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This paper presents a study of the natural convection flow, heat and mass transfer of an incompressible micropolar fluid 
between two vertical parallel plates containing a Darcy-Forchheimer porous medium. Asymmetric wall temperatures and 
concentrations are present and take into account a temperature-dependent thermal conductivity. The transformed equations 
for linear momentum, angular momentum, energy and species have been solved numerically using the finite element method. 
The effects of Darcy number (ܽܦ), Forchheimer number (ݏܨ), Grashof number (ݎܩ) and thermal conductivity parameter (ܵ) 
on the velocity, angular velocity and temperature profiles have been studied in detail. The numerical results indicate that 
velocity and angular velocity (micro-rotation) increase as the Darcy number increases but they are reduced with increasing 
Forchheimer parameter, Grashof number and thermal conductivity parameter. Moreover, the thermal conductivity parameter 
increases as the temperature decreases. The effect of vortex viscosity parameter, ܴ, on the volume flow rate, the total heat rate 
and the total species rate added to the fluid has also been examined. The effect of thermal conductivity parameter, ܵ, on heat 
transfer rate has also been studied. A comparison with another method has also been presented and has been found to be well 
in agreement.  
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1 Introduction 
Natural convection in fluid saturated porous media 

constitutes an area of major activity in transport 
phenomena research owing to its application in a 
diverse number of fields including geothermal energy 
systems, enhanced recovery in petroleum reservoirs, 
filtration sciences, heat exchange between soil and 
atmosphere, transport of moisture through porous 
industrial materials and ceramic processing. The 
fundamental importance of convective flow in porous 
media has been well-reviewed in the recent book by 
Ingham and Pop1. Nield and Bejan2 have also 
addressed in detail the natural convective flows due to 
combined buoyant mechanisms in porous media. 
Rawat and Kapoor3 focused to develop a mathematical 
model for the comparative study of combined effects 
of free convective heat and mass transfer on the steady 
two-dimensional, laminar fluid flow past a moving 
permeable vertical surface subjected to a transverse 
uniform magnetic field.  

 Although, considerable work has been reported on 
flow heat and mass transfer in geometries with  

and without porous media4,5, a majority of porous 
studies6-8 have been on Darcy’s law which states that 
the volume averaged velocity is proportional to the 
pressure gradient. Darcy’s law however is valid only 
for slow (viscous-dominated) flows through porous 
media with low permeability. At higher flow rates or in 
highly porous media, there is a departure from the 
linear law and inertial effects become important. 
Physically, this departure is believed to be due to flow 
separation within the medium, whilst mathematically, 
it manifests itself as a nonlinear term in the velocity-
pressure gradient relationship.  

Recently, Rawat et al.9 presented for the steady, 
two-dimensional magneto-convection heat transfer  
of a two-phase, electrically-conducting, particle-
suspension in a channel containing a non-Darcian 
porous medium intercalated between two parallel 
plates, in the presence of a transverse magnetic field. 
The channel walls are assumed to be isothermal but at 
different temperatures. Rawat et al.10 also investigate 
the two dimensional flow, heat and mass transfer of 
chemically reacting micro polar fluid over a non-linear 
stretching sheet with variable heat flux in a non-Darcy 
porous medium. The rate of chemical reaction is 
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assumed to be constant throughout the fluid, i.e., 
homogenous. 

 The inability of classical (Newtonian) continuum 
mechanics to explain phenomena exhibited by fluids 
with suspended particles leads to the development of 
theory of micro polar fluids. This theory, presented by 
Eringen11,12 includes the effect of local inertia and 
couple stresses and provides a physically and 
analytically robust mathematical model for simulating 
non-Newtonian characteristics exhibited by various 
polymeric fluids, colloidal suspensions, contaminated 
gases, blood, sediments etc. An excellent summary of 
these and other applications is available in the review 
by Ariman et al.13. Micro polar theory has therefore 
generated a considerable amount of interest and a wide 
spectrum of engineering problems. Rawat and 
Bhargava14 presented the viscous, incompressible heat 
and mass transfer of a micro polar fluid through a 
Darcian porous medium in the presence of viscous 
heating and wall transpiration.  

It is well known that some fluid properties like 
viscosity and thermal conductivity vary with 
temperature, so to accurately predict the flow and heat 
transfer processes in such fluids, it is necessary to 
incorporate the variation in physical properties with 
temperature in any model. The earliest known 
theoretical treatment of variable property effects along 
a vertical isothermal plate is the perturbation analysis 
of Hara15 for air. Beg et al.16 presented a solution 
scheme for the hydromagnetic boundary layer heat and 
mass transfer past a transpiring flat surface for 
thermophoresis and thermal conductivity variation. 
The pulsatile hydromagnetic flow and heat transfer of 
a non-Newtonian biofluid through a saturated non-
Darcian porous medium channel with viscous 
heatingwas examined by Rawat et al.17. Mahmoud18 
studied the influence of temperature dependent thermal 
conductivity of a micropolar fluid with power-law 
variation in surface temperature.  

 Since, most of these studies were confined to purely 
fluid regimes neglecting the mutability of vital fluid 
properties, the present investigation therefore not only 
aims to extend the work of Cheng19 but also to study 
numerically the natural convection heat and mass 
transfer of a fully developed micropolar fluid flow in a 
Darcy-Forchheimer porous medium for asymmetric 
wall temperatures and concentrations with temperature- 
dependent thermal conductivity. Such a study, to the 
authors’ knowledge has not yet appeared in the 
literature despite immediate applications in packed-bed 
chemical reactors, polymer processing, grain storage, 

insulation of building and purification of crude oil etc. 
The governing partial differential equations for the 
flow are transformed and solved using Finite element 
method. The model finds applications in polymer 
technology, aerodynamic heating, geophysics and 
ceramic processing.  
 

2 Mathematical Models 
 Consider the laminar natural convection flow 

between two vertical plates in a homogenous, 
incompressible, micropolar fluid-saturated porous 
medium with temperature dependent thermal 
conductivity. The vertical plates are separated by a 
distance b with reference to an x, y coordinate system, 
where the x-axis is directed along the vertical plates 
and the y-axis is transverse to this. It is assumed that 
the two walls are maintained at different temperatures 
and concentrations resulting in an asymmetric situation 
with respect to temperature and concentration, 
respectively. The flow is also assumed steady and fully 
developed, i.e., transverse velocity is zero and 
therefore the flow depends only on the transverse 
coordinate, y. The geometry of the system is shown  
in Fig. 1. Neglecting viscous heating and thermal 
dispersion effects, under the Boussinesq approximation, 
the one-dimensional conservation equations may be 
presented as follows: 

Linear momentum equation: 
 

(μ + (ߢ
݀ଶݑ
ଶݕ݀ + ݇

݀݃
ݕ݀

+ ρβ்݃௔(ܶ − ଴ܶ) + ρβ஼݃௔ 

ܥ) − (଴ܥ −
(ஜା఑)

௞೛
ݑ −

௕ಷ஡

௞೛
ଶݑ = 0  … (1) 

 
 

Fig. 1 — Physical model and co-ordinate system. 
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Angular momentum equation:  

γ
ௗమ௚

ௗ௬మ − ݇(2݃ +
ௗ௨

ௗ௬
)= 0  … (2) 

 

Energy equation: 
 

ௗ

ௗ௬
ቀ݇௙

ௗ்

ௗ௬
ቁ = 0  … (3) 

 

Diffusion equation: 
ௗమ஼

ௗ௬మ = 0  … (4) 
 

The corresponding boundary conditions on the vertical 
surfaces are 
 

ݕ = 0 ∶ ݑ = 0, ݃ = 0 , ܶ = ଵܶ , ܥ =  ଵ  … (5a)ܥ
ݕ = ܾ ∶ ݑ = 0, ݃ = 0 , ܶ = ଶܶ , ܥ =  ଶ  … (5b)ܥ
 

where ߢ ,ߤ, ݇௣ and ܾி  designate the newtonian 
dynamic viscosity, eringen vortex viscosity, 
permeability and inertia coefficient of the porous 
medium, respectively. γ = ቀμ +

఑

ଶ
ቁ ݆, is the spin  

gradient viscosity, i.e., gyro-viscosity, ݆ denotes the 
microinertia density, ݑ is the micropolar linear 
velocity, ݃ is the angular velocity (micro-rotation) of 
the micropolar fluid micro-elements, ݇௙ is the thermal 
conductivity of the fluid, T and C are the fluid 
temperature and concentration, respectively, ଴ܶ is the 
inlet temperature and ܥ଴ is the inlet concentration. The 
left plate (i.e, at y = 0) is kept at constant temperature 
T1 and the right plate (i.e., at y = b) is maintained  
at a constant temperature T2. Additionally, the 
concentration varies from C1 on the left plate to C2 on 
the right plate.  

 We also note that the micro-rotation conditions 
imposed at both plates correspond to the case where 
particle rotation (spin) at the wall is not permitted, i.e., 
micro-element rotation vanishes. Such a scenario 
corresponds physically to concentrated particle flows, 
as described by Gorla et al.20. We further assume that 
the thermal conductivity is a function of temperature 
and is defined as: 
 

݇௙ = ݇ଵ[1+∝ (ܶ − ଴ܶ)] or ݇௙ = ݇ଵ[1 + ܵθ]  … (6) 
 

where ܵ =  α( ଵܶ − ଴ܶ)  
 

where, ݇ଵ is the fluid thermal conductivity at 
temperature ଵܶ and α is a constant depending on the 
nature of the fluid. In general, S > 0 for water and air 
whereas, S > 0 for fluids such as lubricating oils. 
Proceeding with the analysis, we introducing the 
similarity transformations: 

ݑ =
ஜீ௥

௕஡
 , ݕ = ܻܾ, ݃ =

ஜீ௥

௕మ஡
, ܪ θ =

்ି బ்

భ்ି బ்
 , Φ =  

஼ି஼బ

஼భି஼బ
  

 … (7) 
 

Substitution into Eqs (1) – (5) leads to the following set 
of non-linear, coupled, ordinary differential equations:  

Linear momentum equation: 
 

(1 + ܴ)
݀ଶܷ
ܻ݀ଶ + ܴ

ܪ݀
ܻ݀

+ θ + ܰΦ −
(1 + ܴ)

ܽܦ
ܷ −

ݎܩݏܨ
ܽܦ

ܷଶ = 0 

  … (8) 
 

Angular momentum equation: 
 

ቀ1 +
ோ

ଶ
ቁ

ௗమு

ௗ௒మ − ܴܤ ቀ2ܪ +
ௗ௎

ௗ௒
ቁ = 0  … (9) 

 

Energy equation: 
 

(1 + ܵθ) ௗమ஘

ௗ௒మ + ܵ(
ௗ஘

ௗ௒
)ଶ = 0   … (10) 

Diffusion equation: 

ቀ
ௗమ஍

ௗ௒మ ቁ = 0  … (11) 
 

where, ܤ =
௕మ

௝
 and ܴ =

఑

ஜ
 are micropolar parameters 

(dimensionless material properties) and ௕ܰ =
ఉ಴(஼భି஼బ)

ఉ೅( భ்ି బ்)
 is 

the buoyancy ratio, ݎܩ =
௚ೌఉ೅௕య஡మ

ஜమ ( ଵܶ − ଴ܶ) is the 

Grashof number, ܽܦ =  
௄೛

௕మ is the Darcy number and 

ݏܨ =  
௕ಷ

௕
 is the Forchheimer (quadratic porous drag) 

number. The transformed boundary conditions now 
become: 
 

At ܻ = 0 ∶ ܷ = 0, ܪ = 0, θ =  0, Φ = 1  … (12) 
 

At ܻ = 1 ∶ ܷ = 0, ܪ = 0, θ =  ݉, Φ = ݊  … (13)  
 

where,݉ = మ்ି బ்

భ்ି బ்
 is the wall temperature ratio and  

݊ =  
஼మି஼బ

஼భି஼బ
 is the wall concentration ratio of special 

significance in engineering applications is the shear 
stress, the wall heat flux and wall heat transfer 
coefficient. The shear stress at the left wall is given by: 
 

τଵ = [(μ + (ߢ ቀ
ௗ௨

ௗ௬
ቁ + ௬ୀ଴[݃ߢ  =  

(ஜା఑)ீ௥ஜ

஡௕మ ܷ′(0)  … (14) 
 

The heat flux at the left wall may be written using 
Fourier’s law as follows:  
 

ଵݍ = −݇௙
ௗ்

ௗ௬
ቚ

௬ୀ଴
= −

௞೑( భ்ି బ்)

௕
θᇱ(0)  … (15) 

 

The heat transfer coefficient at the left wall is given by: 
 

ℎଵ =
௤భ

( భ்ି బ்)
= −

௞೑

௕
θᇱ(0)  … (16) 
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The Nusselt number at the left wall can be defined thus:  
 

ݑܰ =
௛భ௕

௞೑
= −θᇱ(0)  … (17) 

 

The dimensionless volume flow rate is given by: 
 

ܳ = ׬ ܷܻ݀
ଵ

଴
  … (18) 

 

The dimensionless total heat rate added to the fluid is 
given by: 
 

ܧ = ׬ ܷθܻ݀
ଵ

଴
  … (19) 

 

Finally the dimensionless total species rate added to the 
fluid is given by: 
 

߮ = ׬ ܷΦܻ݀
ଵ

଴
  … (20) 

Additionally the wall couple stress at both plates can 
be defined by: 
 

௪ܯ = ቂγ
డ௚

డ௬
ቃ at ݕ = 0 (left plate) and  

௪ܯ = ቂγ
డ௚

డ௬
ቃ at ݕ = 1 (right plate)  … (21) 

 

3 Numerical Solution by Finite Element Method 
The transformed two-point boundary value problem 

defined by Eqs (8) – (13) is solved using finite element 
method. Details of the method are given in Reddy21 and 
Bathe22. The whole domain is divided into a set of 81 line 
elements of equal width, each element being two noded.  
 

3.1 Variational formulation 
 The variational form associated with Eqs (8) - (11) 

over a typical two noded linear element ( ௘ܻ , ௘ܻାଵ) is 
given by: 
 

׬ ଵݓ ቄ(1 + ܴ) ௗమ௎

ௗ௒మ + ܴ
ௗு

ௗ௒
+ θ + ܰΦ −

(ଵାோ)

஽௔
ܷ −

௒೐శభ
௒೐

ி௦ீ௥

஽௔
ܷଶቅ ܻ݀ = 0  … (22) 

 

׬ ଶݓ ቄቀ1 +
ோ

ଶ
ቁ

ௗమு

ௗ௒మ − ܪ2)ܴܤ +
ௗ௎

ௗ௒
)ቅ ܻ݀ = 0

௒೐శభ
௒೐

  

  … (23) 
 

׬ ଷݓ ቄ(1 + ܵθ) ௗమఏ

ௗ௒మ + ܵ(
ௗ஘

ௗ௒
)ଶቅ ܻ݀ = 0

௒೐శభ
௒೐

  … (24)  
 

׬ ସݓ ቄ
డమΦ

డ௒మቅ ܻ݀ = 0
௒೐శభ

௒೐
  … (25) 

 

where ݓଵ, ,ଶݓ  ସ are arbitrary test functionsݓ ଷandݓ
and may be viewed as the variation in U,H, and  
respectively. 
 

3.2 Finite element formulation 
The finite element model may be obtained from  

Eqs (22)-(25) by substituting finite element 
approximations of the form: 

ܷ = ∑ ௝ܷψ௝
ଶ
௝ୀଵ , ܪ = ∑ ௝ψ௝ܪ

ଶ
௝ୀଵ ,  

θ = ∑ θ௝߰௝
ଶ
௝ୀଵ  , Φ = ∑ θ௝ψ௝

ଶ
௝ୀଵ   … (26) 

 

with ݓଵ = ଶݓ = ଷݓ = ସݓ  = ψ௜(݅ = 1, 2) where ψ௜ 
are the shape functions for a typical element ( ௘ܻ , ௘ܻାଵ) 
and are taken as:: 
 

ψଵ
(௘) =

௒೐శభି௒

௒೐శభି௒೐
, ψଶ

(௘) =
௒ ି௒೐

௒೐శభି௒೐
, ( ௘ܻ ≤ ܻ ≤ ௘ܻାଵ)  … (27) 

 

The finite element model of the equations for a typical 
element ( ௘ܻ , ௘ܻାଵ) for ܷ, ,ܪ θ and Φ thus formed is 
given by:  
 

ۏ
ێ
ێ
ۍ
[ଵଵܭ]
[ଶଵܭ]
[ଷଵܭ]
[ସଵܭ]

[ଵଶܭ]
[ଶଶܭ]
[ଷଶܭ]
[ସଶܭ]

[ଵଷܭ]
[ଶଷܭ]
[ଷଷܭ]
[ସଷܭ]

[ଵସܭ]
[ଶସܭ]
[ଷସܭ]
ے[ସସܭ]

ۑ
ۑ
ې

൦

ሼܷሽ
ሼܪሽ
ሼθሽ
ሼΦሽ

൪ =

ۏ
ێ
ێ
ۍ
ሼܾଵሽ
ሼܾଶሽ
ሼܾଷሽ
ሼܾସሽے

ۑ
ۑ
ې
   

  … (28) 
 

where [ܭ௠௡], and [ܾ௠] (m, n=1, 2, 3, 4) are the 
matrices of order 2 × 2 and 2 × 1, respectively. All 
these matrices may be defined as follows: 
 

௜௝ܭ
ଵଵ = −(1 + ܴ) න

݀ψ௜

ܻ݀

݀ψ௝

ܻ݀
ܻ݀–

(1 + ܴ)

ܽܦ
න ψ௜ψ௝ܻ݀

௒೐శభ

௒೐

௒೐శభ

௒೐

 

−
ݎܩݏܨ

ܽܦ ଵܷതതത න ψ௜ψଵψ௝ܻ݀ −
ݎܩݏܨ

ܽܦ
ܷଶതതത න ψ௜ψଶψ௝ܻ݀

௒೐శభ

௒೐

௒೐శభ

௒೐

 

௜௝ܭ
ଵଶ = ܴ න ψ௜

݀ψ௝

ܻ݀
ܻ݀

௒೐శభ

௒೐

 

௜௝ܭ
ଵଷ = න ψ௜ψ௝ܻ݀

௒೐శభ

௒೐

 

௜௝ܭ
ଵସ = ௕ܰ න ψ௜ψ௝ܻ݀

௒೐శభ

௒೐

 

௜௝ܭ
ଶଵ = ܴܤ− න ψ௜

݀ψ௝

ܻ݀
ܻ݀

௒೐శభ

௒೐

 

௜௝ܭ
ଶଶ = − ൬1 +

ܴ
2

൰ න
݀ψ௜

ܻ݀

݀ψ௝

ܻ݀
ܻ݀

௒೐శభ

௒೐

− ܴܤ2 න ψ௜ψ௝ܻ݀

௒೐శభ

௒೐

 

௜௝ܭ
ଶଷ = ௜௝ܭ

ଶସ = 0, 
௜௝ܭ

ଷଵ = ௜௝ܭ
ଷଶ = 0 

௜௝ܭ
ଷଷ = − න

݀ψ௜

ܻ݀

݀ψ௝

ܻ݀
ܻ݀ − ܵθଵതതത න ψଵ

݀ψ௜

ܻ݀

݀ψ௝

ܻ݀
ܻ݀

௒೐శభ

௒೐

௒೐శభ

௒೐

 

−ܵθଶതതത න ψଶ
݀ψ௜

ܻ݀

݀ψ௝

ܻ݀
ܻ݀

௒೐శభ

௒೐

 

௜௝ܭ
ଷସ = 0 

௜௝ܭ
ସଵ = ௜௝ܭ

ସଶ = ௜௝ܭ
ସଷ  = 0 
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௜௝ܭ
ସସ = − න

݀ψ௜

ܻ݀

݀ψ௝

ܻ݀
ܻ݀

௒೐శభ

௒೐

 

ܾ௜
ଵ = − ቀψ௜

ௗ୙

ௗ௒
ቁ

௒೐

௒೐శభ
 , ܾ௜

ଶ = − ቀψ௜
ௗୌ

ௗ௒
ቁ

௒೐

௒೐శభ
 

ܾ௜
ଷ = − ൬ψ௜

݀θ

ܻ݀
൰

௒೐

௒೐శభ

− θଵതതതݏ ൬ψଵψ௜
݀θ
ܻ݀

൰
௒೐

௒೐శభ

− θଶതതതݏ ൬ψଶψ௜
݀θ
ܻ݀

൰
௒೐

௒೐శభ

 

ܾ௜
ସ = − ቀ߰௜

ௗΦ

ௗ௒
ቁ

௒೐

௒೐శభ
  

   … (29) 
Where 
 

ഥܷ = ∑ పܷഥ ψ௜
ଶ
௜ୀଵ  , θത = ∑ θపഥ ψ௜

ଶ
௜ୀଵ   … (30) 

 

Each element matrix is of the order 8 × 8. Since the 
whole domain is divided into a set of 81 line elements. 
Thus after assembly of all the elements equations we 
obtain a matrix of order 328 × 328. This system of 
equations as obtained is non-linear therefore an 
iterative scheme has been used to solve it. The system 
is linearized by incorporating the functions ഥܷ and θത, 
which are assumed to be known. After applying  
the given boundary conditions, only a system of  
320 equations remains for the solution which has been 
solved by the Gauss-Seidel method maintaining an 
accuracy of 0.0005. 
 

4 Results and Discussion 
Figures 2-14 illustrate a selection of the numerical 

results obtained for the variation of the six main flow 
parameters, ܽܦ, ,ݏܨ ,ݎܩ ܴ, ௕ܰ , ܵ. Default parameter 
values have been prescribed as Nb = 2, B = 1, m = 0.2, 
n = 0.1 for the finite element computations. These 
values are used throughout the computations, unless 
otherwise indicated. These figures are obtained to 
illustrate the influence of the Darcy number, porous 
medium inertia coefficient, Grashof number, vortex 
viscosity parameter, buoyancy ratio and variable 
thermal conductivity parameter on the flow, 
temperature and species distributions across the 
channel width.  

Figures 2 and 3 display results for the velocity ܷ  and 
angular velocity ܪ distribution versus ܻ for different 
values of Darcy number ܽܦ. Darcy number is directly 
proportional to the permeability of the porous medium, 
so as ܽܦ increases, the bulk matrix (Darcian) decreases 
and therefore an increase in translational velocity of the 
micropolar fluid as shown by Fig. 2. With increasing 
permeability the porous matrix structure becomes less 
and less prominent and in the limit of infinite ܽܦ 
values, the medium porosity vanishes. Obviously a 
high porosity porous medium exerts less resistance to 

flow. Hence the micropolar fluid is accelerated, i.e., 
translational momentum is boosted, with the rise in Da, 
explaining the ascent in U values. In Fig. 3, we observe 
that values of micro-rotation are negative in the first 
half whereas in the second half, these are positive, thus 
showing a reverse rotation near the two boundaries. 
Close examination of Fig. 3 reveals that micro-rotation, 
H, actually vanishes in the zone, 0.25 < H < 0.375, and 
this vanishing location drifts closer to the centre-line of 
the channel as Da values increase from 0.05 through 
0.1, 0.5, 1 and 2.  

Micro-elements therefore do not perform rotary 
motions as the curves cross the Y axis. An increase in 
the Darcy number leads to an increase in micro-
rotation. So the porosity of the medium can be used 
effectively to increase or decrease the angular rotation 
commonly arising in suspension flows in porous 
lubrication problems, e.g., porous journal bearings23. 
We note that for the limiting case of Da , the  
fibers of the porous matrix vanish and the regime 
becomes purely fluid i.e. infinite permeability 
(hydraulic conductivity).  

 
 

Fig. 2 — ܷ versus ܻ for various ܽܦ values. 
 

 
 

Fig. 3 — ܪ versus ܻ for various ܽܦ values. 
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Figures 4 and 5 show the effect of Forchheimer 
(inertial porous) parameter on the translational and 
angular velocity profiles. For the case of ݏܨ = 0  
the regime is Darcian. A rise in Da from 10 (weakly 
imposed quadratic drag) to 40, retards the flow 
development and decreases the velocity, U. In the 
Darcy-Forchheimer regime the flow becomes 
increasingly more chaotic in actual porous media and 
an inertial core region can develop, as highlighted by 
Dybbs and Edwards24. Figure 4 demonstrates that the 
microrotation decreases with the increase in inertial 
parameter Fs, though the variation is not very 
prominent.  

Figure 6 shows the distribution of velocity U versus 
Y for various thermal Grashof numbers Gr, i.e., free 
convection parameter. As Gr increases from 0 to 10, 
velocity decreases. Clearly from Fig. 6, it is interesting 
to note that in the case of forced convection, i.e.,  
ݎܩ = 0, the velocity profile is maximized. Buoyancy 
therefore suppresses flow and induces deceleration in 
the channel, even for weak values of Gr.  

The influence of vortex viscosity parameter R on 
velocity profiles and microrotation profiles is depicted 

in Figs 7 and 8. As R increases from 0 to 0.5, the 
magnitude of microrotation (H) tends to increase while 
the translational velocity decreases which is well 
verified by the results of Cheng19. The parameter, R,  
is proportional to vortex viscosity of the fluid  
micro-structure.  

Increasing R therefore results in flow retardation in 
the linear velocity boundary layer (Fig. 7) as confirmed 
by our results and those of many other researchers 
including Rees and Pop25, Rees and Bassom26 and Chiu 
and Chou27. All velocity profiles are parabolic with a 
maximum around the channel centre line (Y = 0)  
and for R = 0 (Newtonian case) the magnitudes are  
the highest.  

 Therefore micropolar fluids decelerate flow owing 
to the presence of micro-elements, compared  
with Newtonian fluids. In Fig. 8, we observe that for  
0 < Y < 0.4 approximately, the H values are negative; 
all profiles cross the Y axis at Y ~ 0.4 and profiles 
follow a parabolic profile peaking at Y ~ 0.75 before 
descending to zero at Y = 1 (right plate). Maximum  

 
 

Fig. 4 — ܷ versus ܻ for various ݏܨ values. 
 

 
 

Fig. 5 — ܪ versus ܻ for various ݏܨ values. 

 
 

Fig. 6 — ܷ versus ܻ for various ݎܩ values. 
 

 
 

Fig. 7 — ܷ versus ܻ for various ܴ values. 
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H values are witnessed for R = 0.5 (maximum vortex 
viscosity parameter) indicating that with increasing 
gyroviscosity (vortex viscosity) fluid microelements 
spin faster.  

Figures 9-11 provide distributions for the effect of 
thermal conductivity  parameter  on  velocity,  angular 
velocity and temperature profiles. ܵ = 0 corresponds 
to the case, when the thermal conductivity ߢ of the fluid 
is constant (i.e, thermal conductivity is independent of 
temperature). Figure 9 indicates that an increase in 
thermal conductivity parameter, S, decreases the 
translational velocity. All profiles are skewed 
parabolas with peaks occurring prior to the centre-line 
of the channel. Micro-rotation profiles (Fig. 10) are 
also shown to decrease as S rises from 0 to 0.4;  
H values are negative for a section of the channel 
width, viz 0< Y < 0.4, after which they become 
positive, indicating that micro-elements reverse in  
spin direction beyond this point. Maximum positive  
H values occur at Y ~ 0.75. Temperature function, , is 
similarly depressed by a rise in S values as shown in 
Fig. 11. For the constant thermal conductivity case, 
ܵ =  0, we note that the profile is linear descending 
from a maximum at the left plate.  

As S increases from 0 to 0.1, 0.2, 0.3, 0.4, the 
temperature profiles become increasingly steeper in the 
range 0 < Y< 0.25, indicating that a higher S values 
induces a sharp decrease in temperature in the vicinity 
adjacent to the left plate. Further from the left plate 
however the profiles decrease in gradient and descend 
more gradually towards the right plate converging  
to a value of 0.2 as specified in the right plate  
thermal boundary condition (13). We note that these 
computations correspond to a weak free convection 
regime as Gr is set as 0.5. 

 Figure 12 shows the effects of the buoyancy  
ratio ௕ܰ and vortex viscosity parameter R on  
the dimensionless volumerate ܳ. An increase in the 
buoyancy ratio, ௕ܰ, from 0 to 4 enhances the velocity 
of the fluid, thus increasing the volume flow rate ܳ of 
the fluid through the channel. However, an increase in 
the vortex viscosity parameter leads to a decrease in the 

 
 

Fig. 8 — H versus ܻ for various ܴ values. 

 

 
 

Fig. 9 — ܷ versus ܻ for various ܵ values. 
 

 
 

Fig. 10 — ܪ versus ܻ for various ܵ values. 
 

 
 

Fig. 11 — ߠ versus ܻ for various ܵ values. 



 RAWAT & KAPOOR: STUDY OF BUOYANCY DRIVEN FREE CONVECTIVE FLOW  761 
 
 

volume flow rate through the channel, which is 
consistent with the decrease in linear velocity observed 
with a rise in R in Fig. 8. Q as shown in Eq. (18) is 
obtained by integrating linear velocity across the 
channel width [ܳ=׬ ܷܻ݀]

ଵ
଴

 indicating a direct 
proportionality between the volumetric flow rate  
and linear velocity field (hence the linear nature of the 
Q profiles).  

Figure 13 plots the variation of the dimensionless 
total heat rate added to the fluid E  with the buoyancy 
ratio ௕ܰ for various vortex viscosity parameters  
(R = 0,0.1, 0.3, 0.5). It is observed that an increase in 
buoyancy ratio leads to an increase in the fluid flow 
and so the heat transfer between the two vertical plates 
also increases which ultimately increases the total heat 
rate added to the fluid in the channel. 

Equation (19) viz, [׬=ܧ [ܻ݀ߠܷ
ଵ

଴
, indicates the linear 

relationship between E and U and θ, explaining again 
the linear profiles in Fig. 13. We also note that as the 
vortex viscosity parameter increases, the total heat rate 
added to the fluid decreases, indicating that micropolar 
fluids can serve as coolants in engineering processes, a 
fact established by many other investigations e.g. Gorla 
et al,20. Micro-structure clearly reduces heat transfer 
rates in the channel.  

 Finally the dimensionless total species rate added to 
the fluid volume, ߮ is plotted as a function of the 
buoyancy ratio ௕ܰ for different values of vortex 
viscosity parameters R, in Fig. 14. From equation 
(20),߮ = ׬ ܷΦܻ݀

ଵ
଴

, i.e., a direct linear relationship 
exists between ߮ and Φ. It is apparent that an increase 
in the buoyancy ratio increases the fluid flow which 
leads to an increase in the total species rate added to 
the fluid between the two vertical walls. Total species 
rate added to the fluid in the vertical channel also 
clearly decreases with an increase in vortex viscosity 

parameter, which as described earlier decreases the 
linear velocity field and therefore also . 

We have also presented computations of the skin 
friction and wall heat transfer rates at the left plate, 
ܷ′(0) and−θ′(0) in Table 1.  

We observe that increasing the thermal conductivity 
parameter, S, greatly increases the rate of heat transfer 
at the left wall. However the skin friction at the left wall 
is reduced with a rise in thermal conductivity 
parameter, i.e., the micropolar fluid is decelerated at 
the left plate with a rise in S from 0 to 0.4. It can be 
inferred therefore that the thermal conductivity 
parameter, S, is an effective means of controlling the 
rate of heat transfer as well as skin friction. 

Further in order to verify the accuracy of the present 
computation, the same system of equations is solved 
using the finite difference method (methodology has 
been omitted for brevity, details are however available 
in Bhargava et al.28) and our results are shown in  
Table 2. Excellent correlation is observed between 
both methods for the chosen case of ܽܦ = 1 for the 

 
 

Fig. 13 — ܧ versus Nb for various ܴ values. 
 

 
 

Fig. 14 —  versus Nb for various ܴ values. 

 
 

Fig. 12 —Q versus Nb for various ܴ values. 



762 INDIAN J PURE & APPL PHYS, VOL. 55, OCTOBER 2017 
 
 

dimensionless velocity (U) profile and also for 
dimensionless micro-rotational (H) profile. Moreover 
our velocity and angular velocity profiles exactly 
match with those of Cheng19 when ܽܦ, ݏܨ = 0, ܵ = 0, 
i.e., for the constant thermal conductivity, non-porous 
version of our model equations, although we have not 
included numerical values for brevity. Therefore the 
present finite element solutions are highly accurate. 
 
5 Conclusions 

 A mathematical model has been presented for free 
convective heat and mass transfer of a micropolar fluid 
flow between vertical parallel plates containing an 
isotropic, homogenous, non-Darcian porous medium 
The thermal conductivity of the micropolar fluid  
is temperature-dependent. The model has been 
transformed and rendered into dimensionless form and 
the resulting equations solved using the finite element 
method. Our numerical simulations have shown that: 
 

(i) The translational velocity (U) increases with the 
increase in Darcy Number, Da, as well as wall 
temperature ratio (m). However it decreases with an 
increase in Forchheimer number Fs, Grashof 
number, Gr, and thermal conductivity parameter, S. 

(ii) The angular velocity (micro-rotation, H) increases 
with a rise in Darcy Number, Da, and wall 

temperature ratio, m,. However it decreases with 
an increase in Forchheimer number, Fs, 
Grashofnumber,Gr, and thermal conductivity 
parameter (S). 

(iii)  The magnitude of microrotation, H, increases  
with the increase in vortex viscosity parameter, R, 
which substantially decelerates the flow in the 
channel.  

(iv)  The thermal conductivity parameter, S, and wall 
temperature ratio, m, can be used effectively for 
controlling the rise in temperature. 

(v) The skin friction at the left plate, U/(0) continuously 
decreases with the increase in thermal conductivity 
parameter, S, which shows that by increasing the 
thermal conductivity parameter, friction at the plate 
surface can be sufficiently reduced. 

(vi)  Heat transfer rate, −θ′(0) (Nusselt number), 
increases with an increase in thermal conductivity 
parameter, S. This parameter thereby can be 
employed to effectively control the rise in the 
temperature in practical industrial systems. 

(vii) Our results also indicate that the micropolar fluids 
(R > 0) possess a lower volumetric flow rate, total 
heat rate added to the fluid, and the total species 
rate added to the fluid in comparison with 
Newtonian fluids (R = 0). 

 

Nomenclature 
ܾ width of the channel 

௙ܾ  inertial constant 
 concentration ܥ
 Darcy number ܽܦ
 dimensionless total heat rate added to the fluid ܧ
 Forchheimer number ݏܨ
݃ angular velocity 
݃ܽ gravitational acceleration  
 Grashof number ݎܩ
 dimensionless angular velocity ܪ
݆ microinertia density 

௙݇  thermal conductivity 
݉ wall temperature ratio 
݊ wall concentration ratio 

௕ܰ buoyancy ratio 
 Nussult number ݑܰ
ܳ dimensionless volume flow rate 
ܴ vortex viscosity parameter 
ܵ thermal conductivity parameter 
ܶ temperature 
 velocity of the fluid ݑ
ܷ dimensionless velocity of the fluid 
 transverse coordinate ݕ
ܻ dimensionlesstransverse coordinate 
μ dynamic viscosity 
݇ vortex viscosity 

Table 1 — Values of U′ (0) and ′ (0) for different values of  
S Da=0.5, Fs=5, Gr=0.5, B=1, R=1, Nb=2.0,S=0.1, m=0.2, n=0.1 

S U′ (0) ′ (0) (Nusselt number) 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

0.457353 
0.428868 
0.410347 
0.398009 
0.389244 
0.382794 
0.377834 
0.37389 
0.370811 

0.80000 
2.18749 
3.74051 
5.27176 
6.73164 
8.11312 
9.41202 
10.6326 
11.7833 

 

Table 2 — Comparison table of finite difference and finite element 
computations Fs=5, Gr=0.5, B=1, R=1, Nb=2.0, S=0.1, m=0.2, n=0

 U (Da = 1.0) H (Da = 1.0) 
Y FEM FDM FEM FDM 
0 

0.0987654 
0.209877 
0.320988 
0.432099 
0.54321 

0.654321 
0.765432 
0.876543 

1 

0 
0.0372309 
0.064854 

0.0798764 
0.0843658 
0.0800585 
0.0684665 
0.0509448 
0.0287392 

0 

0 
0.037241 
0.06490 

0.0798771 
0.084366 

0.0800589 
0.0684671 
0.0509462 
0.028745 

0 

0 
-0.00235333 
-0.00262894 
-0.00138019 
0.000558018 
0.00250234 
0.00388953 
0.00425315 
0.0032061 

0 

0 
-0.00235346 
-0.0026298 
-0.0013825 
0.0005581 

0.00250241 
0.0038897 

0.00425336 
0.003212 

0 
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ρ density 
  spin gradient viscosity 

݇௣ permeability 
 dimensionless temperature ߠ
Φ dimensionless concentration 
߮ dimensionless total species rate added to the fluid 
 

Subscripts 
0 condition at the inlet 
1 condition on the inner surface of the left plate 
2 condition on the inner surface of the right plate 
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