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The absorption and emission spectra of fluorescent laser dye namely, 4,4”’-bis-2-butyyloctyl-oxy)-P-quaterphenyl have 
been recorded at room temperature in solvents of different polarities. The exited state dipole moments (e) have been 
estimated from Lippert’s, Bakhshiev’s and Kawski-Chamma-Viallet’s equations using the variation of Stoke’s shift with the 
solvent dielectric constant and refractive index. The geometry of the molecule has been fully optimized and the g has also 
been calculated theoretically by Gaussian 03 software using B3LYP/6-31g* level of theory. The g and e have been 
calculated by means of solvatochromic shift method. It has been observed that e is higher than g, indicating a substantial 
redistribution of the π-electron densities in a more polar excited state for the selected laser dye. Further, the changes in the 
dipole moment () has been calculated both from solvatochromic shift method and microscopic empirical solvent polarity 

parameter ( N
TE ) and values are compared.   
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1 Introduction 
The absorption and fluorescence characteristics of 

organic compounds under the effect of a solvent have 
always been a subject of interest1-5. Excitation of a 
molecule by photon causes a redistribution of charges 
leading to conformational changes. This can result in 
the change of dipole moment at the excited state. The 
dipole moment of an electronically excited molecule 
is an important property which sheds light on the 
electronic and geometrical structure of the molecule. 
All the methods available so far for the determination 
of singlet excited-state dipole moment are based on 
the spectral shift caused either externally by 
electrochromism or internally by solvatochromism. 
The solvatochromic method is based on the shift of 
absorption and fluorescence maxima in different 
solvents of varying polarity. Several workers have 
made extensive experimental and theoretical studies 
on ground state (g) and excited state (e) dipole 
moments using different techniques in variety of 
organic fluorescent compounds like coumarins, 
indoles, purines, and fluorescein and in few laser 

dyes6-19. In the last few years, fluorescent compounds 
like thiophene, have become a strong interdisciplinary 
research field. These studies range from fabrication of 
electronic and optoelectronic devices to the selective 
detection of biosensors. These organic molecules are 
important materials having novel electronic and 
photonic properties which find its use in many 
technological applications. Organic molecules have 
become the hot cake of today due to its properties like 
broad tunability, high quantum efficiency and broad 
spectral band width.  

In this paper, we report the solvent effects on 
absorption and emission spectra, and estimation of 
ground and excited state dipole moments of a laser 
dye by solvatochromic shift method. Theoretical 
studies on ground state (g) dipole moments using 
DFT (B3LYP/6-31g* method) is also reported20. 
However, there are no reports available in literature 
on the determination of μg and μe values of the 
molecule investigated. 
 
2 Experimental 
 

2.1 Materials 
The solute 4,4”’-bis-2-butyyloctyl-oxy)-P-

quaterphenyl was obtained from Koch laboratory, 
____________ 
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England. The molecular structure of this laser dye is 
given in Fig. 1. The solvents used in the present study 
are cyclohexane, hexane, benzene, tetrachloro ethane, 
tetrahydro furan, dichloro ethene, dichloro methane, 
dimethyl formamide, dimethyl sulphoxide, butanol, 
propanol and ethanol. All the solvents were obtained 
from S-D-Fine Chemicals Ltd., India, which were of 
spectroscopic grade. The required solutions were 
prepared at fixed concentration of solute 1×10-5M in 
each solvent.  
 
2.2 Spectroscopic measurements 

The absorption spectra were recorded using Hitachi 
50–20 UV–VIS spectrophotometer. Fluorescence 
intensities of the solutions were measured on Hitachi          
F-2000 Spectrofluorimeter with perpendicular 
geometry. All these measurements were carried out at 
room temperature (300 K).  
 

2.3 Theoretical calculations of ground state dipole moments 

The ground state dipole moment (g) of the laser 
dye was calculated by quantum chemical calculations. 
All the computations were carried out using the 
Gaussian 03 program20 on a Pentium-4 PC. The basis 
sets at the levels of theory B3LYP/ 6-31 g* was used 
for calculations and corresponding optimized 
molecular geometries were shown in Fig. 2. The 
values of ground state dipole moments obtained from 
ab initio calculations using DFT. Ground state 
optimized molecular geometries of 4,4”’-bis-2-

butyyloctyl-oxy)-P-quaterphenyl is shown in Fig. 3. The 
arrow indicates the direction of the dipole moment. 
 

2.4 Experimental calculations of excited state dipole moments  
The three independent equations used for the 

estimation of excited state dipole moments of the 
selected laser dye are as follows: 
Lippert’s equation21: 
 

Constantn),(Fm 11 


 fa
 … (1)

 

Bakshiev’s equation22: 

Constantn),(Fmv 22f 


 a  … (2)
 

Kawski-Chamma-Viallet’s equation23:  
 

Constantn),(Fm
2 33 




 fa

… (3)
 

 
 

Fig. 1 — The molecular structure of laser dye. 
 

 
 

Fig. 3 — Ground state optimized molecular geometry of laser dye. The arrow indicates the direction of the dipole moment. 

 
 

Fig. 2 — Optimized geometries of laser dye. 
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The expressions for n),(F1   [Lippert’s polarity 

function], n),(F2   [Bakshiev’s polarity equation] 

and n),(F3   [Kawski-Chamma-Viallet’s polarity 

equation] are given as:  
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Where a



  and 


f are absorption and fluorescence 

maxima wavelength in cm-1, respectively. The other 
symbols  and n are dielectric constant and refractive 
index respectively. From Eqs (4-6), it follows that 



 )( fa  versus F1(, n), 


 )( fa   versus F2(, n) 

and 
2



 fa 
 versus F3(, n) should give linear graphs 

with slopes m1, m2 and m3 respectively and are given as:  
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Where µg and µe are the ground and excited state 
dipole moments of the solute molecule. The symbols 
'h' and 'c' are Planck’s constant and velocity of light 
in vacuum respectively; 'a' is the Onsager radius of 
the solute molecule. If the ground state and excited 
states are parallel, the following expressions are 
obtained on the basis of Eqs (8-9). 
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2.5 Molecular-microscopic solvent polarity parameter ( N

TE )

The empirical polarity parameter N
TE   proposed by 

Richards3 gave towering results with solvatochromic 
shift of dipolar molecules. The results correlate better 
with microscopic solvent polarity N

TE rather than the 
traditionally used bulk solvent polarity functions 
involving dielectric constant () and refractive index (n) 
as in the later error estimation of Onsager cavity radius 
‘a’ has been minimized. In N

TE  the error estimation of 
the Onsager cavity radius has been minimized, it also 
includes intermolecular solute/solvent hydrogen bond 
donor/acceptor interactions along with solvent polarity. 
The theoretical basis for the correlation of the spectral 
band shift with N

TE was proposed by Reichardt and 
developed by Ravi et al.24, according to Eq. (13). 
 

 
… (13)

 

 
Where µb= 9D and aB = 6.2 Å are the change in 
dipole moment on excitation and Onsager cavity 
radius respectively of molecule and µ  and a are the 
corresponding quantities for the solute molecule of 
interest. A dimensionless normalized scale N

TE was 
introduced in order to avoid the use of non SI unit 
kal/mol in ET(30) solvent polarity scale and is defined 
by Eq. (13), using water ( N

TE =1) and 

tetramethylsilane (TMS = N
TE  = 0) as extreme 

reference solvents [3]. 
 

 
… (14)

 

 

The change in dipole moment (µ) can be 
evaluated from the slope of the stokes shift versus N

TE  
plot and is given by Eq. (15): 
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5 Conclusions 
We have studied the photo physical properties of 

laser dye. It has been found that excited state dipole 
moment (µe) is greater than ground state dipole 
moment (µg) for the selected laser dye. The increase 
in dipole moment in the excited states range about  
1 to 3 D. This demonstrates that the molecule is more 
polar in excited states than in ground states for all the 
solvents studied. The ground state dipole moments 
results are correlated in our used chemical systems. It 
may be noted that there is a difference in the ground 
state and excited state dipole moments. It is 
worthwhile to stress that the discrepancies observed 
may due to approximations made in both methods to 
estimate ground state and excited singlet state dipole 
moments for the molecule. Also Eq. (12) can be used 
to estimate the value of excited state dipole moment 
by pre-knowledge of the value of ground state dipole 
moment, without the necessity of knowing the 
Onsager radius of the solute.  
 
Acknowledgement 

The author (RMM & SVM) is grateful to Dr N V R 
Naidu Principal, RIT, Dr A Jagannath Reddy, HOD, 
Department of Physics, RIT and The Management of 
RIT, Bangalore for their encouragement and 
providing necessary requirements. 
 

References  
1 Rohatgi-Mukherjee K K, Fundamentals of photochemistry, 

(Wiley Eastern Ltd: New Delhi), 1986. 
2 Lackowicz J R, New principles of fluorescence spectroscopy, 

(Plenum Press: New York), 1983. 
3 Richards C, Solvents and solvent effects in organic 

chemistry, (VCH: New York), 1991. 
4 Koutek B, Collect Czech Chem Commun, 43 (1978) 2368. 
5  Patil N R, Melavanki R M, Kapatkar S B, Ayachit N 

H, Saravanan, J Fluoresc, 21 (2011) 1213. 
6 Melavanki R M, Patil N R, Kapatkar S B, Ayachit N H, Siva 

Umapathy, Thipperudrappa J & Nataraju A R, J Mol liq, 158 
(2011) 105. 

7 Melavanki R M, Patil H D, Siva Umapathy & Kadadevaramath 
J S, J Fluoresc, 22 (2012) 137. 

8 Aaron J J, Gaye M D, Parkanyi C, Cho N S & Von 
Szentpaly, J Mol  Struct, 156 (1987) 119. 

9 Parkanyi C, Stem-Beren M R, Martinez O R, Aaron J J 
MacNair M B & Arietta A F,   Spectrochim Acta Part A, 60 
(2004) 1805. 

10 Kawski A, Kuklinski B & Bojarski P, Naturforsch Z, 57A 
(2002) 716. 

11 Fukui K, Yonezawa T & Shingu H, J Chem Phys, 20 (1952) 722. 
12 Bilot L & Kawski A, Naturforsch Z, 17A (1962) 621. 
13 Bilot L & Kawski A, Naturforsch Z, 18A (1963) 961. 
14 Zakerhamidi MS, Ahmadi- Kanjani S, Mohadam M, Ortyl E 

& Kucharski S, J Mol Struct, 996 (2011) 95. 
15 Joshi Sunita & Pant D D, J Mol liquids, 172 (2012) 125. 
16 Saroj M K, Sharma N & Rastogi R C, J Mol Struct, 1012 

(2012) 73.  
17  Kawaski A, Acta Phys Polon, 29 (1966) 507. 
18  Kawski A & Bilot L, Acta Phys Polon, 26 (1964) 41. 
19 Kawski A, Acta Phys Polon, 29 (1966) 507. 
20 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb 

M A, Cheeseman J R, Montgomery J A J, Vreven T, Kudin 
K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone 
V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G 
A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, 
Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, 
Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J 
B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, 
Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, 
Ayala P Y, Morokuma K, Voth A, Salvador P, Dannenberg J 
J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, 
Farkas O, Malick D K, Rabuck A D, Raghavachari K, 
Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, 
Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, 
Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, 
Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, 
Johnson B, Chen W, Wong M W, Gonzalez C & Pople J A, 
Gaussian Inc, Wallingford, CT, 2004. 

21 Lippert E, Naturforsch, 10 A (1955) 541. 
22  Bakshiev N G, Opt Spectroscopic, 16 (1964) 821. 
23  Chamma A, Viallet P & Acad C R, Sci Paris, 270 (1970) 1901. 
24 Ravi M, Soujanya T, Samanta A & Radhakrishnan T P, J 

Chem Soc Faraday Trans, 91 (1995) 2739. 
25 Edward J T, Molecular volumes and Parachor Chem, Ind 

London, (1956) 774. 
26 Deepa H R, Thipperudrappa J, Fathepur R H & Sureshkumar 

H M, J Mol Liq, 181   (2013) 82. 
27 Patil S S, Muddapur G V, Patil N R, Melavanki R M & 

Kusanur R A,  Spectrochim Acta Part A, 138 (2015) 85. 
28 Muddapur G V, Patil N R, Melavanki R M  & Kusanur R A, 

J Fluoresc, 24 (2014) 1651. 
 


