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Phonon spectrum and thermal properties of mixed semiconducting compound ZnS1−xSex have been calculated by using 

a proposed three-body shell model (TBSM). This model incorporates the effect of three-body and short-range repulsive 

forces including second nearest neighbours, in addition to long-range Coulombic interactions in the frame work of rigid-

shell model with both the ions polarizable. Using the above proposed model, the phonon dispersion relations, phonon 

density of states and Debye characteristic temperature have been calculated and plotted for the compound ZnS1−xSex. The 

comparison of the theoretical results with the available experimental has been made along high symmetry directions. An 

overall good agreement between theoretical and experimental results has been found. 
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1 Introduction 

 An accurate determination of phonon dispersion 

curves is important to study the physical properties of 

solids such as infrared, Raman and neutron diffraction 

spectra, specific heat, thermal expansion electron-

phonon interaction and lattice thermal conduction. As 

a matter of fact, their understanding in terms of 

phonons is considered to be one of the most 

convincing pieces of evidence that our current 

quantum picture of solids is correct
1
. On the 

experimental side, Raman spectroscopy has been used 

to obtain the zone-center phonon frequencies of these 

materials. Investigations of their lattice vibrations 

were started early and are of interest because this 

material is the prototype of the important zinc-blende 

family of semiconductors.  

 The vibrational and thermodynamic properties of 

II-VI mixed semiconductor systems are widely 

studied in the recent years. ZnS1−xSex is one of them. 

ZnS1−xSex is promising solid solution for 

optoelectronic devices including waveguides and blue 

light emitting diodes. Zinc sulphide and zinc selenide 

both are wide gap II-VI compound semiconductors. 

These two compounds form a series of solid solution 

throughout the wide range of composition, with band-

gap ranging from 2.78 eV in ZnSe to 3.79 eV in ZnS 

at 300K which is capable to emit visible 

luminescence. Vibrational and thermodynamical 

properties of mixed semiconductor ZnS1−xSex have 

been studied theoretically and experimentally by 

many researchers
2,3

. Despite of the interest in 

ZnS1−xSex, several properties (like vibrational and 

thermodynamic ones) are at present poorly known.  

 Recently, Postnikov et al
4
. have calculated the 

vibrational properties of Zn1−xBexSe using ab initio 

technique in the sequence of density functional theory 

calculations. Postnikov et al
4
. have been using 

computer code
5
 SIESTA which incorporates norm-

conserving pseudopotentials in the combination with 

atom-centered strictly confined numerical basis 

functions
6,7

. They have constructed pseudopotentials 

along the Troullier-Martins
8
 scheme. Oussaufi et al

9
. 

have calculated the elastic properties and the zone-

centre phonon frequencies for zinc-blende structure 

compound ScxGa1−xN using an empirical 

pseudopotential method (EPM) under the virtual 

crystal approximation (VCA), combined with 

Harrison bond-orbital model. In which the EPM 

involves the fitting of the atomic form factors to 

experiment so as to reproduce as accurate as possible 

the observed gaps at selected points in the Brillouin 

zone. They have calculated the compositional 

variation of elastic constants, bulk modulus, shear 

modulus and optical phonon frequencies for 

ScxGa1−xN. Very recently, Kushwaha et al
10

. have 

calculated only the phonon dispersion relations for 

ZnS1−xSex using three-body shell model. 
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 In the present paper, the phonon dispersion relations, 

phonon density of states and Debye characteristics 

temperature for II-VI mixed semiconductor ZnS1−xSex 

using a three-body shell model proposed by Kushwaha 

et al
10

. have been studied. 

 

2 Potential Model 

 The three-body shell model (TBSM) incorporates 

the effect of three-body and the short-range repulsive 

forces up to and including the second nearest 

neighbours, in addition to the long-range Coulombic 

interactions in the frame-work of rigid-shell model 

(RSM) due to Woods et al
11

. with both the ions 

polarizable. The general formulation of TBSM remains 

in the harmonic approximation can be derived from the 

work at Cochran and his collaborators
12

 who have 

developed the frame work of RSM. 

 The lattice dynamical calculations are carried out 

by using a three-body shell model described in the 

literature
10

. According to Kushwaha
10

, the harmonic 

potential energy per unit cell for zinc-blende structure 

compounds can be written as: 
 

SM TBφ φ φ= +  …(1) 

 

where 
SMφ  and 

TBφ  are the potential energies of the 

binary crystal in the frame-work of RSM and three-

body interaction, respectively.  

 The secular determinant, for determining the 

angular frequencies of vibration for the crystals may 

be obtained by solving the characteristic equation: 

 

|D��(q, kk′)−ω2 δαβ δkk′| = 0  …(2) 

 

for various wave vectors q in the reciprocal space. 

The symbols k, k′ = 1,2 represent the type of atoms in 

the unit cell and D��(q, kk′) are the elements of 

dynamical matrix.  

 
2.1 Two-Body Short-Range Interaction 

 For the short-range non-Coulombic interaction, the 

potential energy of the zinc-blende structure φ using 

Taylor’s series can be expressed as: 
 

( )
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1
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where S0 and Slmn are the displacements of the central 

ion and its first neighbour ions from their normal 

positions, rlmn represents the position coordinates of 

neighbouring ions in equilibrium. l, m, n, represent 

the direction cosines of the line joining the central ion 

and the nearest neighbours. 	r1	is the nearest 

neighbour distance. 

 In the present work, the two-body short-range 

interactions between central ion and its first and 

second nearest neighbors, have been considered. Let 

A be the force constant corresponding to the second 

derivative of the potential energy in the above 

expression for the first nearest neighbour: 
 

2 2

2
1

e d
A

V d r rr

φ
=

=
 …(4) 

 

 Similarly A1, A2 are the force constants for the 

second neighbours which includes two different types 

of similar atoms. 

2 2

1 2
2

d
A

r rdr

e

V

φ
=

=

 

(k, k) type of atoms  … (5) 

 

2 2

2 2
2

d
A

r rdr

e

V

φ
=

=
 (k′, k′) type of atoms  …(6) 

 

2.2 Three-Body Short-Range Interaction 

 The potential energy 2Φ  giving rise to the TBSM 

has been assumed to be of the form: 
 

( )
2

2

2 3

1

2

e

a
γ δθθΦ =

� �
	 

� 


 … (7) 

 

where δθ  is the change in the angle under 

consideration and θγ  is the corresponding force 

constant. The term (e
2
/a

3
) is simply adjusted to keep 

force constants in units of (e
2
/V), where e is the 

electronic charge and V (= 2a
3
) is the volume of the 

unit cell. 

 The change in the angle )(δθ  is calculated 

geometrically as:  
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where AS
→

, 
OS

→
 and BS

→
 are the displacement vectors 

of the respective atoms A, O and B. 
nAε

→
 and 

nBε
→

  

are the unit vectors perpendicular to the vectors OA
→

 

and OB
→

, respectively, and lying in the plane OAB 

(Fig. 1) 

. 
2.3 Long-Range Coulombic Interaction 

 For the Coulomb part, i.e., for Φ3, the Coulombic 

contribution of all quantities has been calculated  

from the equation derived by Kellermann
13

. The 

potential function for the Coulombic part can be 

written as: 

 

3

( )( )e eZ Zk k

r

′
Φ =   …(9) 

 

where r = r
0
(l′,k′)−r

0
(l,k), Zke and Zk′e are charges on 

the k
th 

and k′th ions. 

 

3 Green-Function Technique 

 We consider a zinc-blende lattice constituted by 

two interpenetrating sublattice numbered 1 and 2 and 

occupied by three types of atoms A, B and C in a way 

that corresponds to the situation in the mixed crystal 

AB1−xCx. The sublattice 1 is occupied by atoms of 

type A and sublattice 2 is occupied by atoms of the 

type B and C. If the occupancy of sublattice 2 is 

randomly distributed in such a way that the 

concentration of B is (1−x) and that of C is x, then the 

situation is of homogeneous mixed crystal. 

 In a mixed crystal of the type AB1−xCx, we get the 

dynamical matrix for the mixed system AB1−xCx, of 

the similar type as given by Kutty
14

. 

2
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 …(10) 

 

4 Thermal Properties 

 The vibrational frequencies are determined from 

the roots of the secular determinant for values of the 

wave vector corresponding to the non-equivalent 

points. Each frequency is assigned a statistical weight 

according to the number of similar points associated 

with it. When properly weighted, the vibrational 

spectra corresponding to these non-equivalent points 

will represent the complete vibration spectra for 

making use of Blackman’s sampling technique
15

.  

 For the sampling purpose, the entire frequency 

range is divided into a number of intervals of width 

�� = 0.1THz and all the frequencies falling into these 

intervals are counted with their proper statistical 

weights and from these the histogram representing the 

frequency distribution g(�) is prepared. 

 The lattice specific heat at constant volume (Cv), at 

temperature T is expressed as : 

 
/ /2 2

0
0

( / ) ( ) ( ) ( 1)
3

( )

B B
m

m

hv k T hv k T
V

B
V B V
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g v dv

−
=

��  

 …(11) 

 

where vm  is the maximum frequency, N is the 

Avogadro’s number, h is the Planck’s constant and  

kB is the Boltzmann constant. The Eq. (11) can  

be written in the form suitable for computational 

purpose as: 

 
( / ) ( )

3
( )

v B

v B

v

hv k T g v dv
C Nk

g v dv

Σ
=

Σ
 …(12) 

 

where E (hv
 
/
 
kBT) is the Einstein function, defined by: 

 

2

2

exp( )
( )

[exp( ) 1]

x
E x x

x
=

−
 …(13) 

 

where x = (hv/kBT). Also Σvg(v)dv = total number of 

frequencies considered = 6000 for zinc-blende 

structure. 

 Hence Eq. (12) can be written for zinc-blende 

crystals as:  

 
 

Fig. 1 — Geometrical interpretation of bond-bending interaction 
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Fig. 2 — Phonon dispersion of ZnS1−xSex at x = 0.2 

 

 
 

Fig. 3 — Phonon density of states for ZnS1−xSex at x = 0.2 
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5 Results and Discussion 

 Our three-body shell model involved 11 

parameters. These parameters are two-body short-

range interaction (A, A1, and A2), three-body short-

range interaction (�1, �2, and �3), electronic 

polarizability (�1 and �2), distortion polarizability (d1 

and d2) and effective charge parameter (Z′). The 

ternary mixed zinc-blende crystal ZnS1−xSex resulted 

into two crystals at composition x = 0 and x = 1. 

These are called end members of the mixed crystal. 

We have solved the dynamical matrix at the zone-

centre and the zone boundaries and found out the 

force parameters for the end members ZnS and ZnSe 

and the force parameters for ZnS1−xSex at x = 0.2 are 

evaluated using Vegard’s law
16

. The calculated 

phonon dispersion relations are shown in Fig. 2 along 

with the high symmetry directions. The agreement 

between theoretical curves with experimental points is 

quite satisfactory. 

 The frequency distribution curves for ZnS1−xSex at 

x = 0.2 is shown in Fig. 3. Whole frequency spectrum 

is divided into steps of the order of �� = 0.1 THz. In 

Fig. 3, the frequencies obtained at 0.3 THz and 3 THz 

are due to acoustic modes and the frequencies at  

3.9 THz, 5.7 THz, 7.5THz and 9.3 THz are due to 

optic modes in ZnS1−xSex.  

 For the calculation of Debye characteristic 

temperature θD at various temperatures, the calculated 

values of Cv from Eq. (12) at different temperatures 

(T) are taken and the corresponding values (θD/T) are 

determined from the calculated values of Cv and thus 

θD from temperature in the range 10-300 K are 

obtained. The calculated values of Debye 

characteristic temperature θD has been plotted as a 

function of temperature for ZnS1−xSex at x = 0.2 from 

10-300 K, is shown in Fig. 4. Due to the lack of the 

availability of experimental results for specific heat 

variation in ZnS1−xSex system, we are unable to 

compare our theoretical results with the experimental 

results.  

 
 

Fig. 4 — Debye characteristics for ZnS1−xSex at x = 0.2 
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