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The purpose of the present paper is to derive a new empirical relationship for the volume dependence of Grüneisen ratio 

(  by using simple and straightforward approach. The results thus obtained for Forsterite (Mg2SiO4) from the two different 

methods are identical to each other. Consistency of calculated values with those values compiled by Cynn H, Carnes J D, 

Anderson O L, J Phys Chem Sol, 57 (1996) 1593 reveals the validity of the formulation. It is also found that the heat 

capacity does not influence the change in (  with the volume ratios in the studied range. 
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1 Introduction  

Grüneisen ratio (  is a very important parameter 

used to quantify the relationship between thermal and 

elastic properties of solids. The Grüneisen ratio (  

can be considered as a measure of the change of 

pressure resulting from the increase energy density at 

constant volume
1
. Grüneisen ratio (  is useful to 

investigate the anharmonic property of materials. 

There is a long standing interest in the behaviour of 

the Grüneisen ratio (  at high pressure or 

compression because of its importance in geophysics, 

thermodynamics and condensed matter physics
2
. The 

Grüneisen ratio (  has both a microscopic and 

macroscopic definitions. Vibrational Grüneisen ratio 

(
3
 may be defined as the logarithmic volume 

derivative of phonon frequency, , i.e.:  
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and the thermodynamic Grüneisen ratio (
4
: 
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where  is volume thermal expansivity,  is the 

isothermal bulk modulus,  is volume and  is 

the heat capacity at constant volume. So many 

researchers
5-18

 have reported the relationships for 

Grüneisen ratio (  by using different approaches.  

In the present study we have extended the work of 

Kumar et al.
14

 by using the concept that  changes 

with increase in compression or pressure. We have 

tested the validity of present formulation to Mg2SiO4. 

It is known that Mg2SiO4 is an important material as 

well as geophysical mineral
1
. It is one of the few 

materials for which sufficient data of its properties are 

available. The wide range of stability in temperature-

pressure space and the fact that it is regarded as a 

major component of the earth layer mantle make 

Mg2SiO4 attractive for the study. Forsterite-rich 

olivine (Mg2SiO4) is the most abundant mineral in the 

Earth’s mantle above depth of about 410 km, where 

 GPa
19

. Also, laboratory- synthesized 

nano-crystalline forsterite has been considered as a 

possible successor to calcium phosphate bioceramics, 

due to its exceptionally high fracture toughness
20

. The 

geophysical importance of forsterite as well as its 

possible application in medicine justify, in general, a 

work on the volume dependence of its Grüneisen ratio 

( , since  is an important parameter in 

thermodynamics, geophysics, and solid state physics.  
 

2 Method of Analysis 

Stacey and Davis
21

 have given the following 

identity:  
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where  are respectively the 

isothermal Anderson-Grüneisen parameter, first order 
—————— 
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pressure derivative of isothermal bulk modulus and 

heat capacity at constant volume and second 

Grüneisen parameter. All these parameters are  

defined as: 
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in which is the isothermal bulk modulus,  

defined as:  
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and 
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Sharma and Sharma
22

 have generalised the 

isothermal Anderson-Grüneisen parameter in the 

following manner: 
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where  and are respectively the values of 

isothermal Anderson-Grüneisen parameter at zero and 

infinite pressure, is a dimensionless adjustable 

parameter. 

Srivastava and Sinha
23

 have reported the 

expression: 
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where  and are the values of first order 

pressure derivative of isothermal bulk modulus at zero 

and at infinite pressure. Using Eqs (3, 7–9) we get: 
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On integration of the above equation, we can get 

the following equation: 
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where ,  are respectively the values of specific 

heat , and Grüneisen parameter at zero pressure 

and  and are temperature dependent parameter: 
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3 Results and Discussion 

At infinite pressure, i.e., P  ∞ or V  0, Eq. (3) 

becomes: 
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Since at infinite pressure, i.e., P  or V  0 ,  

tends to zero
21

 and  tends to zero
24

, now Eq. (14) 

takes the following form: 
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Following Thomas-Fermi theory
21, 25-28

,
 

i.e., 

3 Eq. (11) results 3/2
T .

 The values of 

 for both models
21,25-28 

satisfy the constraint
29

 
'0 


KT . We have proposed a simple method to 

investigate the volume dependence of the Grüneisen 

ratio (  at high temperatures of Mg2SiO4 down to a 

range of volume ratio 0.90.  

Using Eq. (15) in Eq.(11) we get: 
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where all the parameters are having their as usual 

meaning.  

Recently, Kumar et al.
14

 reported the following 

relation for the volume dependence of Grüneisen ratio 

(  by using the concept that  remains constant
1
: 
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where all the parameters are having their as usual 

meaning. 
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The values of input parameters used in present 

study are cited in Table 1. The values of  are taken 

from reference
30

. We have investigated the values of 

volume dependence of the Grüneisen ratio (  

through Eqs. (16) and (17) for Forsterite. The results 

obtained through Eqs (16) and (17) are compared with 

those values calculated by Cynn et al.
30

 of  in Table 

2. It is found that the results obtained through Eqs 

(16) and (17) are almost identical to each other and 

are compatible with those values of  compiled by 

Cynn et al.
30

. For direct vision we have also plotted 

the graph for the dependence of Grüneisen ratio (  

on  at different values of  in Fig. 1. Figure 1 

reflects that as the temperature increases the values of  

Grüneisen ratio (  decrease and show good 
agreement with those values of  compiled by Cynn 
et al.

30
 which supports the validity of the present 

model. It has also been seen that  changes 
monotonically above  K temperature. It is 
pertinent that the present paper proposes only a small 
correction to Eq. (16) from the paper of Kumar et 
al.

14
. This correction is reduced to the  

multiplier on the right side of Eq. (16) from the 
present study. It is readily seen from Table 2 of Cynn 
et al.

30
 that  practically does not vary with pressure. 

Therefore, the multiplier  and does not 
influence the change of  with  in the 
studied range of compression ratios. Also,  
influences the results very slightly because of the very  
 

Table 1 – Values of input parameters for Mg2SiO4 used in calculations 

 

1  1 1  (J/gK)30 31 

300 5.940 5.370 1.290 0.8324 2.380 

400 5.580 5.400 1.210 0.9760 2.240 

500 5.490 5.440 1.180 1.0482 2.210 

600 5.480 5.470 1.170 1.0929 2.190 

700 5.490 5.500 1.160 1.1244 2.140 

800 5.470 5.540 1.150 1.1480 2.100 

900 5.460 5.570 1.150 1.1669 1.980 

1100 5.460 5.630 1.140 1.1972 1.660 

1200 5.490 5.670 1.150 1.2095 1.270 

1300 5.440 5.700 1.150 1.2205 1.240 

1600 5.400 5.800 1.140 1.2489 1.240 

 

 
 

Fig. 1 – Values of Grüneisen ratio ( ) of Mg2SiO4 as a function of temperature at different volume ratios calculated here with Cynn et al.30 
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Table 2 – Grüneisen ratio ( ) of Mg2SiO4 as a function of volume ratio and temperature calculated through (a) Eq. (16),  

(b) Eq. (17) and (c) Cynn et al.30 

 
      

      

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c) 

300 1.29 1.29 1.29 1.27 1.25 1.27 1.24 1.20 1.24 1.20 1.16 1.20 1.17 1.11 1.17 1.13 1.06 1.13 

400 1.21 1.21 1.21 1.19 1.18 1.20 1.19 1.15 1.20 1.13 1.11 1.17 1.10 1.07 1.15 1.06 1.03 1.13 

500 1.18 1.18 1.19 1.16 1.15 1.18 1.16 1.12 1.18 1.10 1.09 1.13 1.07 1.05 1.10 1.03 1.01 1.08 

600 1.17 1.17 1.17 1.15 1.14 1.15 1.15 1.11 1.15 1.09 1.08 1.09 1.06 1.05 1.08 1.02 1.01 1.06 

700 1.16 1.16 1.15 1.14 1.13 1.13 1.14 1.11 1.13 1.08 1.07 1.09 1.05 1.04 1.06 1.01 1.00 1.04 

800 1.15 1.15 1.14 1.13 1.13 1.12 1.13 1.10 1.12 1.07 1.07 1.07 1.04 1.03 1.05 1.00 0.99 1.03 

900 1.15 1.15 1.15 1.13 1.13 1.11 1.13 1.10 1.11 1.07 1.07 1.07 1.04 1.03 1.04 1.00 0.99 1.02 

1100 1.14 1.14 1.02 1.12 1.12 1.11 1.12 1.09 1.11 1.06 1.06 1.07 1.03 1.02 1.04 0.99 0.98 1.02 

1200 1.15 1.15 1.15 1.13 1.13 1.10 1.13 1.10 1.10 1.07 1.06 1.06 1.03 1.02 1.03 0.99 0.98 1.02 

1300 1.14 1.14 1.11 1.13 1.13 1.10 1.13 1.10 1.10 1.07 1.07 1.05 1.03 1.03 1.03 0.99 0.99 1.01 

1600 1.14 1.14 1.14 1.12 1.12 1.12 1.10 1.10 1.10 1.06 1.07 1.04 1.03 1.03 1.02 0.99 0.99 0.99 
 

narrow range, it varies in. Thus the Eq. (16) is an 
asymptotic approximation of Eq. (17) in the limit of 
P  ∞ or V  0. 
 

4 Conclusions  
We have proposed a simple and straight forward 

empirical relationship to estimate the values of 

volume dependence of Grüneisen ratio (  for 

Mg2SiO4 down to a range of volume ratio 0.90. It is 

found that the results obtained through Eq. (16) are in 

good agreement with those values of  compiled with 

Cynn et al.
30

. Compatibly of results obtained in the 

present study with values of  compiled by Cynn et al.
30

 

shows the validity of the present model. Results thus 

obtained through Eqs (16) and (17) are identical to 

each other. Henceforth, the Eq. (16) is an asymptotic 

approximation of Eq. (17). There is no significant 

effect of heat capacity on Grüneisen ratio ( . 

However, this requires further investigations that heat 

capacity influences the values of volume dependence 

of Grüneisen ratio ( . It may be studied in future for 

those materials that have data on  and at high 

temperatures and high pressures.  
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