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The stability of a long wavelength large amplitude plasma wave, generated in a laser wakefield accelerator at 

moderately relativistic laser intensity, to oscillating two-stream instability has been examined. In the limit when the 

oscillatory velocity of electrons due to the plasma wave, V
0

�

, exceeds the electron thermal speed, the short wavelength 

plasma wave turns out to be 
22 2

.V / 2
0

k
p

ω ω= +
� �

. In the four wave parametric process, involving the pump plasma wave, 

a short wavelength low frequency quasimode and two short wavelength plasma wave sidebands, the pump and the sidebands 

exert a ponderomotive force on the electrons driving a low frequency quasimode. The electron density perturbation 

associated with this mode couples with the pump driven electron oscillatory velocity to produce nonlinear currents driving 

the sidebands. We find that this process has no growth when the ion motion is ignored. However, with the inclusion of ion 

motion the parametric instability is important on the time scale of an ion plasma period. 

Keywords: Oscillating two-stream instability, Laser driven plasma wave, Sideband waves 

1 Introduction 
The large amplitude, long wavelength plasma 

waves are excited in many situation, including laser 

based charged particle accelerators
1-6

. The main 

requirement for gaining greater acceleration is the 

large amplitude of the plasma wave. The plasma wave 

can be driven by the ponderomotive force due to an 

intense short laser pulse or short duration electron 

beam. The laser pulse period τ  in a laser wake field 

accelerator is of the order of plasma period 
1−

pω . In 

the case of a beat wave accelerator (PBWA), plasma 

waves are generated by employing two lasers with 

frequency difference equal to the plasma frequency. 

In both the cases, these plasma waves propagate with 

large phase velocity, equal to the group velocity of the 

laser and can accelerate charge particle to relativistic 

energies. Moreover, when the plasma wave amplitude 

becomes very large, it becomes susceptible to the 

oscillating two-stream instability. Experimental and 

theoretical investigations have been done all over the 

world and different schemes have been proposed for 

achieving effective electron acceleration
7-11

. Kumar et 

al
12

 have examined the effect of a relativistic intense 

laser pulse on the propagation of electron plasma 

wave and particle acceleration. Baiwen et al
13

 have 

observed the electron acceleration by an intense laser 

pulse in low density plasma and detected a well 

collimated relativistic electron beam in the direction 

opposite to the laser propagation. Gorbunov et al
14

, 

have investigated the electron acceleration up to GeV 

energies by using an ultrashort petawatt laser by 

exciting a nonlinear plasma wakefield. One of the 

prominent applications of intense accelerated particles 

is in inertial fusion, different features of which have 

been discussed by several authors
15-17

. Ramachandran 

et al.
18

 have studied the Oscillating two-stream 

instability (OTSI) of a plasma wave in a plasma 

channel, in which the growth rate increases with the 

width of the plasma density channel and decreases with 

the mode number. Ahmad et al.
19

 have investigated 

OTSI of laser wakefield-driven plasma wave in a low 

density plasma under local and non-local effects. 

Malik
20

 have investigated the OTSI of a plasma wave 

in plasma, which has hot and cold positive ions, 

negative ions, and the electrons. He found that mass of 

the ions and effects of charge number are significant on 

the instability. Ferdous et al.
21

 have studied the OTSI 

of beat waves in a hot magnetized plasma, in which 

they found that the maximum growth rate of the 

instability is about two orders higher when ion motion 

is taken into account. In this context, the stability of the 
————— 
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plasma wave is a relevant issue. Earlier studies on 

modest intensity of laser interaction with plasmas and 

PIC simulations of laser wakefield acceleration indicate 

that the plasma wave develops short wavelength 

distortions on a time scale comparable to ion plasma 

period. These studies have revealed the excitation of 

short wavelength plasma waves near the critical layer 

that can be accredited to the excitation of oscillating 

two-stream instability. In OTSI, a long wavelength 

pump wave (or plasma wave) excites two short 

wavelength Langmuir wave sidebands and a purely 

growing density perturbation. In the region where the 

electric field of the pump and Langmuir waves are 

parallel, the plasma is pushed away to the regions 

where the fields are antiparallel. The depressed density 

regions attract more electric field energy from the 

neighborhood leading to deeper density depressions 

and enhancement of the short wavelength Langmuir 

waves
22-23

. In this paper, we examine the oscillating 

two-stream instability of long wavelength plasma wave 

generated in a laser wakefield accelerator at mildly 

relativistic intensity. First, the plasma wave of 

frequency pωω ≈0  and wave number ck p /0 ω≈  

(where pω  is the plasma frequency) modifies the short 

wavelength Langmuir eigen mode dispersion relation. 

Second, it couples to them through a four wave 

parametric process. The dynamics of the process is as 

follows. The pump plasma wave imparts oscillatory 

velocity to electrons. The latter couples a short 

wavelength low frequency mode 00 ,;, ωωω <<> kkk
���

, 

to two Langmuir wave sidebands 1,2 1,2( , )kω
�

. The 

pump and Langmuir wave sidebands exert a low 

frequency ponderomotive force on electrons, driving 

the low frequency mode. The density perturbation in 

conjunction with the oscillating electron velocity 0v
�

 at 

0 0( , )kω
�

 produces nonlinear density perturbations 1,2

NL
n  

at 1,2 1,2( , )kω
�

 that drive the sidebands.  

 

2 Short Wavelength Plasma Susceptibility 
Consider a large amplitude plasma wave of 

electrostatic potential in a plasma of equilibrium 

density 
0

0n : 

 

0 0( )

0 0

i t k z
A e

ωϕ − −=  … (1) 
 

It gives rise to electron velocity and density 

perturbations: 

0

00

0v
ω

φ

m

ke
�

�
−=  … (2) 
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0
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ek
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nn −==

��

 

… (3) 

 

where e−  and m are the electron charge and mass. 

Now we consider a short wavelength plasma wave 

in the presence of large amplitude plasma wave with 

pωω ~~ 0Ω , 0kq > : 
 

( )rqt
Ae

��
.−Ω−

Ω =φ  … (4) 
 

The coupling between the two waves produces a 

driven wave at 00 , kq
��

++Ω ω  with potential: 
 

( ) ( )[ ]rkqti
eA

���

00

00

+−+Ω−
+Ω+Ω = ω

ωωφ  … (5) 
 

As a consequence of these waves the velocity and 

density perturbations of electrons can be written as: 
 

0
vvvv 0 ω+ΩΩ ++=
����

, 
0

0

0 0n n n n n ωΩ Ω+= + + +
 
…. (6) 

 

The waves exert a ponderomotive force on 

electrons at 0ω+Ω  and Ω : 
 

,
00 ωω φ +Ω+Ω ∇= PP eF

�

 Ω+Ω −= v.v
2

00

��

e

m
P ωφ

 
… (7)

 
 

ΩΩ ∇= pP eF φ
�

, 
0

v.v
2

0 ωφ +Ω
∗

Ω −=
��

e

m
P  … (8) 

 

The electron velocities due to ( Ωφ and )ΩPφ  and 

(
0ωφ +Ω and ))( 0ωφ +ΩP  are: 

 

( )ΩΩΩ +
Ω

−= P
m

qe
φφ

�
�
v  … (9) 

 

Similarly: 
 

( )
( )

( )
000

0

0v ωωω φφ
ω

+Ω+Ω+Ω +
+Ω

+
−= P

m

kqe
��

�
 … (10) 

 

Using these in the equation of continuity, 

)v.(/
�

ntn ∇+∂∂ , one obtains: 
 

( )
0 0 0

0 2

0 0

2

0

0 0 0 0

0 0

( )

( )

( ).v ( ).v

2( ) 2( )

P

n e q k
n

m

n q k n q k

ω ω ωφ φ
ω

ω ω

Ω+ Ω+ Ω+

Ω Ω

+
= − + +

Ω +

+ +
+

Ω + Ω +

��

� �� � � �

 

… (11) 
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We are looking for q
�

,Ω  as an eigen mode, hence in 

the evaluation of nonlinear terms at 0ω+Ω , we may 

presume ΩΩ << φφP
 and write: 

 

v ,
eq

m
φΩ Ω≈ −

Ω

�
�

 
2

20

0

Ω
−= Ω

Ω
m
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φ
, 

0
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2
P

q
ωφ φΩ+ Ω=

Ω

� �
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… (13) 
 

Using this density perturbation in the Poisson’s 

equation
00

42

ωω πφ +Ω+Ω =∇ en , we get: 

 

0 0

2

0

0

2

0 0 0

2 2
0 0 0 0

v .

2 ( )

( ). ( )
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 … (14) 

where 
4

3

)(
1

2

0

2

0
≈

+Ω
−=+Ω

ω

ω
ε ω

p
. 

 

From the Poisson’s equation, one may also write: 
 

( )
00 4

2

0
ωω φ

π
+Ω+Ω

+
−=

e
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n

��

 … (15) 

 

From Eqs. (7), (8) and (10), one may write: 
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From Eq. (9): 
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�
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Using Eqs. (9), (15) and (16) in Eq. (12), we obtain: 
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The electron susceptibility is: 
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We have solved Eq. (19) numerically for the 

following parameters: 2.0/v 22

0 =c , 1/0 =pzck ω , 

5.10/ −==′
pzz cqq ω . In Fig. 1, we have plotted 

the normalized frequency of the plasma wave, 
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/
p

ωΩ , as a function of normalized wave 

number, zq′ , at q q
z

′ ′= , where /q qc
p

ω′ = . The 

frequency increases nonlinearly with the wave 

number such that the group velocity of the plasma 

wave increases with the wave number. In Fig. 2, we 

have plotted pω/Ω  vs zq′  for the Langmuir wave 

propagating obliquely at 60
0
 to the pump wave 

( 2 )q q
z

′ ′= , The frequency of the plasma wave 

decreases up to 0.5q
z
′ = , i.e. 2

0
q q k

z z
= = . Beyond 

this point as the wave number of the Langmuir wave 
becomes greater than that of the large amplitude 

Langmuir wave, the plasma wave frequency starts 
increasing. 

For 2 2, 2 /
0 2

k q q
z p

η ω<< ≅  and Ωχ  can be 

written as: 
 

( )
2

2

0

22
2/v

Ω

+
−=Ω

zp qω
χ  … (20) 

 

One may note that this susceptibility is similar to 

the one in a thermal plasma where 
22

v thq  is replaced 

by 2/v.
2

0

��
q , where thv  is the electron thermal 

speed. This result is the same as one would obtain for 

Ωχ in a Maxwellian thermal plasma if one replaces, 

following
24

, electron temperature Te by 

2 2[1 .v / 2 ]
0

T m q T q
e e

+
� �

. 

 

3 Oscillating Two Stream Instability 

We consider the four wave coupling of the long 

wavelength, large amplitude plasma wave 

( ) 0 0( )

0 0A , ,
i t k z

r z t e
ωφ − −= , to a low frequency 

electrostatic mode of potential 

Aexp ( . )i t k rφ ω = − − 

� �
, and two shorter 

wavelength Langmuir wave sidebands 
 

A exp ( . )j j j ji t k rφ ω = − − 

� �
, 

 

where 1,2 0ω ω ω= ∓  and 1,2 0k k k=
� � �

∓ 0( )k k>
� �

, 

ˆ
j jzk k z=
�

 and j=1,2. 

In the case of wakefield excitation by a Gaussian 

laser pulse of pulse duration comparable to plasma 

period, the pump plasma wave amplitude is related to 

laser amplitude L0A  and laser frequency Lω  (in the 

non-relativistic limit) as: 
 

2
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0
3.2

A
A
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L

m

e

ω

π
≈  

 
 

Fig. 1 — Normalized frequency, Ω/ ωp, of the Langmuir wave as 

a function of normalized wave number for 
2 2

v / 0.20 c = , 

/ 10k c pz
ω =  at q qz′ ′=  

 

 
 

Fig. 2 — Normalized frequency, / pωΩ , of the Langmuir wave 

as a function of normalized wave number for 
2 2

v / 0.20 c = , 

/ 10k c pz
ω =  at 2q qz′ ′=  
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The sidebands give oscillatory velocities to 

electrons v /j j j jek mφ ω= −
��

, and in conjunction with 

the pump, exert a low frequency ponderomotive force 

on them at ( , )kω
�

 
 

0 1 0 2( / 2) (v .v v .v )p pF e mφ ∗= ∇ = − ∇ +
� � � � �

, 

1 0 2 0
1 2

1 2

.v .v

2 2
p

k k
φ φ φ

ω ω

∗

= +

� �� �

, 

… (21) 
 

The ponderomotive and self-consistent potentials 

pφ  and φ  produce electron and ion density 

perturbations, inn, . 
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2

4
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k
n

e
χ φ φ

π
= + , … (22) 

 

2
( / 4 )i in k eπ χ φ= − , … (23) 

where
222222 /v/2 spithpe ckk ωωχ =≈ ,

22 / ωωχ pii −= , ( ) 2/1
/ ies mTc = , 

( ) 2/120

0 /4 ipi menπω = and we have taken 

thk v<ω . Using n  and in  in the Poisson’s 

equation
2

4 ( )ie n nφ π∇ = − , we obtain: 
 

e pεφ χ φ= − , … (24) 
 

where 1 e iε χ χ= + + . 
 

The nonlinear density perturbations 1

NL
n  at the 

lower sideband and 
NLn2  at the upper sideband, on 

solving the equation of continuity, 

( )1 0
/ (1/ 2) . v 0NL

n t n
∗∂ ∂ + ∇ =
�

, can be written as: 
 
 

2
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1
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.v .v (1 )
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p
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e
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+
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 … (26) 

The self-consistent potentials 
21 ,φφ  produce the 

linear density perturbations at the sidebands: 
 

2( / 4 )L

j j ej jn k eπ χ φ= , j=1, 2 … (27) 

where ejχ  are the electron susceptibilities at  

sidebands ( , )j jkω
�

 given by Eq. (20), 

( ) 22

0

22 /2/v jzpej k ωωχ +−= . Using Eqs. (25) – (27) 

in the Poisson’s equation
2 4 ( )L NL

j j je n nφ π∇ = + , we 

obtain: 
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ωεε
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k

k
n

k

e
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1
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1

01

1

2

1

2

1

1

2

1

1

��

, 

 

( )φχ
ωεε

π
φ i

NL k

k

k
n

k

e
+=−= 1

2

v.4

2

02

2

2

2

2

2

2

2

2

2

��
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where 1j ejε χ= + . 

Using Eqs. (21) and (28) in Eq. (24), we obtain (for 

)0 kk << : 

2

0

2 2

0

.v
(1 )

4 ( )
e i

k
ε χ χ

ω ω

∆
= − +

∆ −

� �

 … (29) 

 

where ( ) 2/12

0

22

0 2/vzp k+−=∆ ωω  is a frequency 

mismatch and 0201 , ωωωωωω +=−= . 

In the limit thpi kv<<<< ωω , we can neglect the 

ion motion ( )0=iχ  and Eq. (29) turns out to be: 
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2

02 2

2 2 2
0

.v

4 1 /
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k
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ω

ωω

∆
= ∆ +

+
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Instability will occur when ∆  is negative and: 
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This condition implies: 
 

( )222
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0
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0

2

/14

v

4

v

pis

zz

ck

kk

ω+
< , which is never satisfied, 

hence oscillating two stream instability does not 

occur, when ion motion is ignored. 

By including the ion motion and treating the ions 

as cold, Eq. (29) can be written as: 
 

( ) 01

222

1

2224 =∆+∆+∆++∆− AA piacac ωωωωω , 

… (31) 

where 
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Equation (31) gives a root: 
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Using the values of acω , 1A  and the approximate 

value of pzk ω4/v 2

0

2−≈∆ , one obtains: 
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where piszz ckG ω/=  is the normalized wave 

number. 

Instability occurs when ∆  is negative and 
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We have solved Eq. (33) numerically for the following 

parameters: 2000/ =mmi , 10v/v 2

th

2

0 = , 

2,1/ =zkk . In Fig. 3, we have plotted the variation 

of normalized growth rate, piωγ / , with the 

normalized wave number, pisz ck ω/  for 

2,1/ =zkk . In both cases, the growth rate increases 

with pisz ck ω/ , acquires a maximum and then falls 

off. The maximum value of growth rate is piω4.2  in 

the case of 1/ =zkk . However, the growth rate 

shows a maximum, piωγ 6.1=  at 22.0/ =piszck ω  

for the case of 2/ =zkk  (i.e., when k
�

 is at 60
0
 to the 

direction of 0E
�

). We have also plotted the normalized 

growth rate with normalized parallel wave number in 

Fig. 4 for 4000/ =mmi  and 1/ =zkk . It is obvious 

from the graph that growth rate attains a maxima at 

larger value of piω7.2  as compared to piω4.2  in the 

case of 2000/ =mmi . It means there is a significant 

dependence of growth rate on the ratio of ion mass to 

electron mass. 

 
4 Conclusions 

A large amplitude long wavelength plasma wave 

undergoes oscillating two stream instability on time 

scale of the order of ion plasma period and ion motion 

is mandatory for its growth. The pump plasma wave 

 
 

Fig. 3 — Variation in normalized growth rate, / piγ ω , as a 

function of /k cz s piω  for 
2 2

/ 2000, v / v 100m mi th
= =  at 

/ 1,2k kz =  

 

 
 

Fig. 4 — Variation in normalized growth rate, / piγ ω , as a 

function of /k cz s piω  for 
2 2

/ 4000, v / v 100m mi th
= =  at 

/ 1k kz =  
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strongly modifies the short wavelength plasma wave 

eigen modes. As a consequence, the frequency 

mismatch between the pump and short wavelength 

sidebands is huge and it suppresses the growth rate of 

the parametric instability. If one ignores the ion 

motion, there is no parameter space where OTSI 

could occur. With the inclusion of ion motion, there 

exists a narrow parameter regime where OTSI can 

occur. The growth rate is comparable to ion plasma 

frequency. For 10v/v 2

th

2

0 = , the growth rate is 

piωγ 4.2=  for Ek
��

 and piωγ 6.1~  for k
�

 at 60° to 

the electric field of the pump plasma wave. The 

growth rate is also dependent on the ratio of mass of 

ion to electron. As the ratio of ion to electron mass 

increases, the growth rate increases. 
 

The present treatment is limited to homogenous 

plasma. The plasma inhomogeneity can localize the 

region of parametric coupling and lower the growth 

rate of OTSI. 
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