuuu  … (1) 

where ),,( tyxuu  . Equation (1) was proposed 
by Gilson et al.23 and recently discussed by Luo24. 
This equation was employed to describe the (2+1)-
dimensional interaction of the Riemann wave 
propagated along the y-axis with a long wave 
propagated along the x-axis. By using the binary Bell 
polynomials, the bilinear form for the (2+1)-
dimensional BLMP equation is presented in24. The 
variable separable solutions and some novel localized 
excitations for the (2+1)-dimensional BLMP were got in25. 

Based on Wronskian formalism and the Hirota 
method, new solutions for the (2+1)-dimensional 
BLMP equation are obtained in earlier studies26,27. 
Some exact solutions including kinky periodic 
solitary-wave solutions, periodic-soliton solutions and 
kink solutions are obtained in earlier study19. In this 
paper, by using two new Ansätz functions, we obtain 
new multiple periodic-soliton solutions of the (2+1)-
dimensional BLMP equation that is not presented in 
other references.  
 
2 New Exact Periodic Cross-Kink Wave Solutions 
for the (2+1)-Dimensional BLMP Equation 
By using Painlevé analysis28 we suppose: 

,)],,([ln2),,( xtyxtyxu    … (2) 

where ),,( tyx  is an unknown real function. 
Substituting Eq. (2) into Eq. (1), we can obtain the 
bilinear form of the (2+1)-dimensional BLMP 
equation: 
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Supposing the real function ),,( tyx  has the 
following Ansätz: 

,sincos),,( 33221
11  

kkeektyx     … (4) 

where 3,2,1,1  iitiyixi   and 

iii  ,,  and 
i

  are constants to be determined 
later. Substituting Eq. (4) into Eq. (3) and equating all 
the coefficients of different powers of 1e , 1e , 

2sin  , 2cos  , 3sin  , 3cos   and constant term 
to zero, we can obtain a set of algebraic equations for 

)3,2,1(,,, iiiii  . Solving the system with 
the help of symbolic computation, we get: 

Case (1): If 03 k , the exact periodic cross-kink 
wave solutions of Eq. (1) have been presented by  
Dai et al.19. We will not continue to discuss here. 
Case (2): 

,
3
22,

3
11,03213     … (5) 

where 0,,,,, 321321 kkk  and )3,2,1( ii  
are free real constants. Substituting these results into 
Eq. (4), we have: 
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Thus, we derive the following new exact periodic 
cross-kink wave solutions for Eq. (1) as follows: 
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  … (7) 

where all parameters are defined by Eq. (5). The 
evolution and mechanical feature of Eq. (7) is shown 
in Figs 1 and 2 in tx   and in yx  , respectively. 
Case (3):  
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where 0,,,,, 321321 kkk  and )3,2,1( ii  are 
free real constants. Substituting these results into  
Eq. (4), we have: 

)sin()cos(

),,(

333222

1
11

3

111

3

1



 



 

ykyk

eektyx
xtxt

 … (9) 

Thus, we derive the another new exact periodic 
cross-kink wave solutions for Eq. (1) as follows: 
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where all parameters are defined by Eq. (8). The 
evolution and mechanical feature of Eq. (10) is shown 
in Fig. 3 in ty  . 

 
 
Fig. 1 ─ Evolution of periodic-soliton solution (Eq. (7)), at 

12121  kk , 233  k , 0,, 321  , (a) 
5y , (b) 0y  and (c) 5y  



FU & LIU: WAVE SOLUTIONS FOR (2+1)-DIMENSIONAL BOITI-LEON-MANNA-PEMPINELLI EQUATION 
 
 

165 

Case (4): 
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where 0,,,,, 321321 kk  and )3,2,1( ii  are 
free real constants. Substituting these results into  
Eq. (4), we have: 
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Thus, we derive the third new exact periodic cross-

kink wave solutions for Eq. (1) as follows: 
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where all parameters are defined by Eq. (11). The 
evolution and mechanical feature of Eq. (13) is shown 
in Fig. 4 in yx  . 

 
 
Fig. 2 ─ Evolution of periodic-soliton solution (Eq. (7)), at 

12121  kk , 233  k , 0,, 321  , (a) 
5t , (b) 0t  and (c) 5t  

 
 
Fig. 3 ─ Evolution of periodic-soliton solution (Eq. (10)), at 

1211  kk , 232   , 23 k , 0,, 321  , 
(a) 2x , (b) 0x  and (c) 2x  
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Case (5): 
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where 0,,,,,, 3211321 kkk  and )3,2,1( ii  
are free real constants. Substituting these results into  
Eq. (4), we have: 
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Thus, we derive the fourth new exact periodic 
cross-kink wave solutions for Eq. (1) as follows: 

)]},(4sinh[

)](4cosh[

{

/)]}(4cosh[2

)](4sinh[2

22{

331

3

13

221

3

12

4

1

4

331

3

113

221

3

112

4

11

4

14

111

3

1111

3

1

111

3

1111

3

1































yixtik

yixtk

eke

yixtik

yixtk

ekeu

yxtyxt

yxtyxt

 

 … (16) 
where all parameters are defined by Eq. (14). The 
evolution and mechanical feature of Eq. (16) is  
shown in Fig. 5 in yx  . Figures 1 and 2 show the 
shape and motion of the periodic-soliton solution 
given by Eq. (7) when the values of y and t are  
taken to be some different constants. Figure 3 presents 
the amplitude of the periodic-soliton solution given  
by Eq. (10) moving with periodic growth and  
decay with the different value of x. Figure 4 describes 
the propagation of the periodic-soliton solution  
given by Eq. (13) with periodic oscillation along  
the distance t. In Fig. 5, we can clearly see that  
the periodic-soliton solution given by Eq. (16) 
transmits stably without the distortion of the soliton 
shape and intensity. The variation of the value of  
t affects only the width of the soliton, but the soliton 
remains its shape. 
 
3 Conclusions  

The (2+1)-dimensional Boiti-Leon-Manna-Pempinelli 
equation describes the fluid propagating and can be 
considered as a model for an incompressible fluid.  
In this paper, based on the extended homoclinic  
test technique and the Hirota’s bilinear method, the 
(2+1)-dimensional Boiti-Leon-Manna-Pempinelli 
equation is investigated. New exact periodic cross-
kink wave solutions for the (2+1)-dimensional Boiti-
Leon-Manna-Pempinelli equations are obtained. 
Moreover, the phenomena of soliton interaction are 
clearly presented in Figs 1-5. These solutions have  
not been obtained by Dai e al.19. Of course, the 
method can also be extended to other nonlinear wave 
equations. 

 
 
Fig. 4 ─ Evolution of periodic-soliton solution (Eq. (13)), at 

121  k , ,221   233  k , 0, 31  , 

52  , (a) 5t , (b) 0t  and (c) 5t  
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Fig. 5 ─ Evolution of periodic-soliton solution (16), at 

,111  k ,51  ,1,,2 k ,32 ik  ,51    
0, 32  , ,3 i , (a) 4t , (b) 2t  and (c) 0t  


