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Silver nano-hexagons (AgNHs) have been prepared by a chemical reduction method using poly-vinyl pyrrolidone 
(PVP) as a stabilizing agent. The XRD results exhibit the crystalline nature of the prepared sample, with a face centred cubic 
(fcc) phase. Transmission electron microscopic (TEM) results reveal that the silver nanoparticles are nearly hexagon in 
shape with an average size of 50 nm. Here, crystallite size has been calculated using Williamson-Hall (W-H) method, which 
is nearly matching with average size obtained from TEM analysis. Again, using W-H method, micro strain has been 
calculated, which is produced in the nano-hexagon due to dislocation of silver atoms. Further, the lattice constant of the 
nano-hexagons has also been estimated from the Nelson–Riley plot. Moreover, the appropriate structural parameters such as 
Lorentz factor, Lorentz polarization factor, dislocation density, number of atoms in a unit cell and morphological index have 
also been studied from the X-ray diffraction profile.  
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1 Introduction 
Nanostructure materials are attracting the world of 

science due to their unusual properties1-3. Like all 
other properties, elastic properties also changes, when 
the size of the material approaches the nano-scale. 
Many properties like mechanical properties, structural 
properties, phase identification etc. can be obtained 
from X-ray profile analysis. In general, X-ray related 
techniques are superior to other characterization 
method to understand the structural properties in 
inorganic nanomaterials. X-ray profile analysis is a 
simple and powerful tool to estimate the crystallite 
size and lattice strain in nanomaterials4. But, the 
pseudo-Voigt function and Warren–Averbach (W–A) 
analysis method, mainly based on Fourier co-
efficients of the XRD line profile, are very critical 
method to obtain the crystallite size, lattice strain5-8. 
However, Williamson–Hall (W–H) analysis for the 
diffraction peak profile is relatively a simple and good 
method over the pseudo-Voigt function and Warren–
Averbach (W–A) analysis method. For this reason, we 
have used here this W-H analysis for the study of the 
particle size and intrinsic strain only. In general, the 
particle size (D) can be calculated using the Scherrer 
equation9: 

D = kλ/β cosθ .... (1) 
 

Where k, is called Scherrer constant10,11, λ is the 
wavelength of the incident X-rays (0.1541 nm), β is the 
full-width at half-maximum (FWHM) of the peak (in 
radians) and θ is the Bragg angle. As the total 
broadening of the X-ray diffraction peak is due to the 
sample and the instrument, the β-parameter needs to be 
corrected in the Scherrer equation. For this correction, a 
standard silicon sample with small micro strain and large 
particle size is generally used so that the diffraction peak 
widths are due to the instrumental broadening only. Let 
βexpt be the measured width, βstand be the width due to 
standard sample, i.e., the instrumental width, and β the 
corrected one, then the expression for the instrumental 
effect correction12 as: 
 

β = ( 2
stand

2
expt ββ  )1/2 ... (2) 

 

Clearly, this size broadening is independent of the 
reflection order, that is, independent of the diffraction 
angle12. This measure of the domain size generally 
gives a volume-weighted quantity12-15. In this method, 
Scherrer neglects the importance of the micro strain (ε), 
where as, its effects remain presents in the diffraction 
pattern, as this intrinsic strain also produce the 
broadening in the X-ray profile13,14. The contribution of 
the micro strain to the line broadening of the diffraction 
peak is defined by Stokes and Wilson13 as:  
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βε = 4ε tanθ ... (3) 
 

Based on the work of Stokes and Wilson-Hall15, a 
method has been proposed for separating the 
crystallite size and micro strain contributions to the 
line broadening analysis, which depends on their 
reflection order. The method came to be known as 
Williamson-Hall (W-H) method. Williamson-Hall 
plotting is the one of the best and simple method to 
separate the particle size and micro strain in the line 
broadening analysis of the X-ray diffraction 
pattern4,15,16. Further, this method is based on the 
approximation that the line profile due to particle size 
(D) and micro strain (ε) broadening is Lorentzian and 
the total broadening is given by:  
 

β = βD + βε ... (4) 
 

Where, β is considered the sum of the width due to 
the micro strain βε and due to particle size βD. By 
Williamson–Hall (W-H) method, the separation of 
these size and strain effects are possible as:  
 

βhkl cosθ = (kλ/D) + 4ɛ sinθ  ... (5) 
 

W-H plotting consists of a plot of βhkl cosθ versus 
sinθ, which becomes a straight line, when the sample 
exhibits homogeneous distribution of particle size and 
micro strain. The slope provides the micro strain, 
whereas the mean particle size can be obtained from 
the intercept. The slope of the plot may be positive, 
negative or horizontal, which reflects the cause of the 
strain. The positive slope indicates a lattice expansion, 
whereas the negative slope indicates a lattice 
compression but the horizontal slope indicates about a 
crystal free from any micro strain. 

In this present work, we have calculated the 
average particle sizes for silver nano-hexagon using 
the Williamson-Hall plotting method, considering the 
effect of micro-strain, in addition to the crystalline 
size effect and correcting the instrumental broadening 
using the silicon as the standard sample. This result is 
comparable to the average sizes obtained from TEM 
study. Further, using the XRD profile, we have 
calculated other structural parameters for the prepared 
silver nano-hexagon sample, such as dislocation 
density, lattice constant etc., where the data obtained 
from the W-H plot has been used for determining 
these parameter. The most important part of X-ray 
profile is that, the intensity of the diffraction peaks is 
not same for different angles. The reason behind this 
is the presence of an important factor, what is called 
Lorentz -polarization factor. In this present work, we 

have determined this factor and also analysed how 
this factor regulates the intensity of different peaks 
corresponding to the different angles.  
 

2 Experimental 
 

2.1 Nano-hexagon preparation 
Many studies have exhibited that the morphology 

and the crystal structure of the nanoparticles strongly 
depend on the reaction conditions like temperature, 
precursor concentration, and molar ratio17,18. In this 
process, ethylene glycol (EG) served as both 
reductant and solvent, and poly- vinyl pyrrolidone 
(PVP) served as the capping reagent and stabilizer. 
For the preparation of silver nano-hexagons, PVP 
(0.28 M based on the repeating unit, Mw = 10,000) 
have been dissolved in 15 mL of EG and AgNO3 
(0.18 M) solution also have been dissolved in 15 mL 
of EG. The two solutions are immediately subjected 
into magnetic stirrers with room temperature. The 
AgNO3/EG solution gradually turn brown color 
during stirring around 30 min, indicating that some 
Ag nanoparticles have been formed. The PVP/EG 
solution remains clear and colourless3,19. A flask 
containing 15 mL of EG is heated also with vigorous 
stirring nearly 140 °C. Both of these two solutions 
AgNO3/EG and PVP/EG are simultaneously injected 
slow drop-wise into the hot EG by a two channel 
syringe. During the injection process the temperature 
decreases to 120 C. After the completion of injection 
process the temperature remains fixed at 160 C for 6 
h. After cooling to room temperature, the silver nano-
hexagon sample has been characterized for further 
study. 
 

2.2 TEM image analysis 
Transmission electron microscopy (TEM) is used 

for the study of the morphology, size distribution, and 
crystalline direction of the nano-materials. Here, 
morphological studies of the prepared silver nano-
hexagons have been performed on a TEM Model: 
JEM-2100 instrument with an accelerating voltage of 
200 kV. TEM image of the prepared PVP capped silver 
nano-hexagon is shown in Fig. 1, which shows that the 
prepared silver nano-hexagons have almost uniform 
size distribution with an average size of 50 nm.  
 

2.3 X-ray diffraction (XRD) analysis 
The X-ray diffraction profile actually can provide 

much information about the crystals in a material. 
Size obtained from TEM analysis is not actually the 
average effect of the sample but provide the 
information from a very narrow region of a particular 
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mesh of the TEM grid but XRD profile analysis can 
rectify this drawbacks and provide information about the 
whole sample20-24. The X-ray diffraction experiments 
were performed in a Rigaku powder diffractometer 
(DMAXB) using the Bragg–Brentano geometry in a 
continuous mode with a scan speed of 0.25°/min. A 
CuKα radiation tube with the line focus was operated at 
40 kV and 25 mA. The X-ray powder diffractions were 
taken in the range of 20–90° (2Θ) in step sizes of 0.05°. 
The diffracted X-ray beam coming from the sample is 
focused into the detector slit with a curved graphite 
monochromator. The X-ray diffraction pattern of the 
prepared silver nano-hexagon sample is shown in Fig. 2. 
A number of strong Bragg reflections can be seen in the 
profile, which correspond to the (111), (200), (222) 

(400), (422) and (440) reflections of fcc silver. All of 
these reflections correspond to pure silver metal with 
face centered cubic (fcc) symmetry. The high intense 
peak for fcc materials is generally (111) or (222) 
reflection, which is observed in this sample. The 
intensity profile in this X-ray diffraction pattern shows 
the good crystallinity of the prepared silver nano-
hexagons.  
 

3 Results and Discussion 
 

3.1 Lorentz polarization factor 
Peak intensities in the X-ray profile are not same for 

different planes and for different angles as well. It is 
found that there are a number of factors that further 
show θ dependence of the peak intensities. In the first 
place, diffraction generally occurs for angles slightly 
different from the value predicted by Bragg’s Law, 
where the intensity25, I  1/sin(2θ). Second factor is 
that, on satisfying Bragg’s Law, orientation of the 
number of crystals is highest for low angles and for 
which we get, I cos(θ)25. Further, it has been 
observed25 that the fraction of the diffraction cone that 
intersects the detector is highest at low angles and for 
which, I 1/sin(2θ). On combining all these factor and 
after doing trigonometric manipulation, we obtain the 
Lorentz Factor as I  1/(4sin2θ cosθ). This Lorentz 
factor provides the reason for the differing times spent 
by the different reflections in the diffraction 
condition26.  

On rotating the crystal in a beam of monochromatic 
X-ray radiation, different planes of the crystal gets 
rotated, where they satisfy the condition for reflection. 
X-ray radiation in each reflection depends on the time 
taken to reflect26. The Lorentz factor is actually this 
time factor and hence the Lorentz factor is directly 
proportional to the time taken in each reflection. So it is 
inversely proportional to the velocity with which the 
different plane passes through the condition of 
reflection26,27. The individual velocity of each reflection 
can be understood from the viewpoint of reciprocal 
lattice. The reciprocal lattice points take different times 
to traverse the Ewald sphere28. Many reciprocal lattice 
points cross the Ewald sphere with a path normal to the 
sphere surface and those which are far from the 
rotation axis having trajectories with maximum 
velocities, must pass quickly through the Ewald 
sphere29. But reciprocal lattice points with trajectories 
having small grazing angles relative to the sphere 
surface and smaller velocities will pass slowly, as these 
are closer to the rotation axis29,30. All these reasons 
produce the Lorentz factor, 1/ (4sin2θ cosθ). 

 
 

Fig. 1 — TEM micrograph of the prepared silver nano-hexagons. 
 

 
 

Fig. 2 — X-ray diffraction pattern of silver nano-hexagon sample. 
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Again, an X-ray along the x-axis has electric vector 
oscillates in a direction perpendicular to the x-axis. 
The y-component and z component of the X-ray will 
get scattered in a different way, as the angle between 
the scattered beam and the electric field gradient are 
different31,32. On resolving the original unpolarised 
incident X-ray beam into two plane polarised 
components, the total scattered intensity is obtained as 
the sum of the intensities of these two components, 
which depends on the scattering angle33 (2θ). This 
gives rise to the polarization factor33, where I  
(1+cos22θ)/2. 

Combined these Lorentz and polarization terms, to 
get the Lorentz-polarization (LP) factor and we find 
that I  (1+cos22θ)/(8sin2θ cosθ). Lorentz factor is 
actually combined with the polarization factor for the 
X-ray intensity calculations. This Lorentz-polarization 
factor plays an important role in controlling the X-ray 
intensity with respect to the diffraction angle34-43 and 
hence its evaluation is very essential for different 
analysis, where it depends on the intensities of 
diffraction maxima, such as in the analysis of one-
dimensional crystal structure. Due to this Lorentz 
factor, the intensity of the reflection peaks decreases 
for intermediate angles but for the smaller or higher 
angles, intensities are higher as compared to the 
intermediate angles. This means that intensities are 
always higher for the forward or backward directions. 
This Lorentz factor and Lorentz Polarization factor 
are calculated from the following equations41,42, which 
are given in the Table 1: 
 

Lorentz Factor = (1/4 sin2θ cosθ) ... (6) 
 

Lorentz polarization factor = (1 + cos22θ)/( sin2θ  
cosθ) ... (7) 
 

As it is clear from the expression that the Lorentz-
polarization factor strongly varies with the Bragg 
angle θ, the intensity of reflections at intermediate 
Bragg angles is decreased compared to those at high 
or low angles.  

Figure 3 shows a graph of the Lorentz-polarization 
factor for the X-ray diffraction pattern. Here it has 
been observed that the Lorentz-polarization factor is 
very large at low angles and then it reaches a 
minimum around 60. For this one reasons that  
low-angle peaks are of greater intensity than high 
angle peaks in X-ray diffraction pattern. So, X-ray 
diffraction pattern of the as prepared nanoparticles 
showing the intensity profile, which is as per the 
Lorentz-polarization factor. 
 

3.2 Williamson-Hall analysis 
Williamson–Hall analysis is generally used for the 

study of the average size calculation and intrinsic 
micro strain that gets generated in the nanoparticles. 
Here the FWHM has been obtained after correcting 
the instrumental broadening, considering the Si as the 
standard sample. The average particle size and the 
micro strain have been calculated using the 
Williamson-Hall plotting according to the Eq. (5), 
which is shown in Fig. 4. The good straight line in the 
Williamson-Hall plotting indicates no dispersion in 
the particle size and micro strain, suggesting that the 
sample has homogeneous particle size distribution 
and micro strain. 

Table 1 — Morphology index, particle size, Lorentz factor and Lorentz polarization factor of silver nano-hexagon sample for different planes. 

Planes 2θ (Degree) FWHM Particle  
size (nm) 

Lorentz  
factor 

Lorentz  
polarization factor 

Morphological  
index (MI) 

(111) 15.50 0.0030 50 14.175 109.473 0.606 
(200) 18.03 0.0038 41 10.309 78.521 0.539 
(222) 31.24 0.0040 39 3.579 24.789 0.518 
(400) 37.18 0.0038 41 2.591 16.935 0.549 
(422) 44.47 0.0044 38 1.886 11.386 0.513 
(440) 53.68 0.0047 37 1.372 7.407 0.500 

 
 

Fig. 3 — The Lorentz-polarization factor as a function of 2θ. 
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The crystallite size and micro strain can be estimated 
from the intercept of the y-axis and the slope of the 
line, respectively. The size and micro strain of silver 
nano-hexagons are found to be 48 nm and 2.30× 10–3, 
respectively. The quantity, correlation coefficient 
measures the strength and the direction of a linear 
relationship between two variables. A correlation 
coefficient of greater than 0.8 is generally described as 
strong, whereas a correlation less than 0.5 is generally 
described as weak correlation. Here, we have obtained 
a correlation coefficient of 0.88, showing a good linear 
relationship between these two variables. Further, the 
approximate results of Williamson-Hall analysis are 
capable of giving a qualitative indication of sample 
microstructure. Many authors11,22 reported that the 
positive signal of the micro-strain indicates a lattice 
expansion. Our results of positive micro-strain, indicate 
a lattice expansion in the prepared silver nano-hexagon. 
 

3.3 Nelson-Riley plot analysis 
In a crystal, different imperfections namely 

stacking faults, dislocation arrays, as well as twins 
produce the size broadening. But different major 
defect such as vacancies, interstitials and mainly 
dislocations, creates the strain in the sample. As the 
dislocation density8,23 depends on the lattice constant, 
so lattice constants have to be determined for the 
determination of dislocation density. Nelson-Riley 
plot is very useful method for the lattice constant 
determination. For cubic crystals, we have the 
equation: 
 

1/d2 = (h2+k2+l2)/a2  ... (8) 
 

Where d is the inter-planar spacing determined by 
using Bragg’s equation, a is the lattice constant and 
hkl are the Miller planes of the crystal. The Nelson- 
Riley plot is a graph of the calculated values of lattice 
constant for different planes versus the error function 
F (θ) which is given by23: 
 

F(θ) = [(cos2θ/sinθ) + (cos2θ/θ)]/2  ... (9) 
 

The lattice constant can be obtained from the 
intercept of the Nelson- Riley plot. The general 
procedure to obtain the apparent lattice constant a by 
plotting these values against some function of the Bragg 
angle θ, and to extrapolate to a value44 corresponding to 
θ = 90. Further, the linearity of the plot at very high 
angles should provide an accurate value of the lattice 
constant 44. The error function satisfies this criterion. 
Moreover, this error function has a great significance on 
determining the lattice constant as the error function 
becomes minimum when F (θ) = 90, which 

corresponds to the extreme back-reflection along the 
path of the incident beam. This error function arises out 
of three different types of systematic error such as 
absorption of the X-ray beam in the sample, the shifting 
of the rotation axis of the sample relative to the 
geometric centre, called as the eccentricity error, and 
finally, inaccurate determination of the camera 
constants44. For extrapolation of the graph corresponding 
to θ = 90, low-angle limit of linearity of the plot should 
be as low as possible as it gives a consistent value for  
a and the compression of the high-angle points towards 
the extrapolation limit should be considerable44. Further, 
the slope of the extrapolation should be as small as 
possible. In our plot, more number of points has been 
obtained towards that is, towards F (θ) →0 giving a 
value of the lattice constants with greater accuracy. 

A typical Nelson–Riley plot for a silver nano-
hexagon sample is shown in Fig. 5, where the 
corrected value of lattice constant (a) is obtained by 

 
 

Fig. 4 — Williamson–Hall plot for silver nano-hexagon sample. 
 

 
 

Fig. 5 — Nelson–Riley plot for silver nano-hexagon sample. 
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extrapolating the plot. The lattice parameter as 
obtained from Nelson-Riley plot is found to be 0.8595 
nm and this value estimated from this plot is almost 
free from systematic errors. This value of lattice 
constant is signifying the fact that a lattice expansion 
takes place due to intrinsic strain as produced in the 
silver nano-hexagon, which has already been 
confirmed from the W-H plot. This calculated value 
of lattice constant is further used below to calculate 
the dislocation density of silver nano-hexagon. 
 

3.4 Estimation of dislocation density 
The deviation of the lattice constant of the as-

prepared silver nano-hexagon sample from the bulk 
value indicates the presence of strain in this sample. This 
deviation is related to the change in atomic positions in 
the nanocrystals from their perfect order. Further, this 
rearrangement of atoms in the prepared nanocrystals 
produces a broadening of the diffraction peaks23. Hence, 
a lattice distortion takes place due to this dislocation of 
atoms. So, dislocations are lattice defects in crystalline 
materials, which get increased when the crystal size is 
reduced to the nanometer scale45.  

It has been shown that the dislocation density, i.e., 
dislocation lines per unit volume of the crystal 
increases, while the grain size decreases with 
increasing strain and ultimately these parameters 
reach saturation values46-52. The dislocation density in 
the sample has been determined using this 
equation8,49-50: 
 

βhkl cosθ = (4aδ/15)D  ... (10) 
 

where a is the lattice constant (in nm) estimated 
from the Nelson–Riley plot and D is the particle size 
(in nm) calculated from Scherrer formula. βhkl cosθ 
has been plotted along the y-axis and D along the x-
axis, which is shown in Fig. 6.  

Dislocation density has been estimated from the 
slope of the fitted line. The dislocation density of 
silver nano-hexagons is found to be 4.136×1014 m-2 
with the correlation coefficients value 0.99725. 
 

3.5 Morphology index  
It is well known that silver nanoparticles have been 

widely used in many diverse industries due to their 
unique structural, physical and chemical properties, 
which are reflected by its hardness, surface properties, 
particle size and morphology. Morphology index (MI) 
is an important parameter which gives a linear 
relationship41 with the particle size. The respective 
size has been calculated using Debye Scherrer 
formula for each diffraction planes, considering their 

respective FWHM. Here, Morphology index (MI) has 
been calculated from FWHM of XRD data using the 
relation: 
 

MI = FWHMh / (FWHMh + FWHMp) ... (11) 
 

Where FWHMh is highest FWHM value obtained 
from XRD peaks and FWHMp is value of particular 
peak’s FWHM for which MI is to be calculated. The 
relation between morphology index (MI) and particle 
size is shown in Table 1.

 

 
The range of morphological index for experimental 

silver nano-hexagon sample is found to be lie between 
0.50 to 0.60 and the details are presented in Table 1. 
From the plot of size versus MI as shown in the  
Fig. 7, it is observed that MI is correlated with the 
particle size, where particle size ranges from 37 to 50 
nm. Further, it is also observed that morphological 
index is directly proportional to particle size with a 
small deviation having a linear fit. The observed 
results of the M.I confirm the uniformity and fineness 
of the prepared nano-hexagons. 
 

4 Conclusions  
In this paper, we have reported the analysis of 

XRD profile of synthesized silver nano-hexagons for 
the determination of different structural parameters. 
The size calculated from XRD is found to be 48 nm 
sizes, which matches with the results obtained from 
TEM image. Further, we have shown that how does 
the Lorentz-polarization factor (LPF) regulates the 
intensity of XRD profile and this result also explain 
the XRD profile of silver nano-hexagon. Finally, we 
have determined the lattice constant with nearly zero 
error from the Nelson-Riley plot and is found to be 
around 0.8595 nm, which further has been used to 

 
 
Fig. 6 — βhklcosθ versus size (D) for silver nano-hexagon sample. 
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calculate the dislocation density and is found as 
4.136×1014 m-2. At last, we have shown that the M.I 
gives a linear relationship with size of the silver nano-
hexagon. 
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