Exact periodic cross-kink wave solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation

Zhong-Hua Fu^a*& Jian-Guo Liu^b

^aSchool of Elementary Education, Wuhan City Vocational College, HuBei 430 064, China ^bCollege of Computer, Jiangxi University of Traditional Chinese Medicine, JiangXi 330 004, China

Received 26 February 2016; revised 25 August 2016; accepted 26 August 2016

Based on the extended homoclinic test technique and the Hirota's bilinear method, the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is investigated which describes the fluid propagating and can be considered as a model for an incompressible fluid. With the aid of symbolic computation, we introduce two new Ansätz functions to discuss the multiple periodic-soliton solutions of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Some entirely new periodic-soliton solutions are presented. The figures corresponding to these solutions are illustrated to show abundant physics structures.

Keywords: Hirota's bilinear form, Extended homoclinic test technique, Boiti-Leon-Manna-Pempinelli equation, Symbolic computation

1 Introduction

Many significant phenomena in physics, chemistry, biology and mechanics are described by nonlinear partial differential equations (NPDEs)¹. Solving exact solutions of NLEEs has been attractive in nonlinear physical phenomena. With the aid of symbolic computation²⁻¹⁰, many methods have been discussed, such as Hirota's bilinear method¹¹, homogeneous balance method¹²⁻¹⁴, *F*-expansion method¹⁵, the similarity transformation method¹⁶, three-wave approach¹⁷⁻²² and etc. In this paper, with the help of the extended homoclinic test technique, the Hirota's bilinear method and symbolic computation, we will research the following (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation¹⁹:

$$u_{yt} + u_{xxxy} - 3u_{x}u_{xy} - 3u_{y}u_{xx} = 0, \qquad \dots (1)$$

where U = U(x, y, t). Equation (1) was proposed by Gilson *et al.*²³ and recently discussed by Luo²⁴. This equation was employed to describe the (2+1)dimensional interaction of the Riemann wave propagated along the y-axis with a long wave propagated along the x-axis. By using the binary Bell polynomials, the bilinear form for the (2+1)dimensional BLMP equation is presented in²⁴. The variable separable solutions and some novel localized excitations for the (2+1)-dimensional BLMP were got in²⁵. Based on Wronskian formalism and the Hirota method, new solutions for the (2+1)-dimensional BLMP equation are obtained in earlier studies^{26,27}. Some exact solutions including kinky periodic solitary-wave solutions, periodic-soliton solutions and kink solutions are obtained in earlier study¹⁹. In this paper, by using two new Ansätz functions, we obtain new multiple periodic-soliton solutions of the (2+1)-dimensional BLMP equation that is not presented in other references.

2 New Exact Periodic Cross-Kink Wave Solutions for the (2+1)-Dimensional BLMP Equation

By using Painlevé analysis²⁸ we suppose:

$$u(x, y, t) = -2[\ln \xi(x, y, t)]_{x}, \qquad \dots (2)$$

where $\xi(x, y, t)$ is an unknown real function. Substituting Eq. (2) into Eq. (1), we can obtain the bilinear form of the (2+1)-dimensional BLMP equation:

$$\begin{aligned} & (\xi_{xyt} + \xi_{xxxxy})\xi - [-2\xi_{xy}\xi_{xxx} + \\ & \xi_x(\xi_{yt} + 4\xi_{xxxy}) + \xi_y(\xi_{xt} + \xi_{xxxx})]\xi \\ & + \xi_t(2\xi_y\xi_x - \xi\xi_{xy}) + 2\xi_x(-3\xi_{xy}\xi_{xx} + \\ & 3\xi_x\xi_{xxy} + \xi_y\xi_{xxx}) = 0. \end{aligned}$$

... (3)

^{*}Corresponding author (E-mail: 395625298@qq.com)

Supposing the real function $\xi(x, y, t)$ has the following Ansätz:

 $\xi(x, y, t) = k_1 e^{\theta_1} + e^{-\theta_1} + k_2 \cos \theta_2 + k_3 \sin \theta_3$, ... (4) where $\theta_1 = \alpha_i x + \beta_i y + \delta_i t + \sigma_i$, i = 1,2,3 and α_i , β_i , δ_i and σ_i are constants to be determined later. Substituting Eq. (4) into Eq. (3) and equating all the coefficients of different powers of e^{θ_1} , $e^{-\theta_1}$, $\sin \theta_2$, $\cos \theta_2$, $\sin \theta_3$, $\cos \theta_3$ and constant term to zero, we can obtain a set of algebraic equations for α_i , β_i , δ_i , σ_i (i = 1,2,3). Solving the system with the help of symbolic computation, we get:

Case (1): If $k_3 = 0$, the exact periodic cross-kink wave solutions of Eq. (1) have been presented by Dai *et al.*¹⁹. We will not continue to discuss here. Case (2):

$$\alpha_3 = \beta_1 = \beta_2 = \delta_3 = 0, \delta_1 = -\alpha_1^3, \delta_2 = \alpha_2^3, \dots (5)$$

where $\alpha_1, \alpha_2, \beta_3, k_1, k_2, k_3 \neq 0$ and $\sigma_i (i = 1,2,3)$ are free real constants. Substituting these results into Eq. (4), we have:

$$\xi(x, y, t) = k_1 e^{-\alpha_1^3 t + \alpha_1 x + \sigma_1} + e^{\alpha_1^3 t - \alpha_1 x - \sigma_1} + k_2 \cos(t\alpha_2^3 + \alpha_2 x + \sigma_2) + k_3 \sin(\beta_3 y + \sigma_3) \dots (6)$$

Thus, we derive the following new exact periodic cross-kink wave solutions for Eq. (1) as follows:

$$u_{1} = \frac{2[\alpha_{1}e^{\alpha_{1}^{2}t-\alpha_{1}x-\sigma_{1}} - k_{1}\alpha_{2}e^{-\alpha_{1}^{2}t+\alpha_{2}x+\sigma_{1}} + k_{2}\alpha_{2}\cos(\alpha_{2}^{3} + \alpha_{2}x + \sigma_{2})]}{k_{1}e^{-\alpha_{1}^{3}t+\alpha_{2}x+\sigma_{1}} + e^{\alpha_{1}^{3}t-\alpha_{1}x-\sigma_{1}} + k_{2}\cos(\alpha_{2}^{3} + \alpha_{2}x + \sigma_{2}) + k_{3}\sin(\beta_{3}y + \sigma_{3})}, \dots (7)$$

where all parameters are defined by Eq. (5). The evolution and mechanical feature of Eq. (7) is shown in Figs 1 and 2 in x - t and in x - y, respectively. Case (3):

$$\alpha_2 = \beta_1 = \delta_3 = \alpha_3 = 0, \delta_1 = -\alpha_1^3, \delta_2 = \alpha_2^3, \dots (8)$$

where $\alpha_1, \beta_2, \beta_3, k_1, k_2, k_3 \neq 0$ and $\sigma_i (i = 1,2,3)$ are free real constants. Substituting these results into Eq. (4), we have:

$$\xi(x, y, t) = k_1 e^{-\alpha_1^3 t + \alpha_1 x + \sigma_1} + e^{\alpha_1^3 t - \alpha_1 x - \sigma_1} + k_2 \cos(\beta_2 y + \sigma_2) + k_3 \sin(\beta_3 y + \sigma_3) \qquad \dots (9)$$

Thus, we derive the another new exact periodic cross-kink wave solutions for Eq. (1) as follows:

$$u_{2} = \frac{\chi_{\alpha\beta}e^{\alpha_{1}^{3}t-\alpha_{1}x-\sigma_{1}} - k_{\alpha}e^{\alpha_{1}^{3}t+\alpha_{1}x+\sigma_{1}})}{k_{\beta}e^{-\alpha_{1}^{3}t+\alpha_{1}x+\sigma_{1}} + e^{\alpha_{1}^{3}t-\alpha_{1}x-\sigma_{1}} + k_{2}\cos\beta_{2}y + \sigma_{2}) + k_{3}\sin\beta_{3}y + \sigma_{3})}, \dots (10)$$

where all parameters are defined by Eq. (8). The evolution and mechanical feature of Eq. (10) is shown in Fig. 3 in y - t.

Fig. 1 — Evolution of periodic-soliton solution (Eq. (7)), at $\alpha_1 = \alpha_2 = k_1 = k_2 = 1, k_3 = \beta_3 = -2, \sigma_1, \sigma_2, \sigma_3 = 0$, (a) y = -5, (b) y = 0 and (c) y = 5

Fig. 2 — Evolution of periodic-soliton solution (Eq. (7)), at $\alpha_1 = \alpha_2 = k_1 = k_2 = 1$, $k_3 = \beta_3 = -2$, $\sigma_1, \sigma_2, \sigma_3 = 0$, (a) t = -5, (b) t = 0 and (c) t = 5

Case (4):

$$\alpha_2 = k_1 = \delta_3 = \alpha_3 = 0, \delta_1 = -\alpha_1^3, \delta_2 = \alpha_2^3, \dots (11)$$

where $\beta_1, \beta_2, \beta_3, \alpha_1, k_2, k_3 \neq 0$ and $\sigma_i (i = 1,2,3)$ are free real constants. Substituting these results into Eq. (4), we have:

Fig. 3 — Evolution of periodic-soliton solution (Eq. (10)), at $\alpha_1 = k_1 = k_2 = 1$, $\beta_2 = \beta_3 = 2$, $k_3 = -2$, $\sigma_1, \sigma_2, \sigma_3 = 0$, (a) x = -2, (b) x = 0 and (c) x = 2

$$\xi = e^{\alpha_1 t - \alpha_1 x - \beta_2 y - \sigma_1} + k_2 \cos(\beta_2 y + \sigma_2) + k_3 \sin(\beta_3 y + \sigma_3) \dots (12)$$

Thus, we derive the third new exact periodic crosskink wave solutions for Eq. (1) as follows:

$$u_{3} = \frac{2\alpha_{1}e^{\alpha_{1}^{-1} - \alpha_{1}x - \beta_{2}y - \sigma_{1}}}{e^{\alpha_{1}^{-1} - \alpha_{1}x - \beta_{1}y - \sigma_{1}} + k_{2}\cos(\beta_{2}y + \sigma_{2}) + k_{3}\sin(\beta_{3}y + \sigma_{3})}, \dots (13)$$

where all parameters are defined by Eq. (11). The evolution and mechanical feature of Eq. (13) is shown in Fig. 4 in x - y.

Case (5):

$$\alpha_{2} = i \tau \alpha_{1}, \alpha_{3} = i \varepsilon \alpha_{1}, \delta_{1} = -\alpha_{1}^{3}, \delta_{2} = -4i \tau \alpha_{2}^{3}, \delta_{3} = -4i \varepsilon \alpha_{2}^{3}, \ldots (14)$$

where $\beta_1, \beta_2, \beta_3, \alpha_1, k_1, k_2, k_3 \neq 0$ and $\sigma_i (i = 1,2,3)$ are free real constants. Substituting these results into Eq. (4), we have:

Fig. 4 — Evolution of periodic-soliton solution (Eq. (13)), at $\alpha_1 = k_2 = -1$, $\beta_1 = \beta_2 = 2$, $k_3 = \beta_3 = -2$, $\sigma_1, \sigma_3 = 0$, $\sigma_2 = 5$, (a) t = -5, (b) t = 0 and (c) t = 5

$$\xi = e^{4\alpha_1^3 t - \alpha_1 x - \beta_1 y - \sigma_1} + k_1 e^{-4\alpha_1^3 t + \alpha_1 x + \beta_1 y + \sigma_1} + k_2 \cosh[-4\tau t\alpha_1^3 + \tau\alpha_1 x - i(\beta_2 y + \sigma_2)] \qquad \dots (15)$$

+ $ik_3 \sinh[-4\varepsilon t\alpha_1^3 + \tau\alpha_1 x - i(\beta_3 y + \sigma_3)]$

Thus, we derive the fourth new exact periodic cross-kink wave solutions for Eq. (1) as follows:

$$\begin{aligned} u_{4} &= \{-2\alpha_{1}e^{4\alpha_{1}^{3}t - \alpha_{1}x - \beta_{1}y - \sigma_{1}} + 2k_{1}\alpha_{1}e^{-4\alpha_{1}^{3}t + \alpha_{1}x + \beta_{1}y + \sigma_{1}} + \\ 2k_{2}\tau\alpha_{1} \sinh\left[-4\tau t\alpha_{1}^{3} + \tau\alpha_{1}x - i(\beta_{2}y + \sigma_{2})\right] \\ &+ 2ik_{3}\varepsilon\alpha_{1}\cosh\left[-4\varepsilon t\alpha_{1}^{3} + \tau\alpha_{1}x - i(\beta_{3}y + \sigma_{3})\right]\}/\\ \{e^{4\alpha_{1}^{3}t - \alpha_{1}x - \beta_{1}y - \sigma_{1}} + k_{1}e^{-4\alpha_{1}^{3}t + \alpha_{1}x + \beta_{1}y + \sigma_{1}} + \\ k_{2}\cosh\left[-4\tau t\alpha_{1}^{3} + \tau\alpha_{1}x - i(\beta_{2}y + \sigma_{2})\right] \\ &+ ik_{3}\sinh\left[-4\varepsilon t\alpha_{1}^{3} + \tau\alpha_{1}x - i(\beta_{3}y + \sigma_{3})\right]\}, \\ &\dots (16) \end{aligned}$$

where all parameters are defined by Eq. (14). The evolution and mechanical feature of Eq. (16) is shown in Fig. 5 in x - y. Figures 1 and 2 show the shape and motion of the periodic-soliton solution given by Eq. (7) when the values of y and t are taken to be some different constants. Figure 3 presents the amplitude of the periodic-soliton solution given by Eq. (10) moving with periodic growth and decay with the different value of x. Figure 4 describes the propagation of the periodic-soliton solution given by Eq. (13) with periodic oscillation along the distance t. In Fig. 5, we can clearly see that the periodic-soliton solution given by Eq. (16) transmits stably without the distortion of the soliton shape and intensity. The variation of the value of t affects only the width of the soliton, but the soliton remains its shape.

3 Conclusions

The (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation describes the fluid propagating and can be considered as a model for an incompressible fluid. In this paper, based on the extended homoclinic test technique and the Hirota's bilinear method, the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation is investigated. New exact periodic crosskink wave solutions for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equations are obtained. Moreover, the phenomena of soliton interaction are clearly presented in Figs 1-5. These solutions have not been obtained by Dai *e al.*¹⁹. Of course, the method can also be extended to other nonlinear wave equations.

166

Fig. 5 — Evolution of periodic-soliton solution (16), at $\alpha_1 = k_1 = -1$, $\sigma_1 = 5$, $k_2, \varepsilon, \tau = 1$, $\beta_2 = k_3 = i$, $\beta_1 = -5$, $\sigma_2, \sigma_3 = 0$, $\beta_3 = -i$, (a) t = -4, (b) t = -2 and (c) t = 0

Acknowledgement

The authors would like to express sincerely thanks to the referees for their useful comments and discussions. Project supported by National Natural Science Foundation of China (Grant No 81160531).

References

- 1 Liu J G & Zeng Z F, Indian J Pure Appl Math, 45 (2014) 989.
- 2 Gao X Y, Europhys Lett, 110 (2015) 15002.
- 3 Sun W R, Tian B, Liu D Y & Xie X Y, *J Phys Soc Jpn*, 84 (2015) 074003.
- 4 H L Zhen, Tian B, Wang Y F & Liu D Y, *Phys Plasmas*, 22 (2015) 032307.
- 5 Xie X Y, Tian B, Sun W R, Wang M & Wang Y P, *Mod Phys Lett B*, 29 (2015) 1550192.
- 6 Gao X Y, Z Naturforsch A, 70 (2015) 59.
- 7 Gao X Y, Ocean Eng, 96 (2015) 245.
- 8 Gao X Y, J Math Phys, 56 (2015) 014101.
- 9 Meng G Q, Gao Y T, Yu X, Shen Y J & Qin Y, Nonlinear Dyn, 70 (2012) 609.
- 10 Ghodrat E, Nazila Y, Houria T & Anjan B, Nonlinear Anal Model Control, 17(3) (2012) 280.
- 11 Hirota R, Phys Rev Lett, 27 (1971) 1192.
- 12 E Fan & Zhang H, Phys Lett A, 246 (1998) 403.
- 13 Fan E, Phys Lett A, 265 (2000) 353.
- 14 Senthilvelan M, Appl Math Comput, 123 (2001) 381.
- 15 Zhang S, Chaos Soliton Fract, 30 (2006) 1213.
- 16 Dai C Q, Wang Y Y & Zhang J F, Opt Lett, 35 (2010) 1437.
- 17 Zhang S, Comput Math Appl, 54 (2007) 1028.
- 18 Wu G C & Xia T C, Comput Math Appl, 58 (2009) 2351.
- 19 Dai Z D, Lin S Q, Fu H M & Zeng X P, Appl Math Comput, 216(5) (2010) 1599.
- 20 Wang C J, Dai Z D, G Mu & Lin S Q, Commun Theor Phys, 52 (2009) 862.
- 21 Zeng X P, Dai Z D & Li D L, *Chaos Soliton Fract*, 42 (2009) 657.
- 22 Tang Y N & Zai W J, Nonlinear Dyn, 81 (2015) 249.
- 23 Gilson C R, Nimmo J J C & Willox R, Phys Lett A, 180 (1993) 337.
- 24 Luo L, Phys Lett A, 375 (2001) 1059.
- 25 Ma S H & Fang J P, Commun Theor Phys, 52 (2009) 641.
- 26 Delisle L & Mosaddeghi M, J Phys A Math Theor, 46 (2013) 115203.
- 27 Najafi M & Arbabi S, Int J Adv Math Sci, 1 (2013) 8.
- 28 Wang C J, Dai Z D & Lin L, Appl Math Comput, 216 (2010) 501.