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In the present theoretical study, we have calculated superconducting state parameters (SSPs) viz; electron-phonon 
coupling strength (), Coulomb pseudopotential (μ∗), critical temperature (𝑇େ), effective interaction strength (𝑁଴𝑉) and 
isotopic effect parameter (α) of some polyvalent metals (Pb, Ga, In, Sn and Tl) using well-established structured local 
pseudopotential due to Fiolhais et al. (1995). The pseudopotential with its individual set of parameters has been found to be 
good in predicting transition temperature 𝑇େ for all the metals. Looking to such success, we have extended the present model 
for the theoretical study of pressure dependence of transition temperature 𝑇େ using Debye- Gruneisen model. Our predicted 
critical volumes using different approaches are well agreed with each other and also with other reported findings. Thus, the 
present model is consistent and better than nonlocal norm conserving pseudopotentials because it is found to be transferable 
without any kind of adjustment of its parameters along with its simplicity and predictivity. 
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1 Introduction 
Superconductivity is the most complex state of 

metals. The main aim of study of superconductivity is 
to understand physics of some metals which behave 
like superconductor at particular temperature, 
theoretically or experimentally. It has been observed 
that valence electrons play a decisive role in the study 
of transition temperature (𝑇େ)1-3. Theory of 
superconductivity should explain second order phase 
transition at critical temperature-𝑇େ. Superconducting 
transition temperature can be understood with the 
knowledge of electron energy bands near Fermi-
energy, phonon dispersion curves, screened 
pseudopotential and interaction between electrons. 

Multiple phenomenological models have been used 
to study SSPs (λ, μ∗, 𝑇େ, 𝑁଴𝑉 and α) and their 
pressure dependence theoretically for metals4-15, 
metallic glasses16-19 and alloys5,13,20-24. Pseudopotential 
method, due to its simplicity and predictivity has been 
used successfully for the comprehensive study of 
many physical properties in condensed matter physics 
with good degree of success25-27. The pseudopotential 
has played vital role in the understanding of 
superconducting behavior of metals6-10. Recently, 

many researchers have used local form of 
pseudopotential for the theoretical study of SSPs and 
hence 𝑇େ who have adjusted pseudopotential 
parameters by different philosophy9,10,18. Such studies 
are limited to normal volume only. Nonlocal 
pseudopotentials are more reliable but the study of 
SSPs using such pseudopotentials is restricted to 
observed volume (0 K) only28,29. During literature 
survey, we observed that a few attempts have been 
made to study pressure dependence of SSPs using 
pseudopotential. In our opinion, pseudopotential must 
be determined uniquely in the sense that it can be 
used at extreme environment (high temperature and 
high pressure) and also for the comprehensive study 
of physical properties of metals and alloys. In recent 
past, such attempts were made by Fiolhais and 
coworkers30,31 who have proposed their local form of 
the pseudopotential with two sets of parameters called 
universal and individual. Universal parameters are 
determined at zero pressure and assuming 𝑁୧୬୲ to be 
its uniform electron gas value. Individual parameters 
are derived in same way by fitting actual value of 𝑁୧୬୲ 
for each metal. Here 𝑁୧୬୲ is the equilibrium number of 
valence electron in the interstitial region which 
represents the valency 𝑍 and density on the surface of 
the Weigner-Seitz cell. They have used both sets of 
parameters for the study of static, electronic and 
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lattice mechanical properties with good degree of 
success. Further, this pseudopotential has been 
extensively used for the theoretical study of the liquid 
state properties of alkali and alkaline earth metals32-34. 
Looking to such success, recently, Bhatt et al.35-37 
have extended this pseudopotential with mean field 
potential approach to study thermodynamic properties 
of some simple and polyvalent metals at extreme 
environment. 

Such study encouraged us to use present 
pseudopotential for the study of SSPs and their 
pressure dependence. We have carried out study of 
SSPs using both the sets of parameters. We found that 
individual set of parameters are better as pointed out 
by other researchers30-37. 
 

2 Theory 
We have used following equations for our 

computational work. Electron-phonon coupling 
strength, λ is given by6: 
 

𝜆 =
ଵଶ௠∗௓

ଵ଺ெ〈ఠమ〉
∫ 𝑥ଷ|𝑉(𝑥)|ଶ𝑑𝑥

ଶ

଴
  … (1) 

 

Here 𝑚∗ is specific heat mass, 𝑍 is valancey, 𝑀 is 
ionic mass, 〈ωଶ〉 is average of square of phonon 
frequency. 𝑉(𝑥) is screened ion pseudopotential 

which is obtained as 
௏೔೚೙(௫)

ఌ(௫)
. Here 𝜀(𝑞) is dielectric 

function where electron wave vector 𝑞 on Fermi-
sphere in terms of Fermi-wave vector 𝑘ி is given by: 
𝑞 = 𝑥𝑘ி. The bare ion pseudopotential as suggested 
by Fiolhais et al.30 has following form in q-space: 
 

𝑉௜௢௡(𝑞) = ቆ
8𝜋𝑍𝑅ଶ

Ω
ቇ ൤

−1

(𝑞𝑅)ଶ
+

1

[(𝑞𝑅)ଶ + 𝛼ଶ]

+
2𝛼𝛽

[(𝑞𝑅)ଶ + 𝛼ଶ]ଶ
+

2𝐴

[(𝑞𝑅)ଶ + 1]ଶ
൨ 

 

Where α and 𝑅 are pseudopotential parameters. The 
parameters 𝐴 and β are written in terms of α as: 
 

𝛽 =
൫ఈయିଶఈ൯

ସ(ఈమିଵ)
 and 𝐴 = ቀ

ఈమ

ଶ
− 𝛼𝛽ቁ 

 

There are two different approaches to compute 
〈𝜔ଶ〉. Firstly, 〈𝜔ଶ〉 can be computed by experimental 
Debye temperature-𝜃஽ at 0K and secondly 〈𝜔ଶ〉 is 
computed by following equation20: 
 

〈𝜔ଶ〉 = ൬
𝜔௅ + 𝜔்

2
൰

ଶ

 
 

Here, 𝜔௅ and 𝜔் are longitudinal and transverse 
phonon frequencies, respectively. The second input 

parameter appearing in Eq. (1) is 𝑚∗, the specific heat 
mass. According to Allen and Cohen4, real metals are 
more complicated because de Hass-van Alphen masses 
are cyclotron masses which vary from orbit to orbit. 
Following Allen and Cohen4, we have used specific 
heat mass to compute 𝜆 which is defined as the ratio of 
the linear coefficient of the specific heat to the value 
would have in a free electron gas of equal density. 

Band mass of electron, 𝑚௕ has been computed 
using following equation4: 
 

𝑚∗ = 𝑚௕(1 + 𝜆) 
 

As pointed out by Allen and Cohen4 and also 
verified by us that band mass of electron (𝑚௕) is not 
uniquely determined and it is quite sensitive to the 
choice of the pseudopotential because local and 
nonlocal pseudopotentials give different values. We 
have computed 𝑚௕ using above equation, where 𝑚௕ 
is defined as the ratio of the calculated density of 
states at Fermi-surface to the density of states of the 
free electron gas.  

Coulomb pseudopotential 𝜇∗ is calculated by 
following equation6: 
 

𝜇∗ =
ఓ

ଵାఓ௟௡൬
ಶಷ

ೖಳഇವ
൰
 … (2) 

 

Here 𝐸ி is Fermi-energy, 𝜃஽ is Debye temperature, 
𝑘஻  is Boltzmann constant and 
 

𝜇 =
௠್

గ௞ಷ
∫

ௗ௫

௫ఌ(௫)

ଶ

଴
 … (3) 

 

In the present study, the equation ℏ𝜔 = 𝑘஻𝜃஽ is 
used to calculate Debye temperature 𝜃஽. 

Critical temperature, 𝑇஼ in terms of 𝜆, 𝜇∗ and 𝜃஽ is 
defined as6: 
 

𝑇஼ =
ఏವ

ଵ.ସ
𝑒𝑥𝑝 ቂ− ቄ

ଵ.଴ସ(ଵାఒ)

ఒିఓ∗(ଵା଴.଺ଶఒ)
ቅቃ … (4) 

 

Following equation is used to calculate effective 
interaction strength10, 𝑁଴𝑉: 
 

𝑁଴𝑉 =
ఒିఓ∗

ଵା
భబ

భభ
ఒ
 … (5) 

 

Isotopic effect parameter, 𝛼 is written as10: 
 

𝛼 =
ଵ

ଶ
൤1 − ቀ𝜇∗𝑙𝑛

ఏವ

ଵ.ସହ ಴
ቁ

ଶ ଵା଴.଺ଶ

ଵ.଴ସ(ଵାఒ)
൨ … (6) 

 

Band structure density of states, 𝑁௕௦(0) is 
computed by using following equation5: 
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𝑁௕௦(0) =
ଷఊ೐

ଶగమ௞ಳ
మ(ଵାఒ)

 … (7) 
 

Here 𝛾௘ is electronic heat capacity coefficient.

 

Electronic density of states at the Fermi-surface, 
𝑁௙௘(0) is obtained by following equation5: 
 

𝑁௙௘(0) =
ଷ

ସ
ቀ

௓

ாಷ
ቁ … (8) 

 

Further, we have studied volume variation of SSPs 
(𝜆, 𝜇∗ and 𝑇େ). The Eqs (1) to (6) contain volume 
dependent quantities (ω, θ஽, 𝐸ி, 𝑘ி and screened ion 
pseudopotential 𝑉(𝑞)). Thus, in order to study 
pressure dependence (and hence volume dependence) 
of SSPs, we have calculated explicit volume 
dependence by calculating volume dependence of 
physical quantities 𝜔, 𝜃஽, 𝐸ி, 𝑘ி and 𝑉(𝑞). First, 
using Gruneisen theory by considering Gruneisen 
parameter 𝛾 as independent of volume12,14,16,38,39, the 
volume variations of phonon frequency and hence 
Debye temperature are computed using relations 

𝜔 = 𝜔଴ ቀ
Ω

Ωబ
ቁ

ିఊ
 and 𝜃஽ = 𝜃஽଴ ቀ

Ω

Ωబ
ቁ

ିఊ
 respectively. 

We have computed 𝛾 using equation described in Ref. 
16. Here subscript 0 denotes corresponding variables 
at ambient condition. 

Now volume variation of 𝜆 i.e., 
ௗఒ

ௗΩ
=

ௗఒ

ௗ௞ಷ
.

ௗ௞ಷ

ௗΩ
 can 

be found by calculating volume variation of Fermi-
momentum 𝑘ி with respect to volume by using 
following method. If 𝑘ி଴ is the Fermi-momentum at 
normal volume Ω଴, then the Fermi-momentum 𝑘ி at 
given volume Ω is given by: 
 

𝑘ி =
௞ಷబ

ଷ
ቀ4 −

Ω

Ωబ
ቁ … (9) 

 
In order to calculate volume variation of integrand 

in Eq. (1), we have calculated volume variation of 
screened pseudopotential as a product of variation of 
screened pseudopotential with 𝑘ி and volume 
variation of 𝑘ி with respect to volume Ω. Finally, by 
integrating product of such variations, we get relation 
between 𝜆 (at compressed volume Ω) and 𝜆଴ (at 
normal volume Ω଴). We have also incorporated the 
effect of volume dependence of Coulomb 
pseudopotential 𝜇∗ by considering volume variation 
of Fermi-momentum and Debye temperature with 
volume. Finally, we obtain Coulomb pseudopotential 
𝜇∗ at compressed volume (Ω) in terms of Coulomb 
pseudopotential 𝜇଴

∗  at normal volume (Ω଴). Using all 
such volume dependent quantities (λ, μ∗ and 𝜃஽), 

pressure and hence volume dependence of 𝑇஼ can be 
found using following relation: 
 

𝑇஼ = 𝑇஼଴ ቀ
Ω

Ωబ
ቁ

ିఊ
൥

௘௫௣ቂି
భ.బర(భశഊ)

ഊషഋ∗(భశబ.లమഊ)
ቃ

௘௫௣൤ି
భ.బర(భశഊబ)

ഊబషഋబ
∗ (భశబ.లమഊబ)

൨
൩ … (10) 

 

3 Results and Discussion 
Fiolhais et al.30,31 have computed pseudopotential 

form factors using both the sets of parameters. It is 
quite interesting to note here that for each metal, the 
first zero of pseudopotential form factors for both the 
sets of parameters are different. The calculation of 𝜆, 
𝜇∗ and 𝑇஼ are quite sensitive to the behavior of 
pseudopotential form factors near first zero and up to 
2𝑘ி. In the present study, we have carried out 
calculation of SSPs using both the sets of 
pseudopotential parameters and found that individual 
set of parameters are better than universal set of 
parameters because the first zero of pseudopotential 
form factors for individual set of parameters are close 
to their conventional values30. Most of the researchers 
have used experimental Debye temperature-𝜃஽ at 0 K 
for the calculation of 〈𝜔ଶ〉 in Eq. (1). In our opinion, 
the calculated value of 𝜆 using experimental Debye 
temperature-𝜃஽ does not explain capability of the 
pseudopotential used. In such circumstances one has 
to compute theoretical value of Debye temperature-𝜃஽ 
at 0 K using methods suggested by Raju et al.40. As 
we have pointed out 〈𝜔ଶ〉 can be found theoretically 
by calculating longitudinal phonon frequency (𝜔௅) 
and transverse phonon frequency (𝜔்) at zone 
boundary using same pseudopotential. In the present 
calculation, we have used theoretically computed 
〈𝜔ଶ〉 for all metals41. In the present communication, 
we have presented results of SSPs and critical volume 
obtained by using individual set of parameters. 

The computed results of SSPs of Pb, Sn, Ga In and 
Tl which are in good agreement with available 
experimental findings and other theoretical results are 
tabulated in Table 1. Our computed results of 𝑇஼ for 
Pb, Ga, In, Sn and Tl are well agreed with experimental 
results. In order to achieve better agreement with the 
experimental results, some researchers have used 
𝜇∗ = 0.1 in Eqs (4), (5) and (6) instead of its actual 
computed value12,13,24. Such approach is really 
questionable. Our computed values of 𝑁௕௦(0) 
alongwith ratio of 𝑁௕௦(0) and 𝑁௙௘(0) are shown in 
Table 2 which are in excellent agreement with results 
of McMillan5, which further support reliability of our 
computed results as 𝑁௕௦(0) depends on 𝜆. 



KUMAR et al.: PRESSURE DEPENDENCE OF SUPERCONDUCTING STATE PARAMETERS 
 
 

547

Further, we have extended the present 
pseudopotential to study pressure dependence of SSPs 
and to predict critical volume at which superconductivity 
quenches for Pb, Ga, In, Sn and Tl. The volume 
variations of 𝜆 and 𝜇∗ for Ga, In, and Tl are shown in 
Fig. 1 and that of for Pb and Sn are shown in Fig. 2.  
 

The electron-phonon coupling strength (𝜆) favours 
electron pairing while the Coulomb pseudopotential 
(𝜇∗) describes the effects of the electron repulsion 
which is a measure of depairing correlations. It is 
found that the variation of 𝜇∗ with pressure is very 
small but 𝜆 changes significantly with pressure14,22. It is 

also found that the Coulomb pseudopotential changes 
weakly with pressure22,42 because the mode Gruneisen 
parameter  is volume independent12,14,16,38,39. Jin  
et al.43 studied Coulomb pseudopotential (𝜇∗) of Si at a 
pressure of 14 GPa using a full-dielectric-matrix 
approach within the local-density functional 
approximation including all of the screening effects 
such as the crystal potential, local-field and exchange - 

Table 1 — The computed values of SSPs of Pb, Sn, Ga, In and Tl along with experimental and other theoretical results. Superscripts a, b, 
c, d, e, f, g, h, i and j represent different pseudopotentials used by Allen and Cohen4 in their study. 

Metal SSPs Present Experimental Others 

Pb 

𝜆  1.239  - 1.344a, 1.324b, 1.125, 1.307, 1.078 
μ* 0.097  - 0.124, 0.147, 0.128 
Tc (K) 7.697 7.1951 7.64a, 7.54b, 6.767, 5.618 
N0V 0.537 0.4118 0.4607, 0.4828 
𝛼  0.483 0.48±0.108 0.467, 0.4738 

Sn 

𝜆  0.600  -  0.784a, 0.994c, 0.605, 0.407, 1.078 
μ* 0.105 - 0.124, 0.137, 0.128 
Tc (K) 2.620 3.721 6.24a, 10.24c, 0.307, 11.3828 
N0V 0.320 0.2638 0.1607, 0.4828 
𝛼 0.440 0.47±0.208 0.457, 0.4298 

Ga 

𝜆  0.357  - 0.254a, 0.294d, 0.224e, 0.234f, 0.234g,0.405, 0.246, 0.428 
μ* 0.073 - 0.114, 0.09986, 0.158 
Tc (K) 0.626 1.0871 0.0064a, 0.054d, 0.00034e, 0.00094f, 0.00054g, 0.906, 0.3908 
N0V 0.214 - 0.3648 
𝛼  0.436 - 0.2288 

In 

𝜆  0.567  - 0.894a, 1.164h, 0.884i, 0.844j, 0.695, 0.906, 0.728 
μ* 0.104 - 0.124, 0.076, 0.128 
Tc (K) 2.047 3.391 4.64a, 7.24h, 4.44i, 4.04j, 5.006, 2.8848 
N0V 0.306 - 0.1978 
𝛼  0.436 - 0.4448 

Tl 

𝜆  0.733  - 1.074a, 0.715, 0.788 

μ* 0.092 - 0.114, 0.158 

Tc (K) 2.870 2.381 4.84a, 2.548 

N0V 0.385 - 0.3798 

𝛼  0.470 0.50±0.108 0.4308 
 

Table 2 — Band structure density of states Nbs(0) and ratio of 
band structure density of states Nbs(0) to electronic density of 

states Nfe(0) at the Fermi-surface. The quantity Nbs(0) is in 
states/eV atom. 

Metal Nbs(0) (states/eV atom) Nbs(0)/Nfe(0) 

 Present Other5  Present Other5 
Pb 0.282 0.276 0.903 0.87 
Sn 0.236 0.238 0.612 0.82 
Ga 0.093 0.091 0.434 0.46 
In 0.229 0.212 0.879 0.89 
Tl 0.180 0.182 0.651 0.66 
 

 
 

Fig. 1 — Volume variation of λ and μ* for Ga, In and Tl. 
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correlation effects. If only the crystal potential effect is 
considered, 𝜇∗ is found to be very close to that of a free 
electron gas. Authors concluded that the exchange- 
correlation effect on the electron dielectric response 
function decreases the dielectric screening, especially 
for large wave vectors, giving rise to an increase of 𝜇∗, 
while the local-field effect which results from 
directional bonds slightly reduces 𝜇∗. In the present 
study, 𝜇∗ is not found to be constant as a function of 
compressed volume but a very small change in 𝜇∗ is 
observed. Such small change in 𝜇∗ as a function of 
compressed volume is due to poor volume dependence 
of dielectric function- 𝜀(𝑞) 44. 
 

The intersection of 𝜆 and 𝜇∗ curves in Figs 1 and 2 
give volume at which 𝜆 = 𝜇∗, so that interaction 
strength becomes zero and Coulomb repulsion equals 
the attractive electron phonon interaction. The 
corresponding pressure at which superconductivity 
quenches is called critical pressure. In the present 
study, values of −∆Ω Ω଴⁄  at critical pressure are 
shown in Table 3. Here Ω଴ is normal atomic volume 
and ∆Ω is change in atomic volume. 
 

We have computed volume dependence of 𝑇஼ using 
McMillan formalism. We have predicted critical 
volume up to experimentally measurable lowest value 

of 𝑇஼ which is of the order of 10-3 K14. Such computed 
critical volumes for all metals are tabulated in Table 3. 
The volume variations of 𝑇஼ for these metals up to 
lowest measurable temperature are shown in Figs 3 
and 4. Using our theoretical calculation (curve),  
one can predict the values of critical volume at which 
𝑇஼ becomes zero as shown in Table 3. 

The results of critical volume computed in the 
present study are well agreed with each other and are 

Table 3 — The comparison of predicted values of -∆Ω/Ω0 with other reported results (shown in parenthesis). Superscripts a, b, c, d and e 
represent results obtained by Seiden14 using different values of Gruneisen parameter 

Metal -∆Ω/Ω0 (At λ=μ*) -∆Ω/Ω0 (Tc of the order of 10-3 K) -∆Ω/Ω0 (Tc=0 K) 

Pb 0.72 0.48 (0.42514a, 0.38714b) 0.72 (0.58714a, 0.54314b, 0.4045 ) 
Sn 0.46 0.24 (0.29714c, 0.26914d, 0.3015) 0.44 (0.54014c, 0.48414d,, 0.14845 ) 
Ga 0.42 0.16 0.42 
In 0.42 0.20 (0.42914e) 0.40 (0.75814e, 0.21845 ) 
Tl 0.50 0.28 0.50 

 

 
 

Fig. 2 — Volume variation of λ and μ* for Pb and Sn. 
 

 

Fig. 3 — Volume dependence of Tc for Ga, In and Tl. 
 

 
 

Fig. 4 — Volume dependence of Tc for Pb and Sn. 
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also comparable with other reported results14,15,45. 
Seiden14 has used point ion pseudopotential for core 
repulsion and experimental Debye temperature with 
jellium phonon spectrum. The author has used 
different values of Gruneisen constant (𝛾) to study 
volume dependence of Tc. The present model is better 
in the sense that it is free from any kind of adjustment 
of any parameter. Our results of 𝑇஼ are nonlinear for 
the higher compressions. Such trend is also observed 
by Seiden14. 

Present study confirms that the local form of the 
pseudopotential proposed by Fiolhais et al.30,31 which 
is continuous in 𝑟-space as well as analytic in 𝑟 & 
𝑞-space is found to be successful for the description 
of pressure dependence of SSPs and prediction of 
critical volume. They derived structured local 
electron-ion pseudopotential and found that computed 
results of static properties (binding energies, bulk 
moduli and pressure derivatives of bulk moduli) are in 
good agreement with experimental results. They have 
also noted that computed results of bulk moduli are 
better than those obtained by first principle nonlocal 
norm-conserving pseudopotentials. They have also 
pointed out in their research paper that the local form 
of the pseudopotential proposed by them alongwith 
method used to determine pseudopotential parameters 
can be used as a proxy to the nonlocal norm-
conserving pseudopotentials. This fact has been 
verified by many researchers by carrying out study of 
thermophysical properties at extreme environment35-37 
and for the liquid state properties32. The nonlocal 
form of the pseudopotential is better for the 
description of physical properties of a system but at 
the same time it is computationally lengthy, 
conceptually difficult and physically less transparent 
in comparison with local one. Very recently, 
Szczesniak and Durajski46 pointed out that 
computation of 𝜇∗ and hence other SSPs are very 
difficult using ab-initio methods. The reason for 
difficulties arose in the use of density functional 
theory (DFT) can be understood as follows. In such 
approach the interacting system of fermions is 
described by knowing its density instead of its many 
body interaction using nonlocal norm conserving 
pseudopotentials. 
 

4 Conclusions 
The transition temperature 𝑇஼ and critical volume 

for Pb, Ga, In, Sn and Tl are in good agreement with 
experimental and other theoretical results. The present 
study confirms that the pseudopotential proposed by 

Fiolhais et al.30-31 with its individual set of parameters 
is found to be good working for the study of pressure 
dependence of SSPs without any readjustment of 
pseudopotential parameters. The reasons for the 
variation of our computed value of 𝑇஼ with 
experimental value may be the use of theoretical 
value of 〈𝜔ଶ〉 in the calculation of SSPs. The result of 
pressure dependence of 𝑇஼ can be improved by 
accounting pressure dependence of Gruneisen 
parameter. But experimental studies show that 
Gruneisen parameter has poor volume dependence38. 
We have not considered pressure dependence of c/a 
for hcp metal (Tl). One can improve results by 
considering pressure dependence of c/a. In the present 
study, we have found that local pseudopotential 
method is simple, transparent and mathematically 
tractable alongwith its predictivity. Looking to such 
success, we would like to extend present 
pseudopotential for the study of pressure dependence 
of SSPs of alloys and metallic glasses. 
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