Formulae for secondary electron yield and the ratio of the average number of secondary electrons generated by a single backscattered electron to that generated by a single primary electron

Ai-Gen Xie^{1,2}*, Min Lai¹, Yu-Lin Chen¹, Yi-Jun Yao¹ & Hong-Yan Wu¹

¹School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, 210044, Nanjing, China

²Department of Electrical and Biological Physics, Kwangwoon University, 20 Kwangwoon-gil, Nowon-gu, Seoul 139-701, Republic of Korea

*E-mail: xagth@126.com(Ai-Gen Xie)

Received 8 May 2013; revised 13 February 2015; accepted 12 March 2015

On the basis of the characteristic of secondary electron emission, the number of secondary electrons (δ_{PE0}) released per primary electron entering metals in the incident energy (W_{p0}) range 10-102 keV and the incident angle (θ) range 0-89° was deduced. In addition, the number of secondary electrons released per primary electron entering metals at θ =0 (δ_{PE0}) was obtained. Based on the deduced δ_{PE0} , the characteristic of the emission angle distribution of the backscattered electrons and the definition of β_0 , the relationships among β_0 , $\cos\theta$ and the parameter x were given, where β_0 is the ratio of the average number of secondary electrons generated by a single backscattered electron to that generated by a single primary electron entering the emitter at θ . Considering the relationship between δ_{PE0} and δ_{PE0} and the relationship between the secondary electron yields at W_{p0} =10-102 keV and θ =0-89° (δ_0) and the secondary electron yields at θ =0(δ_0), a universal formula for expressing δ_0 through δ_0 , the backscattered coefficient at θ (η_0), the backscattered coefficient at θ =0(η_0), $\cos\theta$ and the parameter x were deduced. Further, the parameters x related to beryllium, uranium, aluminium and copper were computed with the deduced formula and experimental results; then, the formulae for expressing δ_0 from the four metals through δ_0 , η_0 , η_0 and $\cos\theta$ were obtained; and the relationships between β_0 of the four metals and $\cos\theta$ were found. The δ_0 calculated with the formulae and the yields measured experimentally were compared. Finally, it is concluded that the formulae for δ_0 and β_0 from the four metals at W_{p0} =10-102 keV and θ =0-89° have been established, respectively.

Keywords: Secondary electron yield, Emission angle distribution, Backscattered electron, Incident angle

1 Introduction

Secondary electron yield parameters of secondary electron yields and formulae for secondary electron yield has been studied by many researchers¹⁻⁸. Many researchers have studied secondary electron yield δ_{θ} (the subscript θ means the primary electron is incident at θ and θ is given with respect to surface normal in the present paper⁹⁻¹²) and given the simple angle-yield relationship of $\delta_{\theta}=\delta_0$ ($\cos\theta$)^m, where δ_0 is the secondary electron yield at $\theta=0$ and *m* depends on the atomic number (*z*) of the material. The increase of the backscattered coefficient η_{θ} with θ was not taken into account in the present relationship, thus, these formulae can only give an estimate in practical applications of secondary electrons⁹⁻¹² at $\theta=0-60^{\circ}$. The universal formula has been deduced for expressing δ_{θ} through δ_{0} , η_{θ} backscattered coefficient at $\theta = 0$ (η_0), and θ in our former work¹³. The increase of η_{θ} with θ has been taken into account in the formula deduced in our former work as a whole, this universal formula is suitable in the incident energy (W_{p0}) range 10-102 keV and the incident angle range 0-80°. The fact that the β_{θ} decreases with z of metals was not taken into account in our former work¹³, where β_{θ} is the ratio of the average number of secondary electrons generated by a single backscattered electron to that generated by a single primary electron entering the emitter at θ . Thus, for θ =70° and 80°, the values of δ_{θ} from beryllium and aluminium calculated by the formula deduced in our former work do not agree well with experimental ones¹³.

The fact that the value of β_{θ} decreases with z of metals was taken into account in the present study. Based on the characteristic of the emission angle

Project supported by National Natural Science Foundation of China (Grant No.11473049). The present Research has been conducted by the Research Grant of Kwangwoon University in 2015

distribution of the backscattered electrons, some relationships between the parameters of secondary electron yield, the definition of β_{θ} , and experimental results, the formulae for expressing δ_{θ} from beryllium, uranium, aluminium and copper at W_{p0} =10-102 keV and θ =0-89° through δ_0 , η_{θ} , η_0 and $\cos\theta$ have been deduced in the present study; and the relationships between β_{θ} of beryllium, uranium, aluminium and copper at cos θ have been obtained. The secondary electron yield calculated with these formulae and the yields measured experimentally from beryllium, uranium, aluminium and copper have been compared and the results indicate that the proposed formulae may be used to estimate secondary electron yields at W_{p0} =10-102 keV and θ =0-89°.

2 Ratio and Backscattered Coefficient

When primary electrons at $W_{p0}=10-102$ keV and $\theta=0-80^{\circ}$ enter metal, the number of secondary electrons released per primary electron $\delta_{PE\theta}$ can be written¹³ as follows :

$$\delta_{\rm PE0} = \frac{C}{W_{p0}^{n-1}\cos\theta} \qquad \dots (1)$$

For a metal, C is a constant⁹.

Eq. (1) was deduced on the condition that the range of primary electron(*R*) is significantly larger than $1/(\alpha \cos \theta)$ ($\theta < 80^{\circ}$), where $1/\alpha$ is the mean escape depth of secondary electron from the metal¹³. $1/\alpha$ is on the order¹¹ of $1/\alpha=0.5$ -1.5 nm. Namely, 28.65 nm $\leq 1/(\alpha \cos 89^{\circ}) \leq 85.95$ nm; thus, *R* is still significantly larger than $1/(\alpha \cos \theta)(\theta \leq 89^{\circ})$. For example, when W_{p0} is equal to 25.2 keV, the range of aluminium¹³ is 5740.7 nm. Therefore, when primary electrons at $W_{p0}=10$ -102 keV and $\theta=0$ -89° enter metal, $\delta_{PE\theta}$ still can be written as Eq. (1).

Using Eq.(1), δ_{PE0} can be written¹³ as follows:

$$\delta_{\rm PE0} = \frac{C}{W_{p0}^{n-1}} \qquad \dots (2)$$

when primary electrons at $W_{p0}=10-102$ keV enter metal perpendicularly, some primary electrons are scattered through small angles as they interact with atoms. In addition to the small-angle scattering, the scattered electrons diffuse back from different distance from the surface of metal at different directions, the emission angle $\Phi(\Phi)$ is given with respect to surface normal) distribution of the backscattered electrons follow $(\cos \Phi)^p (p>1)$ distribution, the number of secondary electron released per backscattered electron at $W_{p0} \ge 10$ keV and $\theta = 0$ can be written approximately¹⁴ as follows:

$$\delta_{\rm RE0} = \frac{2C}{W_{p0}^{n-1}} \qquad \dots (3)$$

 β_0 is the ratio of the mean secondary electron generation of one backscattered electron to one primary electron hitting on emitter at θ =0, several researchers have shown that several metals^{15,16} possess β_0 of 2 at $W_{p0} > 10 \text{ keV}^{\circ}$ We divide Eq. (3) by Eq.(1), we obtain:

$$\beta_{\theta 0} = 2\cos\theta \approx \beta_0 \cos\theta \qquad \dots (4)$$

The average emission angle of the backscattered electrons at W_{p0} =10-102 keV and θ =0-89° is larger than the average emission angle of the backscattered electrons¹² at W_{p0} =10-102 keV and θ =0. Thus, based on the process of deducing Eq. (3), the number of secondary electron released per backscattered electron at W_{p0} =10-102 keV and θ =0-89° $\delta_{\text{RE}\theta}$ is larger than Eq. (3). Based on the definition of β_{θ} , β_{θ} is $\delta_{\text{RE}\theta}/\delta_{\text{PE}\theta}$. Thus, β_{θ} is larger than Eq. (4). Therefore, we assume that β_{θ} can be written as follows:

$$\beta_{\theta} = 2(\cos\theta)^{x} \approx \beta_{0}(\cos\theta)^{x} (0 < x < 1) \qquad \dots (5)$$

According to the characteristic of the emission angle distribution of the backscattered electrons from beryllium, aluminium, copper and gold¹², we found that the average emission angle of the backscattered electrons at the same W_{p0} and θ decreases with z of metals. From the process of deducing Eq. (3), it can be concluded that the number of secondary electron released per backscattered electron at $W_{p0}=10-102$ keV and θ =0-89° increases with the average emission angle of the backscattered electrons, based on the process of deducing β_{θ} and the characteristic of the emission angle distribution of the backscattered electrons from beryllium, aluminium, copper and gold^{12,14}, it is concluded that β_{θ} increases with the average emission angle of the backscattered electrons at the same W_{p0} and θ , so β_{θ} decreases with z of metals, therefore, x related to different metals monotonically increases with z of metals.

When primary electrons at $W_{p0}=10-102$ keV and $\theta=0-89^{\circ}$ enter metal¹⁷, η_{θ} is given by:

$$\eta_{\theta} = \eta_{0} e^{A_{\eta}(1 - \cos\theta)} \qquad \dots (6)$$

$$A_{\rm p} = 7.37 z^{-0.56875} \dots (7)$$

3 Universal Formula

When primary electrons at $W_{p0}=10-102$ keV and $\theta=0-89^{\circ}$ enter metal, δ_{θ} can be written¹¹ as follows:

$$\delta_{\theta} = \delta_{\text{PE}\theta} (1 + \beta_{\theta} \eta_{\theta}) \qquad \dots (8)$$

Using Eq. (8), δ_0 can be written¹¹ as follows :

$$\delta_0 = \delta_{\text{PE0}}(1 + \beta_0 \eta_0) = \delta_{\text{PE0}}(1 + 2\eta_0) \qquad \dots (9)$$

Based on Eqs (1), (2), (8) and (9), δ_{θ} at W_{p0} =10-102 keV and θ =0–89° can be written as:

$$\delta_{\theta} = \frac{\delta_0 [1 + 2\eta_{\theta} (\cos \theta)^x]}{(1 + 2\eta_0) \cos \theta} \qquad \dots (10)$$

In our former work, δ_{θ} at $W_{p0}=10-102$ keV and $\theta=0-80^{\circ}$ was written¹³ as:

$$\delta_{\theta} = \frac{\delta_0 [1 + 2\eta_{\theta} (\cos \theta)^{0.88}]}{(1 + 2\eta_0) \cos \theta} \qquad \dots (11)$$

4 Computation of x and the Formulae

Using *x* as a fit parameter, *x* related to Be x_{Be} is extracted by adapting Eqs.(6), (7) and (10) in order to fit at best experimental η_0 , $\cos\theta$, *z*, δ_0 and δ_{θ} from beryllium^{12,16} and x_{Be} is shown in Table 1. Using the same method, x_U , x_{Al} and x_{Cu} are extracted by adapting Eqs (6), (7) and (10) in order to fit at best experimental η_0 , $\cos\theta$, *z*, δ_0 and δ_{θ} from uranium^{12,18} aluminium¹² and copper¹², respectively; and the values of x_U , x_{Al} and x_{Cu} are presented in Table 1.

According to the conclusion that *x* related to different metals monotonically increases with *z* of metals, Eq. (10), $x_{Be}=0.371$ and $x_{AI}=0.454$, the formula for the δ_{θ} at $W_{p0}=10-102$ keV and $\theta=0-89^{\circ}$ from lower *z* metals (4<*z*<13) can be approximately written as follows:

$$\delta_{\text{lower}\theta} = \frac{\delta_0 [1 + 2\eta_\theta (\cos \theta)^{x_{\text{lower}}}]}{(1 + 2\eta_0) \cos \theta} \qquad \dots (12)$$

where $0.371 < x_{lower} < 0.454$.

Table 1 — Fit parameter <i>x</i> related to four metals									
Metal Be		U	Al	Cu					
z	4	92	13	29					
x	0.371	0.930	0.454	0.915					

From Eq. (5), the formula for β_{θ} of lower *z* metals (4<*z*<13) can be approximately written as follows:

$$\beta_{\text{lower}\theta} = 2(\cos\theta)^{x_{\text{lower}}} \qquad \dots (13)$$

According to the conclusion that *x* related to different metals monotonically increases with z of metals, Eq. (10), $x_{Cu}=0.915$ and $x_{U}=0.93$, the formula for the δ_{θ} at $W_{p0}=10-102$ keV and $\theta=0-89^{\circ}$ from medium and higher *z* metals (29<*z*<92) can be approximately written as follows:

$$\delta_{\rm mh\theta} = \frac{\delta_0 [1 + 2\eta_\theta (\cos \theta)^{x_{\rm mh}}]}{(1 + 2\eta_0) \cos \theta} \qquad \dots (14)$$

where 0.915< $x_{\rm mh} < 0.93$.

From Eq. (5), the formula for β_{θ} of medium and higher *z* metals (29<*z*<92) can be approximately written as follows:

$$\beta_{\rm mh\theta} = 2(\cos\theta)^{x_{\rm mh}} \qquad \dots (15)$$

5 Results and Discussion

Some researchers measured δ_{θ} from beryllium and uranium¹² at $W_{p0}=$ 9-100 keV, they found that the relationship between δ_{θ} from beryllium and uranium at $W_{p0}=$ 9-100 keV and θ does not have dependence on W_{p0} , what they found agree with Eq. (10) deduced in the present study. They normalized δ_0 from beryllium and uranium¹² at $W_{p0}=$ 9-100 keV and their experimental δ_{θ} are presented in Table 2.

Using $x_{\text{Be}}=0.371$ presented in Table.1 and Eqs (6), (7) and (10), some values of δ_{θ} from beryllium have been computed with experimental¹² δ_{0} , $\cos\theta, \eta_{0}$ 9 (Ref. 16)and z, as presented in Table. 2; using $x_{\rm U}$ =0.930 presented in Table 1 and Eqs (6), (7) and (10), some values of δ_{θ} from uranium have been computed with experimental δ_0 (Ref.12), $\cos\theta$, η_0 (Ref. 18) and z, as presented in Table. 2. Using Eqs (6), (7) and (11), some values of δ_{θ} from beryllium and uranium have been computed with experimental δ_0 , $\cos\theta$, η_0 and z (Refs 12,16,18), respectively, as presented in Table 2. Some values of δ_{θ} from beryllium and uranium have been computed by Monte Carlo method¹² respectively, as presented in Table 2. From Table 2, as a whole, it can be seen that there is good agreement between experimental values¹²at W_{p0} = 11-102 keV and θ =0-80° and the values calculated with the x as presented in Table 1 and

300

Table 2 — Comparison between calculated δ_{θ} and experimental ¹² ones													
θ (degrees)	0	10	20	30	40	50	60	65	70	75	80		
Theoretical δ_{θ} from beryllium by Monte Carlo calculation ¹²]	1.0	1.04	1.17	1.24	1.40	1.76	2.49		3.87		7.27		
Experimental δ_{θ} from beryllium	1.0	1.04	1.1	1.2	1.4	1.827	2.71	3.17	4.0255	5.47	8.2		
Theoretical δ_{θ} from beryllium by x_{Be} and Eqs (6), (7) and (10)	1.0	1.02	1.08	1.2	1.4	1.77	2.47	3.07	4.025	5.65	8.88		
Theoretical δ_{θ} from beryllium by Eqs.(6), (7) and (11)	1.0	1.02	1.08	1.19	1.38	1.7	2.28	2.94	3.46	5.2	6.78		
Theoretical δ_{θ} from uranium by Monte Carlo calculation ¹²	1.0	1.06	1.02	1.09	1.13	1.23	1.41		1.80		3.05		
Experimental δ_{θ} from uranium	1.0	1.02	1.02	1.09	1.23	1.4	1.68	1.845	2.23	2.868	4.1		
Theoretical δ_{θ} from uranium by $x_{\rm U}$ and Eqs.(6), (7) and (10)	1.0	1.01	1.05	1.12	1.23	1.4	1.69	1.9	2.23	2.75	3.74		
Theoretical δ_{θ} from uranium by Eqs (6), (7) and (11)	1.0	1.01	1.05	1.13	1.24	1.42	1.71	1.95	2.73	2.8	3.82		

Eqs (6), (7) and (10) deduced in the present study and that the values calculated with *x* as presented in Table1 and Eqs (6), (7) and (10) agree better with experimental ones¹² than the values calculated with the Eqs (6), (7) and (11) do; and that the values calculated with *x* as presented in Table 1 and Eqs (6), (7) and (10) agree better with experimental ones¹² than the values computed by Monte Carlo method¹² do. Computational approaches based on Monte Carlo method allow us to estimate δ_{θ} from metals with great accuracy^{12,19-22}, but it is difficult for some of us to estimate δ_{θ} from metals by the Monte Carlo method, we can use the proposed formulae for δ_{θ} from metals to estimate δ_{θ} with greater accuracy.

Using $x_{Al}=0.454$ as presented in Table 1 and Eqs (6), (7) and (10), some values of δ_{θ} from aluminium have been computed with experimental δ_0 , $\cos\theta$, η_0 and z (Ref. 12) as shown in Figs 1 and 2, respectively. From Figs 1 and 2, it can be seen that there is very good agreement between experimental values¹² and the calculated ones at W_{p0} = 11–102 keV and θ =0-80°, and that the values calculated with $x_{Al}=0.454$ and Eqs (6), (7) and (10) agree better with experimental ones¹² than the values¹³ calculated with Eqs (6), (7) and (11) do. Using $x_{Cu}=0.915$ as presented in Table 1 and Eqs (6), (7) and (10), some values of δ_{θ} from copper are computed with experimental¹² δ_0 , $\cos\theta$, η_0 and z, which are shown in Figs 3 and 4, respectively. From Figs 3 and 4, it can be seen that there is very good agreement between experimental values¹² and the calculated ones at W_{p0} = 11-102 keV and θ =0-80°, and that the values calculated with $x_{Cu}=0.915$ and Eqs (6), (7) and (10) agree better with

Fig. 1 — Secondary electron yield at θ from aluminium

Fig. 2 — Secondary electron yield at θ from aluminium

Fig. 3 — Secondary electron yield at θ from copper

Fig. 4 — Secondary electron yield at θ from copper

experimental ones¹² than the values calculated¹³ with Eqs (6), (7) and (11) do. Hence, it is concluded that it is necessary to take into account the value of β_{θ} decreases when *z* increases during the course of deducing the Eq. (10), and that the formulae composed of the *x* as presented in Table 1 and Eqs (6), (7) and (10) can be used to estimate the value of δ_{θ} beryllium, uranium, aluminium and copper at W_{p0} = 11-102 keV and θ =0-80°.

We could not find more experimental δ_{θ} to establish more formulae for δ_{θ} from other metals at $W_{p0} = 11-102$ keV and $\theta=0.89^{\circ}$ by Eq. (10), The decision to divide the elements in "lower" and "median and higher" z is arbitrary and is only used because of lacking of more experimental data. According to the conclusion that x related to different metals monotonically increases with z, δ_{θ} computed with Eqs (6), (7) and (10) and $x_{Be}=0.371$ and δ_{θ} computed with Eqs (6), (7) and (10) and x_{AI} =0.454, we assume that that δ_{θ} from lower *z* metals (4<*z*<13) calculated with Eqs (6), (7) and (10) and x_{AI} =0.454 agree better with experimental ones than the values calculated with Eqs (6), (7) and (11) do; According to the conclusion that *x* related to different metals monotonically increases with *z*, δ_{θ} computed with Eqs (6), (7) and (10) and x_{Cu} =0.915 and δ_{θ} computed with Eqs (6), (7) and (10) and x_{U} =0.93, we assume that δ_{θ} from medium and higher *z* metals (29<*z*<92) calculated with Eqs (6), (7) and (10) and x_{Cu} =0.915 agree better with experimental ones than the values calculated with Eqs (6), (7) and (10) and x_{Cu} =0.915 agree better with experimental ones than the values calculated with Eqs (6), (7) and (11) do.

It is a pity that we can not find experimental δ_{θ} at W_{p0} = 11-102 keV and θ =0-89°. Thus, the formulae composed of the *x* shown in Table 1 and Eqs (6), (7) and (10) can not proved to be true by the experimental δ_{θ} at W_{p0} = 11-102 keV and θ =0-89°. The δ_{θ} from beryllium, uranium, aluminum and copper at W_{p0} = 11-102 keV and θ =0-80° calculated with the *x* shown in Table 1 and Eqs (6), (7) and (10) agree well with experimental δ_{θ} , in addition, there is not a rude approximation in the course of deducing Eq. (10) and computing *x* shown in Table 1, we think that the formulae composed of the *x* shown in Table.1 and Eqs (6), (7) and (10) may be used to estimate δ_{θ} from beryllium, uranium, aluminum and copper at W_{p0} = 11-102 keV and θ =0-89°.

6 Conclusions

Based on the characteristic of the angle distribution of the backscattered electrons, some relationships between the parameters of secondary electron yield, the definition of β_{θ} and experimental results, the formulae composed of the x as presented in Table 1 and Eqs (6), (7) and (10) for expressing δ_{θ} from beryllium, uranium, aluminium and copper at W_{p0} = 11-102 keV and θ =0-89° through δ_0 , η_0 , η_0 and $\cos\theta$ have been established, respectively. The present values calculated with the formulae are found to be in good agreement with the previous experimental data at W_{p0} = 11-102 keV and θ =0-80°. Thus, the formulae composed of the x as presented in Table1 and Eqs (6), (7) and (10) can be applied to estimate δ_{θ} from beryllium, uranium, aluminium and copper at W_{p0} = 11-102 keV and θ =0-80°, respectively; the formulae composed of the x as presented in Table 1 and Eqs (6), (7) and (10) may be used to estimate δ_{θ} from beryllium, uranium, aluminium and copper at W_{p0} = 11-102 keV and θ =0-89°, respectively.

According to the process of deducing the formula given in Eq. (10), β_{θ} is the only assumption part of the formula given in Eq. (10) and the formulae composed of *x* as presented in Table 1 and Eqs (6), (7) and (10) have been successfully established, respectively. It is concluded that the formulae composed of the *x* as presented in Table1 and Eq. (5) for expressing β_{θ} of beryllium, uranium, aluminium and copper through $\cos\theta$ were reasonable, respectively; so the formulae composed of the *x* as presented in Table1 to estimate the value of β_{θ} of beryllium, uranium, aluminium and copper at W_{p0} = 11-102 keV and θ =0-89°, respectively.

References

- 1 Xie A G, Zhao H F & Wang T B, Nucl Instrum Methods Phys Res Sec B, 268 (2010) 687.
- 2 Xie A G, Li C Q & Wang T B, *Mod Phys Lett B*, 23 (2009) 2331.
- 3 Xie A G, Zhang J & Wang T B, Chin Phys Lett, 28 (2011) 097901.
- 4 Xie A G, Zhao H F, Song B & Pei Y J, Nucl Instrum Methods Phys Res Sec B, 267 (2009) 1761.
- 5 Reimer L & Tolkamp C, Scanning, 3 (1980) 35.

- 6 Shimizu R, J Appl Phys, 45 (1974) 2107.
- 7 Moncrieff D A & Barker P R, Scanning, 1 (1976) 195.
- 8 Czaja W, J Appl Phys, 37 (1966) 4236.
- 9 Kanaya K & Kawakatsu H, J Phys D, 5 (1972) 1727.
- 10 Bronshtein I M & Denisov S S, Sov Phys Solid State, 9 (1967) 731.
- 11 Seiler H, J Appl Phys, 54 (1983) 1.
- 12 Reimer L & Pfefferkorn G, Berlin Springer, 34 (1977).
- 13 Xie A G, Zhang J & Wang T B, Jpn J Appl Phys, 50 (2011) 126601.
- 14 Xie A G, Zhang C Y & Zhon K, *Mod Phys Lett B*, 28 (2014) 1450046.
- 15 Ono S & Kanaya K, J Phys D, 12 (1979) 619.
- 16 Drescher H, Reimer L & Seidel M, Z Angew Phys, 29 (1970) 331.
- 17 Laframboise J G & Kamitsuma M, Proc Workshop on Natural Charging of Large Space Structures in Near Earth Polar Orbit (Massachusetts Air Force Geophy Lab) Sagalyn R C, Donatelli D E & Michael I, 293 (1983).
- 18 Reimer L & Tolkamp C, *Scanning*, 3 (1980) 35.
- 19 Ganachaud J P & Mokrani A, Surf Sci, 334 (1995) 329.
- 20 Kuhr J Ch & Fitting H J, J Electron Spectrosc Relat Phenom, 105 (1999) 257.
- 21 Dapor M, Nuc Instru & Methods in Phys Res B, 267 (2009) 3055.
- 22 Lin Y & Joy D C, Surf Interface Anal, 37 (2005) 895.