Comparative structural and vibrational study of the two low energy conformers of neurotransmitter molecule: Norepinephrine [(R)-4-(2-amino-1-hydroxyethyl) benzene-1, 2-diol]

Omkant Jha* & R A Yadav

Laser and Spectroscopy Laboratory, Department of Physics Institute of Science, Banaras Hindu University, Varanasi 221 005, India

Received 12 December 2017; accepted 8 February 2019

A computational investigation of the two lowest energy conformers of norepinephrine has been carried out at the level B3LYP using the basis set 6-311++G**. Out of the 11 possible lowest energy conformers, the two lowest energy conformers have been investigated thoroughly for the optimized geometries, fundamental frequencies, PEDs, APT charges, natural bond orbital (NBO) analysis, MEP, contour map, total density array, HOMO-LUMO energies. The second conformer is energetically at higher temperature by 293 K with respect to the first conformer. The bond angles and lengths do not show much variation while the dihedral angles vary significantly in going from conformer first to the conformer second. Some of the vibrational modes of the benzene moiety are conformation dependent to some extent whereas most of the normal modes of vibration of ethanolamine side chain vary significantly in going from one conformer to the other one. The MEP for the two lowest energy conformers suggests that the sites of the maximum positive and negative ESP change on changing the conformation. The atomic charges have also changed significantly from conformer C-I to the conformer C-II.

Keywords: DFT, HOMO-LUMO, Molecular structure, NBO, Vibrational, IR and Raman spectra

1 Introduction

Neurotransmitters are small molecule and hormone norepinephrine (noradrenaline) is the simplest member which belongs to the catecholamine family of the molecules. The norepinephrine (NE), epinephrine (E), dopamine and serotonin bear neurotransmitter function in the human organism¹. In the adrenergic neurons of the vegetative nervous system (VNS), this preserves the metabolic equilibrium actively maintained by several complex biological mechanisms that operate via the autonomic nervous system to offset disrupting changes of the Body. Mainly NE is responsible for the neurotransmission. The E and NE are sympathomimetic drugs used primarily as nasal vasoconstrictors for the local application. NE contains a catechol (ortho-dihydroxyphenyl) ring and an ethanolamine moiety. The side chain of NE is flexible in the catechol hydroxyl groups; exerts a key influence on the conformational landscapes and preference of almost all flexible molecule of biological importance. The conformational analyzes have been done with Xray analysis, nuclear magnetic resonance and molecular

orbital calculations²⁻⁴. The conformational landscapes have been characterized through high-level ab initio computation⁵⁻⁹ using a combination of laser ablation to transfer the molecule into the gas phase to stabilise its individual conformers. Mourik et al.¹⁰ studied the relative stability of the two lowest norepinephrine conformers. Nagy *et al.*⁶ performed the theoretical conformational analysis for norepinephrine in the gas phase and in aqueous solution. The conformational analysis was examined for the dopamine and NE in the cationic and di-anionic states by Park et al.¹¹ In addition, the conformational and molecular structures of the singly hydrated NE complexes have been explored through a combination of electronic structure computation at the DFT/B3LYP level and mass-selected UV and infrared ion-dip spectroscopy following laser ablation of the neurotransmitter into a freely expanding moist argon jet by Snoek et al.⁸ These authors⁸ also found 11 conformers of the noradrenaline. Benoit et al.¹² performed the first vibrational calculation of anharmonic -OH stretch frequencies for the two low energy NE conformers.

In the present work, we have investigated theoretically the optimized geometries, and fundamental

^{*}Corresponding author (E-mail: kant.omkant@gmail.com)

total density array, HOMO and LUMO energies in order to understand the physicochemical properties of the norepinephrine.
3 Results and Discussion

In the present work, we have computed the structures and quantities of the spectroscopic interest for the first two lowest energy conformers of norepinephrine and compared the respective quantities.

3.1 Molecular geometries

The optimized molecular structures for the twonorepinephrine conformers with atomic labeling are shown in Fig. 1. The total and relative energies and other parameters of spectroscopic importance of the two conformers are given in Table 1 and 2. The C atom of the side chain directly attached to the ring and all the atoms of the benzene moiety lie in the same plane. All the two conformers have the C₁ point group symmetry. The experimental geometrical parameters for the NE moiety have been taken from the crystal structure data of (-)-Adrenaline, E and MIPA [2, 17-18] for the purpose of comparison. The experimental and calculated parameters of NE, E, and MIPA[@], where differences between the calculated and observed parameters or between the calculated parameters of different conformers are not large which are given in Table 3.

It could be seen from Table 3 that the bond lengths vary at the second place of the decimal in going from one conformer to the other. Therefore, most of the

modes along with their IR intensities, Raman activities and depolarization ratios of the Raman bands of the first two of the 11 possible lowest energy conformers of the norepinephrine molecule at the B3LYP/6-311++G(d, p) level. We have also made the normal modes assignments for the NE molecule which have been made with the help of the vibrational assignments made for related molecules and the computed PEDs for the normal modes of the norepinephrine molecule. The normal modes of NE conformers were compared with the corresponding normal modes of epinephrine, dopamine (DOPA), 1, 2-dihydroxy benzene (1, 2-DHB) and monoisoprpanolamine (MIPA) with the help of animation available from the Gauss-View software¹³. APT and natural charges have been computed for the first two conformers.

2 Geometry Optimization

For the norepinephrine molecule, there are large number of conformers which result due to different orientations of the two hydroxyl groups (-OH) and a monoisoprpanolamine (MIPA) side chain. For the norepinephrine conformers, the molecular geometries have been constructed with the help of the molecular visualization software GaussView 5.0^{14} and optimized using the Gaussian 09 package at the B3LYP/6-311++G(d, p) level¹³. To prepare the input structures for the optimization of norepinephrine conformers we have adopted the notations and conventions given in literature¹⁵. Out of the 11 possible lowest energy conformers the overall lowest energy conformer is C-I. The next one higher energy conformer is with energy 0.00093 eV (293 K) higher with respect to C-I. Thus, at room temperature (300 K) existence of the conformers, C-I and C-II appear to be dominant. These are the conformers observed by Mourik et al.9 We have also computed the vibrational frequencies and related parameters, like the bond lengths, bond/dihedral angles, vibrational frequencies with their IR intensities, Raman scattering activities and depolarization ratio of the Raman bands for the two conformers C-I and C-II. Generally, the unscaled vibrational frequencies at B3LYP/6-311++G** level are larger than the experimental values, so, we have used the scale factors proposed by Rauhut and Pulay¹⁶ for the reasonable frequency matching. To help assign vibrational modes potential energy distributions (PEDs) have been computed using the GAR2PED software. In addition, we have computed APT charges, natural charges, MEP, contour map,

Fig. 1 - Front and side views of two low energy NE conformers.

	Table 1 — Total and relative	energies of all the	possible conform	ers of norepinephrine.		
Conformers	Total energy (Hartree)	Relative energy				
		Hartree	eV	Temp(Kelvin)	kcal/mol	
C-I	-585.19988	0	0	0	0	
C-II	-585.19895	0.00093	0.025	293	0.582	
C-III	-585.19769	0.00218	0.059	689	1.370	
C-IV	-585.19763	0.00225	0.061	710	1.412	
C-V	-585.19755	0.00233	0.063	734	1.459	
C-VI	-585.19748	0.00240	0.065	757	1.505	
C-VII	-585.19734	0.00254	0.069	801	1.592	
C-VIII	-585.19708	0.00280	0.076	884	1.758	
C-IX	-585.19667	0.00321	0.087	1012	2.012	
C-X	-585.19656	0.00332	0.090	1048	2.084	
C-XI	-585.19509	0.00478	0.130	1510	3.002	

Table 2 – Relative molecular properties of NE conformers.

S. No.	Molecular properties	Valu	les
		C-I	C-II
1	Moment of inertia	848.03	843.79
	$(a.u Å^2)$	3735.97	3776.36
		4259.17	4312.50
2	Rotational constants	2.128	2.139
	(GHz)	0.483	0.478
		0.424	0.418
3	ZPV Energy(Kcal/mol)	117.504	117.458
4	E _{Th} (Kcal/mol)	124.946	124.936
5	C _V (Cal/mol-K)	45.455	45.510
6	S(Cal/mol-K)	106.797	107.145
7	Dipole moment(Debye)	3.240	2.112

calculated parameters of two NE conformers are nearly same, whereas the differences between calculated and observed parameters² have slightly differed. The bond lengths of NE side chain and MIPA corresponding bonds are nearly close to each other. However, the bond lengths C_4 - C_{10} and C_{10} - C_{16} are shorter /longer by ~ 0.008 Å going from NE to MIPA. The magnitudes of the computed bond lengths C_1 - C_2 , C_2 - C_3 , C_3 - C_4 , C_4 - C_5 and C_5 - C_6 of the two conformers lie between C-C (1.54 Å) and C=C (1.33 Å) bond lengths. The bond length C_1 - O_{14} is shorter /longer by 0.005/0.010 Å in conformers C-I/C-II and the bond length C_6 - O_{12} is shorter by 0.015 Å in conformer C-II, compared to the experimental values². The side chain C_4 - C_{10} and C_{10} - C_{17} are found to be larger in comparison to ring C-C bonds due to the conjugation effect.

Similarly, a large number of bond angles shows little conformational changes whereas 12 bond angles show variations ranging from $1^{\circ} - 5^{\circ}$. The angles α (C₂-C₁-C₆), α (C₅-C₄-C₁₀) and α (C₁-C₆-C₅) show variations of ~ -1°, 1° and 1.3° in going from

conformer C-I to C-II. The angle α (H₁₇-C₁₆-N₂₁) of show variation of ~5.6° in comparison to MIPA moiety, whereas the angle α (C₆-C₁-O₁₄) shows a variation of ~ 5.3° from conformer C-I to the C-II. The bond angles α (C₃-C₂-H₇), α (C₂-C₃-H₈), α $(C_4-C_5-H_9)$ and α $(C_6-C_5-H_9)$ show significant deviation from the respective experimental values² and also these angles have the variations by $\sim 1.1^\circ$, 1.3° , 2° and -2.5° in going from conformer C-I to CII, respectively. The bond angles α (C₂-C₁-O₁₄) and α (C₁-C₆-O₁₂) are enhanced by ~4.5° and 5.6° while the bond angle α $(C_6-O_1-H_{14})$ is decreased by ~ 4.2° in going from conformer C-I to C-II. The computed bond angle α (C₄- C_{10} - O_{19}) of NE conformers is greater than the bond angle in MIPA by $\sim 3.4^{\circ}$ while this angle is same for E. It is interesting to observe that the geometrical parameters (bond lengths/angles only) related to the NH₂ group do not show significant variation in going from one conformer to the other. It could also be seen from the Table 3 that the dihedral angles associated with the side chain atoms show large variations in going from one conformer to the other.

The bonded and non-bonded lengths r (O...H) in C-I and C-II are found to be 0.966 and 0.962 Å which is well within the limit of H bonding O....H¹⁹. The nonbonded angle α (C-O(H)) is expected to be slightly higher(~ 2°) than the bonded angle α (C-O(H)) due to H bonding interaction between the O....H atoms.

All the parameters computed for norepinephrine were also computed for benzene, MIPA, 1, 2dihydroxy benzene, dopamine and epinephrine to help assign the normal modes of norepinephrine and interpret other parameters.

3.2 APT charges

The APT (atomic polarizability tensor) charge is inferred as the collection of charge tensor and charge

	Table 3 – Computed and I			nolamine (MIP			(_)	
S. No.	Parameters*		NE		I		MIPA	
		Cale	c. ^a	Expt. ^[b]	Calc. ^a	Expt. ^[c]	Calc. ^a	Expt. ^[d]
		C-I	C-II					
	$r(C_1-C_2)$	1.390	1.388	1.39	1.390	1.396	-	-
	$r(C_1-C_6)$	1.401	1.401	1.40	1.400	1.405	-	-
	bonded r(C-OH)	1.365	1.365	1.37	1.365	1.348	-	-
	$r(C_2-C_3)$	1.394	1.396	1.39	1.394	1.399	-	-
	$r(C_2-H_7)$	1.083	1.086	1.01	1.083	0.90	-	-
	$r(C_3-C_4)$	1.396	1.395	1.38	1.396	1.389	-	-
	$r(C_3-H_8)$	1.085	1.082	0.96	1.085	1.507	-	-
	$r(C_4-C_5)$	1.398	1.399	1.40	1.398	1.381	-	-
	$r(C_4 - C_{10})$	1.513	1.514	1.52	1.514	0.91	1.521	1.526
)	$r(C_5-C_6)$	1.388	1.389	1.37	1.388	1.392	-	-
1	$r(C_5-H_9)$	1.085	1.085	0.95	1.085	0.90	-	-
2	non-bonded r(C-OH)	1.380	1.380	1.38	1.380	1.376	-	-
3	r(C ₁₀ -H ₁₁)	1.102	1.103	0.97	1.102	0.75	1.099	1.093
1	$r(C_{10}-C_{16})$	1.542	1.542	1.52	1.540	1.512	1.534	1.526
5	side chain r(C-OH)	1.421	1.419	-	1.422	1.426	1.441	1.396
5	bonded r(O-H)	0.962	0.962	0.90	0.962	-	-	-
7	non-bonded r(O-H)	0.966	0.966	0.83	0.966	1.02	-	-
8	r(C ₁₆ -H ₁₇)	1.093	1.093	-	1.095	0.81	1.105	1.093
9	$r(C_{16}-H_{18})$	1.097	1.097	-	1.101	0.98	1.096	1.093
0	$r(C_{16}-N_{21})$	1.471	1.471	-	1.465	1.01	1.462	1.475
ĺ	side chain r(O-H)	0.971	0.970	-	0.971	1.492	0.963	1.139
2	r(N ₂₁ -H ₂₂)	1.013	1.013	-	1.016	0.97	1.013	1.017
3	$r(N_{21}-H_{23})$	1.015	1.015	-	-	-	1.015	1.017
4	$\alpha(C_2 - C_1 - C_6)$	119.1	120.1	120.0	119.1	117.4	-	-
5	$\alpha (C_2 - C_1 - O_{14})$	120.1	124.6	123.2	120.1	123.0	_	-
5	$\alpha (C_2 - C_1 - O_{14})$ $\alpha (C_6 - C_1 - O_{14})$	120.8	115.3	116.9	120.8	119.6	-	-
7	$\alpha (C_1 - C_2 - C_3)$	120.1	120.2	120.0	120.1	122.1	_	-
, 8	$\alpha (C_1 - C_2 - H_7)$	118.6	119.7	126.0	118.6	-	_	-
9	$\alpha (C_{1} - C_{2} - H_{7})$ $\alpha (C_{3} - C_{2} - H_{7})$	121.3	120.2	114.0	121.2	-	_	-
0	$\alpha (C_3 C_2 C_3)$ $\alpha (C_2 C_3 C_4)$	120.9	120.2	121.0	120.9	118.4	_	-
ĺ	$\alpha (C_2 - C_3 - H_8)$	119.1	120.2	117.0	119.1	119.2	_	_
2	$\alpha (C_2 - C_3 - H_8)$ $\alpha (C_4 - C_3 - H_8)$	119.9	119.4	122.0	120.0	122.3	_	-
3	$\alpha (C_4 - C_5 - C_4 - C_5)$	118.8	119.3	119.0	118.8	121.2	_	-
1	$\alpha (C_3 - C_4 - C_{10})$	120.6	121.2	123.0	120.6	-	_	-
5	$\alpha (C_{5}-C_{4}-C_{10})$	120.0	119.5	118.4	120.5	-	_	-
5	$\alpha (C_{4}-C_{5}-C_{6})$	120.2	120.8	121.0	120.2	119.6	_	-
7	$\alpha (C_4 - C_5 - H_9)$	119.2	120.0	118.0	119.2	-	_	_
8	$\alpha (C_4 - C_5 - H_9)$	120.5	118.0	120.0	120.6	-	_	-
)	$\alpha (C_6 - C_5 - C_5)$	120.8	119.5	119.0	120.8	121.3	_	-
0	$\alpha (C_1 - C_6 - O_{12})$	115.1	120.7	119.7	115.2	121.5	_	_
1	$\alpha (C_{1}-C_{6}-O_{12})$ $\alpha (C_{5}-C_{6}-O_{12})$	124.0	119.8	120.8	124.0	118.2	_	-
2	$\alpha (C_4 - C_{10} - H_{11})$	108.3	108.3	111.0	108.2	-	109.1	109.5
3	$\alpha (C_4 - C_{10} - \Pi_{11}) \\ \alpha (C_4 - C_{10} - C_{16})$	111.8	111.6	-	111.8	-	114.0	112.4
, 1	$\alpha (C_4 - C_{10} - C_{16})$ $\alpha (C_4 - C_{10} - O_{19})$	110.3	110.4	_	110.3	113.9	106.9	109.4
г 5	$\alpha (H_{11}-C_{10}-C_{16})$	108.0	108.0	105.0	108.1	109.4	100.5	109.4
, 5	$\alpha (H_{11}-C_{10}-C_{16}) \alpha (H_{11}-C_{10}-O_{19})$	108.0	108.0	-	108.1	-	107.5	-
, 7	$\alpha (C_{16}-C_{10}-O_{19})$ $\alpha (C_{16}-C_{10}-O_{19})$	109.4	109.1	_	109.0	105.8	110.2	112.1
3	non-bonded α (C-O(H))	110.2	110.4	112.0	110.2	-	-	-
))	bonded $\alpha(C-O(H))$	10.2	10.4	112.0	10.2	-	-	-
)		108.2	108.5	111.0	108.2	-	- 107.8	- 109.5
	$\alpha (C_{10}-C_{16}-H_{17})$	108.2	108.1	-	108.5	-	107.8	109.5
1 2	$\alpha (C_{10}-C_{16}-H_{18})$	109.8	109.7	-	10.0	-		109.3
2 3	$\alpha (C_{10}-C_{16}-N_{21})$		108.9	-	109.3	- 112.7	111.3	108.1
2	$\alpha (H_{17}-C_{16}-H_{18})$	107.8	107.9	-	107.3	112./	106.6	109.5

	Table 3 – Computed and			parameters of r nine (MIPA). ((NE), Epineph	rine (E) and	
S. No.	Parameters*	NI	E		Е		MIPA	
		Cale	c. ^a	Expt. ^[b]	Calc. ^a	Expt. ^[c]	Calc. ^a	Expt. ^[d]
		C-I	C-II					
54	α (H ₁₇ -C ₁₆ -N ₂₁)	108.1	108.1	-	108.0	-	113.6	-
55	α (H ₁₈ -C ₁₆ -N ₂₁)	114.1	114.0	-	113.6	-	108.7	-
56	side chain α (C-O(H))	104.9	104.9	-	104.9	-	108.6	103.7
57	$\alpha (C_{16}-N_{21}-H_{22})$	111.9	111.9	-	109.6	-	110.2	110.4
58	$\alpha (C_{16}-N_{21}-H_{23})$	111.7	111.7	-	-	-	111.4	111.3
59	α (H ₂₂ -N ₂₁ -H ₂₃)	107.6	107.6	-	-	-	108.0	-
60	$\delta (C_6 - C_1 - O_{14} - H_{15})$	1.2	-175.5	-	1.2	-	-	-
61	$\delta (H_8 - C_3 - C_4 - C_{10})$	-3.4	3.4	-	-3.2	-	-	-
62	$\delta (C_{10}-C_4-C_5-H_9)$	3.6	-3.3	-	3.4	-	-	-
63	$\delta (C_3 - C_4 - C_{10} - H_{11})$	38.2	-144.0	-	39.9	-	-	-
64	$\delta (C_3 - C_4 - C_{10} - C_{16})$	-80.6	97.3	-	-79.2	-	-	-
65	$\delta (C_3 - C_4 - C_{10} - O_{19})$	157.9	-24.3	-	159.4	-	-	-
66	$\delta (C_5 - C_4 - C_{10} - H_{11})$	-143.9	37.9	-	-142.1	-	-	-
67	$\delta (C_5 - C_4 - C_{10} - C_{16})$	97.2	-80.8	-	98.9	-	-	-
68	$\delta (C_5 - C_4 - C_{10} - O_{19})$	-24.3	157.7	-	-22.6	-	-	-
69	$\delta (C_1 - C_6 - O_{12} - H_{13})$	-174.7	1.2	-	-175.4	-	-	-
70	δ (C ₅ -C ₆ -O ₁₂ -H ₁₃)	5.2	-178.3	-	4.4	-	-	-
71	$\delta (C_4 - C_{10} - C_{16} - H_{17})$	-56.4	-56.6	-	-57.2	-	-177.1	-
72	$\delta (C_4 - C_{10} - C_{16} - H_{18})$	60.9	60.7	-	60.1	-	-61.9	-
73	$\delta (C_4 - C_{10} - C_{16} - N_{21})$	-173.7	-173.9	-	-174.6	-	57.8	-
74	$\delta (H_{11}-C_{10}-C_{16}-H_{17})$	-175.4	-175.5	-	-176.3	-	-56.0	-
75	$\delta (H_{11}-C_{10}-C_{16}-H_{18})$	-58.1	-58.2	-	-59.0	-	59.2	-
76	$\delta (H_{11}-C_{10}-C_{16}-N_{21})$	67.3	67.2	-	66.4	-	178.8	-
77	$\delta (O_{19}-C_{10}-C_{16}-H_{17})$	65.8	65.6	-	65.0	-	62.8	-
78	$\delta (O_{19}-C_{10}-C_{16}-H_{18})$	-176.9	-177.0	-	-177.8	-	177.9	-
79	$\delta (O_{19}-C_{10}-C_{16}-N_{21})$	-51.5	-51.6	-	-52.4	-	-62.4	-55.4
80	$\delta (C_4 - C_{10} - O_{19} - H_{20})$	159.5	159.2	-	158.0	-	167.7	-
81	$\delta (H_{11}-C_{10}-O_{19}-H_{20})$	-81.5	-81.7	-	-83.1	-	49.9	-
82	$\delta (C_{16}-C_{10}-O_{19}-H_{20})$	36.4	36.2	-	34.9	-	-68.0	28.3
83	$\delta (C_{10}-C_{16}-N_{21}-H_{22})$	157.9	157.9	-	-70.6	-	57.8	159.5
84	$\delta (C_{10}-C_{16}-N_{21}-H_{23})$	-81.4	-81.4	-	-	-	177.7	-78.2
85	$\delta (H_{17}-C_{16}-N_{21}-H_{22})$	40.6	40.6	-	171.7	-	-64.1	-
86	$\delta (H_{17}-C_{16}-N_{21}-H_{23})$	161.3	161.3	-	-	-	55.8	-
87	$\delta (H_{18}-C_{16}-N_{21}-H_{22})$	-79.3	-79.3	-	52.6	-	177.4	-
88	$\delta (H_{18}-C_{16}-N_{21}-H_{23})$	41.4	41.4	-	-	-	-62.7	-
0								

Table 3 – Compute	d and Experimental geometrical p	parameters of norepinephrine ((NE), Epinephrine (E) and
	Monoisoprpanolan	nine (MIPA). (Contd.)	

^aOur work;

X-ray diffraction structural parameters from ref [b-2, c-17, d-18]

^{*}Bond lengths (r) in Å, bond angles (α) and dihedral angles (δ) in degrees (°)

* Dihedral angles with values 0° or 180° are omitted from the Table 3.

flux tensor, conducting to a charge-charge flux model²⁰. APT charges have been calculated for the different atomic sites of the NE conformers, E, dopamine, and MIPA at the B3LYP/6-311++G** level and are collected in Table 4. All the C atoms (in the C-C ring) bear negative charges, except C_1 , C_6 and side chain C atoms, in conformers C-I and C-II. The C₄ atom has the lowest positive charge in C-II. The carbon atoms C1 and C6 of the C-C ring, which is directly attached to the hydroxyl group, bear the highest APT charge in NE, E and also in dopamine while the side chain atoms C_{10} also bears the lowest

APT charges in dopamine because of no attachment of electronegative O atom at the site C_{10} in dopamine. The atoms N₂₁, O₁₂, O₁₄ and O₁₉ posses negative charge and out of these, the O atom has the highest negative charge due to its highest electronegativity. In C-I, O₁₄ atom has comparatively the highest negative charge as a consequence of hydrogen bonding between the O and H atoms. Due to direct attachment of an O atom, the atoms H₁₃, H₁₅ and H₂₀ possess the highest positive charge, in comparison to other H atoms in all the conformers. In the C-I conformer, the magnitude of the charge at the H_{13} atom is the lowest.

MEKS		

Table 4 -	 Calculated APT char 	ges at various atomic site	s for conformers of N	E, E, DOPA and MIPA	molecules.
Atoms			APT charges		
	١	ЛЕ	E	DOPA	MIPA
	C-I	C-II			
C_1	0.496	0.440	0.499	0.486	-
C_2	-0.055	-0.036	-0.054	-0.047	-
C ₃	-0.065	-0.127	-0.066	-0.071	-
C_4	-0.029	0.015	-0.028	-0.015	0.010
C_5	-0.101	-0.090	-0.103	-0.095	-
C_6	0.439	0.481	0.440	0.434	-
H_7	0.052	0.024	0.051	0.052	-
H_8	0.033	0.077	0.034	0.034	-
H ₉	0.074	0.053	0.075	0.041	-
C_{10}	0.496	0.497	0.503	0.117	0.532
H_{11}	-0.095	-0.097	-0.096	-0.039	-0.096
O ₁₂	-0.727	-0.729	-0.728	-0.719	-
H ₁₃	0.296	0.320	0.296	0.294	-
O ₁₄	-0.761	-0.752	-0.765	-0.753	-
H ₁₅	0.320	0.297	0.321	0.319	-
C ₁₆	0.305	0.306	0.287	0.344	0.311
H ₁₇	-0.014	-0.014	-0.010	-0.058	-0.122
H_{18}	-0.057	-0.058	-0.071	-0.084	-0.037
O ₁₉	-0.670	-0.669	-0.676	-	-0.631
H ₂₀	0.320	0.320	0.329	-	0.232
N ₂₁	-0.518	-0.519	-0.577	-0.484	-0.494
H ₂₂	0.127	0.127	0.111	0.136	0.156
H ₂₃	0.134	0.134	-	-0.137	0.140
[#] In unit of e					

3.3 Natural charges

The natural (NBO) charges partially come out on the molecular surface, which could be revelatory of the intact chemical attributes of the molecule^{21,22}. The charge distributions (in the unit of e) at various atomic sites of the two conformers of NE, E, dopamine, and MIPA have been calculated at the method B3LYP using the 6-311++G** basis set and are given in the Table 5. It could be seen that the carbon atom C_1 and C_6 of the C-C ring directly attached to the -OH group bears positive and nearly same in magnitude in E (~0.0.269 and 0.257 a.u.) as well as dopamine (0.268 and 0.253 a.u.). In conformers C-I and C-II, except the C₁, C₆ and C₁₀ atoms, all the remaining 5 carbon atoms possess negative natural charges. The atomic sites C1, C6 and side chain atom C10 have higher positive APT charges due to attachment of the O atoms. In conformers C-I and C-II, the atom O₁₉ has lower/higher APT charges by magnitude 0.006 in comparison to E/MIPA while the atom N_{21} have higher APT charge by magnitudes 0.065 and 0.026 in comparison to E and MIPA. All the hydrogen atoms bear positive charges and the hydrogen atom (H_{13}, H_{15}) and H₂₀) directly attached to the electronegative O

atoms bears the highest natural charges. The side chain O atom has the highest value in the C-II conformer in comparison to C-I.

3.4 HOMO-LUMO analysis

In the MOs theory, HOMO and LUMO energy level tunings are achieved by varying the conjugation between the donor and the acceptor and play a significant role in investigating the electrical, electronic, and optical properties of molecular systems²³. The norepinephrine molecule has 90 electrons and hence, it has 45 MOs. The HOMO is held on C-C, C-H, C-O, and C-N bonds in the side chain, whereas the LUMO is located on C=C bonds in the aromatic ring. Therefore, the electronic transition from the HOMO to LUMO suggests the transition from the aromatic part (C=C) to the side chain part (C-C, C-O and C-N) of norepinephrine. The pictorial diagrams of the HOMO and LUMO energy levels for two NE conformers are shown in Fig. 2. The HOMO and LUMO energies of the conformers C-I and C-II (Table 6) are calculated to be -5.949, -5.993 eV and -0.518, -0.521 eV. The energy gap between the MOs is 5.431 and 5.472 eV for the conformers C-I and C-II.

Atoms			Natural charges		
	1	NE	E	DOPA	MIPA
	C-I	C-II			
C_1	0.269	0.247	0.269	0.268	-
C ₂	-0.225	-0.252	-0.230	-0.231	-
C_3	-0.205	-0.203	-0.209	-0.210	-
$\begin{array}{c} C_3 \\ C_4 \end{array}$	-0.062	-0.054	-0.059	-0.048	-0.591
C_5	-0.251	-0.239	-0.255	-0.269	-
C_6	0.257	0.279	0.259	0.253	-
H_7	0.213	0.201	0.215	0.217	-
H_8	0.196	0.229	0.199	0.202	-
H_9	0.227	0.212	0.229	0.207	-
C_{10}	0.123	0.122	0.124	-0.400	0.118
H_{11}	0.161	0.162	0.164	0.207	0.155
O ₁₂	-0.716	-0.689	-0.722	-0.708	-
H_{13}	0.477	0.490	0.483	0.480	-
O ₁₄	-0.682	-0.723	-0.690	-0.677	-
H_{15}	0.484	0.482	0.489	0.485	-
C ₁₆	-0.188	-0.193	-0.184	-0.168	-0.198
H_{17}	0.192	0.195	0.194	0.182	0.150
H_{18}	0.173	0.175	0.178	0.156	0.187
O ₁₉	-0.760	-0.763	-0.766	-	-0.754
H_{20}	0.476	0.480	0.479	-	0.454
N ₂₁	-0.880	-0.887	-0.715	-0.854	-0.854
H ₂₂	0.365	0.368	0.357	0.352	0.358
H ₂₃	0.358	0.362	-	0.352	0.351

[#] In unit of e

Fig. 2 – Pictorial separation of the electronic energy levels with frontier MOs for NE conformers

The other important parameters of the conformers C-I and C-II, like, ionization energy, electron affinity, hardness, electronic chemical potential and electrophilicity index are estimated to be 5.949 and 5.993 eV, 0.518 and 0.521 eV, 2.715 and 2.736 eV, - 3.234 and -3.257 eV and 1.925 and 1.939 eV, respectively. Thus, it is clear that the charge transfer (CT) occurs in the NE molecule and the energy gap between the MOs confirms the bioactivity based on the intra-molecular charge transfer (ICT)^{24,25} in the NE molecule.

3.5 Molecular electrostatic potential (MEP) and electrostatic potential (ESP)

The electrostatic potential is a very useful tool to illustrate the charge distributions of the molecules in three dimensions and is fundamentally a measure of the strength of the nearby charges, nuclei and electrons, at a particular position. Hence, the charge distribution within the molecule gives the information about the interaction of the molecule with another molecule²⁶. The ESP is invaluable in predicting the behavior of complex molecules and is typically visualized through mapping its values onto the surface reflecting the molecule's boundaries. The ESP is associated with the electron density (ED) and it showed the sites of the nucleophilic reactions

Table 6 – HOMO-LUMO energy value for the conformers of norepinephrine.							
S. No.	Parameters	Values (eV)					
		C-I	C-II				
1	E _{HOMO}	-5.949	-5.993				
2	E _{LUMO}	-0.518	-0.521				
3	I.A.	5.949	5.993				
4	E.A.	0.518	0.521				
5	E_{g}	5.431	5.472				
6	η	2.715	2.736				
7	μ	-3.234	-3.257				
8	ω	1.925	1.939				
Here,							
IA: Ionization energy = - E_{HOMO}							
E A E1		P					

IA: Ionization energy = - E_{HOMO}
EA: Electron affinity = - E_{LUMO}
E_g : Energy gap = E_{LUMO} - E_{HOMO}
η: Hardness = Energy gap/2
μ : Electronic chemical potential = $(E_{LUMO}+E_{HOMO})/2$
$ω$: Electrophilicity index = $μ^2/2η$

and electrophilic effect as well as H bonding interactions²⁷. In Fig. 3, the areas of low potential, red, are characterized by an abundance of electrons (electrophilic region) and the areas of high potential, blue, are characterized by a relative absence of electrons (nucleophilic regions). The O atoms of NE molecule have a higher electronegativity and have consequently a higher electron density. Therefore, the spherical regions that correspond to oxygen atoms would have a red portion on it. The blue tainted sphere at the top corresponds to the location of the nitrogen atom. The negative area of ESP is responsible for the attraction of proton because of the concentrated ED in the norepinephrine molecule. The MEP, isosurface plot of ESP, ESP contour map and total density for conformers C-I and C-II are shown in Figs 3-6.

3.6 Vibrational assignments

Vibrational assignments of the computed IR and Raman bands of two lowest energy conformers of norepinephrine have been made on the basis of the characteristic modes of the hydroxyl, amino and phenyl groups available in literature^{28,29} and the computed modes of E, dopamine, 1, 2-DHB, Bz and MIPA. The forms of the vibrational modes viewed with the help of the Gauss-View 5.0 software³⁰ and the PEDs computed using the GAR2PED software³¹. The norepinephrine, existing 23 atomic molecules, has 63 normal modes of vibration and possesses a non-planar structure with C₁ point group symmetry. Table 7 contains the distribution of the normal modes of NE molecule. Computed vibrational frequencies

Fig. 3 – MEP for two low energy NE conformers.

Fig. 4 - Isosurface plot of ESP for two low energy NE conformers.

Fig. 5 – ESP contour map for two low energy NE conformers.

Fig. 6 – Total electron density for two low energy NE conformers.

along with their IR and Raman intensities, Raman depolarization ratios, calculated PEDs and the proposed vibrational assignments for conformers C-I and C-II are expressed in Table 8 and 9. The calculated IR and Raman spectra for the two conformers are shown in Fig. 7 and 8. For the comparison purpose the corresponding scaled and unscaled computed vibrational frequencies of E, dopamine, 1,2-DHB, Bz and MIPA are compared with those of the computed modes of the two conformers of NE molecule in Tables 10 and 11.

Table 7 – Normal mode distribution of norepinephrine.					
	Modes	Total No.		Groups	No. of modes
1	Stretching	23	ν	C-C	8
-	Successing		·	C-H	6
				C-N	1
				C-O	3
				N-H	2
				O-H	3
2	Planer	8	β	C-H	3
	deformation			C-OH	2
				C-C	1
3	Ring	6	$\Phi(\mathbf{R})$	R	3
	deformation		α (R)	R	3
4	Non-planer	8	γ	C-C	1
	deformation			C-OH	2
				C-H	3
5	Twisting	7	τ	C-C	1
			t	C-N	1
				C-O	3
				$^{16}CH_{2}$	1
				²¹ NH ₂	1
6	Wagging	2	ω	$^{16}CH_{2}$	1
				$^{21}NH_{2}$	1
7	Scissoring	2	σ	$^{16}CH_{2}^{2}$	1
				²¹ NH ₂	1
8	Rocking	2	ρ	¹⁶ CH ₂	1
0		-		²¹ NH ₂	1
9	Angle bending	5	α	C-OH	3
				$C_4 - C_{-10} - C_{16}$	1
10	Deformation			$C_{10}-C_{16}-N_{21}$	1
10	Deformation			С ₁₀ -ОН С. Ц	2 2
				C ₁₀ -H ₁₁	2
Total No	o. of modes			63	
T 1	1 1	1			

The proposed vibrational assignments for the two conformers could be discussed under the following sections:

(i) Phenyl ring (12 modes), (ii) C-H group (12 modes), (iii) O-H/C-OH groups (18 modes), (iv) NH₂ group (6 modes), (v) CH₂ group (6 modes), (vi) C₁₀-C₁₆-N₂₁ side skeleton (6 modes), (vii) C₄-C₁₀Linkage (3 modes)

3.6.1 Phenyl ring modes (12 modes)

The phenyl ring of norepinephrine (Fig. 1) has 12 modes of vibration as: 6 ring stretching (v), 3 planar deformation (α), 3 non-planar deformation (Φ) and modes of the phenyl ring are widely discussed in literature related to the vibrational spectra of benzene derivatives^{32,33}. From the Table 10, out of the 6 phenyl ring stretching modes the lowest mode 1 shows a variation of 9 cm⁻¹ between conformers C-I and C-II while its magnitude is somewhat decreased for the conformer C-II. In norepinephrine, the phenyl ring breathing mode, corresponding to the benzene ring

breathing mode³³ 993 cm⁻¹, is found to have reduced magnitude ~ 783/774 cm⁻¹ for the conformers C-I/C-II. The mode 1 of NE conformers and is found to have considerably reduced magnitude compared to benzene, however, it is close to the frequency of the corresponding mode for E, dopamine, and 1,2-DHB. Similarly, the phenyl ring stretching Kekule mode (14) is found at $1327/1323(v_{44})$ cm⁻¹ for the two conformers and it appears at higher wavenumber by ~ 50 cm⁻¹ as compared to benzene molecule. The mode 14 (Kekule mode) is found to have magnitude very close to that of E, dopamine, and 1, 2-DHB.

The trigonal phenyl ring planar deformation mode 12 is also found its magnitude ~ 1069/1075 cm⁻¹ for the conformers C-I and C-II while its magnitude is somewhat increased from benzene (1010 cm⁻¹). The non-planar deformation mode of the phenyl ring corresponding to the mode 4 of conformers C-I and C-II is found to have very close to E, 1,2-DHB, and Bz molecules. The other two non-planar deformation modes of conformers C-I and C-II 16a and 16b have been found at higher magnitudes in comparison to the benzene whereas its magnitudes are found almost same magnitudes of E and dopamine molecules. The planar ring deformation modes 6 (a and b) show decreasing magnitude in going from conformer C-I to C-II. One of the mode 6a is close to the frequency of the corresponding mode for 1,2-DHB and other one mode 6b is close to the E whereas it is found at higher magnitude by \sim 43 cm⁻¹ in comparison to the 1,2-DHB. From the Tables 8 and 9 it should be noted that depolarization ratios corresponding to the Raman bands for all these modes show large variations.

The other ring stretching modes 19 (a, b) and 8 (a, b) corresponding to the mode of NE conformers do not show much variations. In the case of NE conformers, one of the two components 19a and 8a corresponding to the benzene ring stretching modes (1442 & 1560 cm⁻¹) are found at considerably enhanced magnitude (~1485 and 1583cm⁻¹).

3.6.2 C-H group modes (12 modes)

There are 12 normal modes corresponding to the three C-H (ring) bonds and a side chain bond. The ring C-H bands corresponding to the stretching, inplane deformation, and out-of-plane modes lie in the regions 3150-3000 cm⁻¹, 1400-1000 cm⁻¹ and 1000-600 cm⁻¹, respectively^{32,34-36}. The bonds C₂-H and C₃-H have been coupled strongly for the stretching and out of plane bending modes while the C₅-H bond has been found to be localized stretching and out of plane

	Tab	ole 8 – Calcu	ulated vibrational frequencies and proposed assignments for NE conformer C-I.	
S. No.	Frequencies		PEDs	Modes
	^{\$} Unscaled	*Scaled		
ν_1	34	33	$\tau(C_4-C_{10})(77)$	$\tau(C_4-C_{10})$
ν_2	(5,2)0.75 81 (1,2)0.72	79	$\gamma(C_4-C_{10})(27)+\Phi_2(R)(23)-\alpha(C_4-C_{10}-C_{16})(20)$	γ(C ₄ -C ₁₀)
ν_3	(1,2)0.72 111 (6,0)0.75	109	$\tau(\mathbf{C_{10}}\text{-}\mathbf{C_{16}})(62)\text{-}\tau(\mathbf{O}_{19}\text{-}\mathbf{H}_{20})(13)\text{-}\beta(\mathbf{C}_{4}\text{-}\mathbf{C}_{10})(10)$	τ(C ₁₀ -C ₁₆)
ν_4	179 (8,1)0.73	175	$\Phi_2(R)(43) + \alpha(C_4 - C_{10} - C_{16})(13) - \tau(O_{12} - H_{13})(8)$	a(CCC)
ν_5	204 (139,1)0.57	200	$\tau(O_{12}-H_{13})(74)+\tau(O_{14}-H_{15})(12)$	τ(¹² OH)
ν_6	206 (4,1)0.43	201	$τ(C_{10}-C_{16})(29)+β(C_4-C_{10})(27)-τ(O_{19}-H_{20})(8)$	β(C ₄ -C ₁₀)
v_7	250 (2,1)0.50	245	$\Phi_{3}(R)(25)-\alpha(C_{4}-C_{10}-C_{16})(14)+\gamma(C_{6}-OH)(13)+\gamma(C_{5}-H_{9})(12)$	γ(⁶ COH)
ν_8	259 (9,1)0.23	254	$\tau(NH_2)(65)-\tau(O_{19}-H_{20})(21)$	$\tau(\mathrm{NH_2})$
ν_9	307 (3,0)0.74	300	β(C₆-OH)(42) +β(C ₁ -OH)(34)	β(⁶ COH)
ν_{10}	320 (7,2)0.20	313	$\alpha(C_{10}-C_{16}-N_{21})(34)-\delta(C_{10}-H_{11})(8)$	a(CCN)
ν_{11}	341 (6,3)0.29	333	$\alpha_2(R)(24)-\nu(C_4-C_{10})(10)-\delta(C_{10}-OH)(10)+\gamma(C_1-OH)(8)$	δ(¹⁰ COH)
ν_{12}	401 (1,2)0.46	393	γ (C ₁ -OH)(21)+ Φ ₁ (R)(19)- α (C ₄ -C ₁₀ -C ₁₆)(11)	γ(¹ COH)
ν_{13}	412 (70,1)0.61	403	$\tau(O_{14}-H_{15})(78)-\Phi_3(R)(10)+\gamma(C_6-OH)(9)$	τ(¹⁴ OH)
ν_{14}	461 (3,1)0.41	451	$Φ_3(\mathbf{R})(38)$ -γ(C ₆ -OH)(18)+γ(C ₁ -OH)(16)-Φ ₂ (\mathbf{R})(10)	Φ ₃ (R)
ν_{15}	475 (10,1)0.49	464	$Φ_3(R)(15)$ -β(C ₁ -OH)(11)+β(C ₆ -OH)(8)	β(¹ COH)
ν_{16}	549 (3,2)0.14	537	δ(C₁₀-OH) (29)+ $\alpha_3(R)(17)$ +t(CH ₂)(9)	δ(¹⁰ COH)
ν_{17}	578 (9,2)0.70	566	$\alpha_{2}(\mathbf{R})(18)-\beta(C_{1}-OH)(13)+\alpha(C_{10}-C_{16}-N_{21})(11)+\delta(C_{10}-H_{11})(8)$	α ₂ (R)
ν_{18}	603 (29,5)0.60	590	$\alpha_3(\mathbf{R})(21) + \beta(C_1 - OH)(12) + \tau(O_{19} - H_{20})(8)$	α ₃ (R)
ν_{19}	613 (95,1)0.62	600	$\tau(O_{19}-H_{20})(80)$	τ(¹⁹ OH)
v_{20}	636 (22,1)0.52	622	$Φ_2(\mathbf{R})(23)$ -γ(C ₄ -C ₁₀)(21)-γ(C ₆ -OH)(16)-γ(C ₁ -OH)(9)	Φ ₂ (R)
v_{21}	719 (1,1)0.38	704	$Φ_1(\mathbf{R})(56)$ -γ(C ₁ -OH)(18)-γ(C ₆ -OH)(16)	$\Phi_1(\mathbf{R})$
v_{22}	765 (50,15)0.07	749	$\alpha_3(R)(15)-\nu(C_6-OH)(12)-\nu(C_1-C_6)(11)-\alpha_1(R)(9)$	v(⁶ COH)
v_{23}	801 (14,12)0.11	783	$\nu(C_1-OH)(17)-\omega(NH_2)(16)+\nu(C_1-C_6)(13)-\alpha_1(R)(9)+\nu(C_1-C_2)(8)$	v(C ₁ -C ₆)
v_{24}	823 (31,1)0.19	806	$\gamma(C_2-H_7)(25)+\gamma(C_3-H_8)(25)-\omega(NH_2)(18)$	γ(C ₃ -H ₈)
v_{25}	827 (60,8)0.12	809	$\omega(\mathbf{NH}_2)(22) + \gamma(\mathbf{C}_3 - \mathbf{H}_8)(16) + \gamma(\mathbf{C}_2 - \mathbf{H}_7)(15) + \nu(\mathbf{C}_{10} - \mathbf{C}_{16})(8)$	ω(NH ₂)
v_{26}	876 (18,2)0.20	858	γ (C ₅ -H ₉)(67)+ Φ ₁ (R)(14)	γ(C ₅ -H ₉)

. No.	Frequencies		vibrational frequencies and proposed assignments for NE conformer C-I. (Contd.) PEDs							
5. INO.	^{\$} Unscaled	*Scaled	r EDS	Modes.						
ν_{28}	940	920	γ(C₂-H₇)(43) -γ(C ₃ -H ₈)(39)	γ(C ₂ -H ₇)						
ν_{29}	(1,0)0.15 966	946	t(CH₂)(26) +ρ(NH ₂)(25)+ν(C ₁₀ -C ₁₆)(14)	t(CH ₂)						
ν_{30}	(5,7)0.40 978	958	$v(C_4-C_{10})(14)-v(C_6-OH)(13)+v(C_4-C_5)(13)+v(C_3-C_4)(10)$	v(C ₄ -C ₁₀)						
v ₃₁	(28,4)0.35 1056	1008	v(C ₁₆ -N ₂₁)(75)	$v(C_{16}-N_{21})$						
	(22,12)0.23 1100			v(¹⁰ COH)						
v ₃₂	(35,5)0.37	1050	$v(C_{10}-OH)(49)-v(C_{10}-C_{16})(12)+t(CH_2)(8)$. ,						
v ₃₃	1119 (108,1)0.17	1069	$\alpha(C_6-OH)(16)-\alpha_1(R)(15)+\nu(C_6-OH)(14)-\beta(C_3-H_8)(14)$	$\alpha_1(\mathbf{R})$						
ν_{34}	1164 (41,2)0.33	1112	$\alpha(C_6-OH)(25)-\beta(C_2-H_7)(16)+\rho(NH_2)(9)$	β(C ₂ -H ₇)						
ν_{35}	1167 (41,6)0.15	1114	$\nu(C_4-C_{10})(15)+\beta(C_2-H_7)(15)-\beta(C_5-H_9)(13)-\nu(C_{10}-OH)(11)$	β(C ₅ -H ₉)						
ν_{36}	1175	1122	$\alpha(C_6-OH)(16)-\rho(NH_2)(15)-\rho(CH_2)(11)-\beta(C_5-H_9)(10)$	α(⁶ COH)						
ν_{37}	(30,2)0.58 1208	1153	α (C ₁ -OH)(32)-v(C ₁ -C ₂)(17)- β (C ₂ -H ₇)(13)	α(¹ COH)						
ν_{38}	(87,14)0.09 1268	1211	v (C ₁ - OH)(24)+ $\alpha_1(R)(13)$ - $\beta(C_3$ -H ₈)(12)+ $\alpha(C_1$ -OH)(8)	v(¹ COH)						
v ₃₉	(120,3)0.75 1282	1224	δ(C ₁₀ -OH)(19)+ν(C ₁ -OH)(12)+ ρ(NH₂)(12) -δ(C ₁₀ -H ₁₁)(10)	ρ(NH ₂)						
v_{40}	(70,6)0.32 1303	1244	$\beta(C_3-H_8)(21)+\nu(C_1-OH)(14)+\nu(C_6-OH)(13)-\nu(C_2-C_3)(13)$	β(C ₃ -H ₈)						
	(145,22)0.06 1312	1253	ρ(CH₂)(48) -ω(CH ₂)(22)-ρ(NH ₂)(11)							
v_{41}	(16,4)0.75			ρ(CH ₂)						
v_{42}	1344 (2,4)0.71	1284	$\delta(C_{10}-H_{11})(17)-\nu(C_6-OH)(10)+\nu(C_4-C_5)(10)$	δ(¹⁰ CH)						
ν_{43}	1363 (34,6)0.29	1302	δ(C₁₀-H₁₁)(35) +δ(C ₁₀ -OH)(15)	δ(¹⁰ CH)						
ν_{44}	1389 (27,2)0.35	1327	$\omega(CH_2)(20) + \alpha(C_1 - OH)(14) + \nu(C_3 - C_4)(12) + \beta(C_3 - H_8)(9) + \nu(C_5 - C_6)(8)$	v(C ₃ -C ₄)						
ν_{45}	1399	1336	ω(CH ₂)(29)-α(C ₁ -OH)(9)-ν(C ₅ -C ₆)(8)	ω(CH ₂)						
ν_{46}	(6,3)0.75 1439	1374	$\boldsymbol{\alpha}(\mathbf{C_{10}}\text{-}\mathbf{OH})(28)\text{-}\delta(\mathbf{C}_{10}\text{-}\mathbf{H}_{11})(22)+v(\mathbf{C}_4\text{-}\mathbf{C}_{10})(11)-\omega(\mathbf{CH}_2)(10)$	α(¹⁰ COH)						
ν_{47}	(59,15)0.20 1473	1407	v(C ₅ -C ₆)(19)-v(C ₂ -C ₃)(14)-v(C ₆ -OH)(8)	v(C ₂ -C ₃)						
ν_{48}	(102,2)0.23 1494	1427	σ(CH ₂)(91)	σ(CH ₂)						
ν ₄₉	(5,7)0.58 1555	1485	$\beta(C_5-H_9)(13)+\nu(C_1-C_2)(12)-\beta(C_3-H_8)(12)-\beta(C_2-H_7)(11)-\nu(C_1-OH)(10)-\nu(C_4-C_2)(12)-\beta(C_3-H_8)(12)-\beta(C_2-H_7)(11)-\nu(C_1-OH)(10)-\nu(C_4-C_2)(12)-\beta(C_3-H_8)(12)-\beta(C_2-H_7)(11)-\nu(C_1-OH)(10)-\nu(C_4-C_2)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\beta(C_3-H_8)(12)-\nu(C_4-C_3-H_8)(12)-\nu(C$	$v(C_1-C_2)$						
	(117,5)0.67		$C_5)(10) + \nu(C_1 - C_6)(10)$							
v_{50}	1646 (26,7)0.75	1572	$v(C_1-C_2)(23)-v(C_1-C_6)(18)+v(C_4-C_5)(15)-v(C_3-C_4)(11)$	v(C ₄ -C ₅)						
ν_{51}	1656 (31,3)0.75	1581	σ(NH ₂)(95)	σ(NH ₂)						
ν_{52}	1658 (23,49)0.57	1583	$v(C_5-C_6)(21)+v(C_2-C_3)(19)+a_2(R)(11)-v(C_1-C_6)(10)$	v(C ₅ -C ₆)						
ν_{53}	2946 (50,128)0.20	2813	v(C ₁₀ -H ₁₁)(98)	v(¹⁰ CH)						
ν_{54}	3002	2867	$v(C_{16}-H_{18})(89)+v(C_{16}-H_{17})(10)$	v(C ₁₆ -H ₁₈						
	(42,83)0.11			(0						

(Contd.)

	Table 8	– Calculate	d vibrational frequencies and proposed assignments for NI	E conformer C-I. (Contd.)				
S. No.	Frequencies	$s(cm^{-1})$	PEDs					
	^{\$} Unscaled	*Scaled						
v ₅₅	3075	2937	v(C₁₆-H₁₇)(89) -v(C ₁₆ -H ₁₈)(10)	v(C ₁₆ -H ₁₇)				
	(20,35)0.49							
v_{56}	3161	3019	v(C ₃ -H ₈)(93)	v(C ₃ -H ₈)				
	(11,63)0.42							
ν_{57}	3175	3032	v(C ₅ -H ₉)(99)	v(C ₅ -H ₉)				
	(6,57)0.22							
ν_{58}	3192	3049	v(C ₂ -H ₇)(93)	v(C ₂ -H ₇)				
	(6,153)0.22							
ν_{59}	3512	3354	$v(N_{21}-H_{23})(67)+v(N_{21}-H_{22})(33)$	$\mathbf{v}(\mathbf{N}_{21}\mathbf{-}\mathbf{H}_{23})$				
	(1,183)0.11							
v_{60}	3594	3432	$v(N_{21}-H_{22})(67)-v(N_{21}-H_{23})(33)$	$\mathbf{v}(\mathbf{N}_{21}\mathbf{-}\mathbf{H}_{22})$				
	(7,86)0.61			10				
v_{61}	3697	3531	v(O ₁₉ -H ₂₀)(96)	v(¹⁹ OH)				
	(132,94)0.14			14				
v_{62}	3792	3622	v(O ₁₄ -H ₁₅)(97)	v(¹⁴ OH)				
	(110,75)0.19			12				
ν_{63}	3849	3676	$v(O_{12}-H_{13})(97)$	v(¹² OH)				
	(80,100)0.22							

Table 9 - Calculated vibrational frequencies and proposed assignments for NE conformer (C-II).

S. No.	Frequenci	es (cm ⁻¹)	PEDs	Modes
	^{\$} Unscaled	*Scaled		
ν_1	35 (5,2)0.75	34	$\tau(C_4-C_{10})(83)$	$\tau(C_4-C_{10})$
ν_2	(3,2)0.73 79 (3,2)0.73	77	$\gamma(C_4-C_{10})(29)+\alpha(C_4-C_{10}-C_{16})(22)+\Phi_2(R)(20)$	γ(C ₄ -C ₁₀)
ν_3	114	111	$τ(C_{10}-C_{16})(63)-τ(O_{19}-H_{20})(14)+β(C_4-C_{10})(10)$	$\tau(C_{10}-C_{16})$
ν_4	(5,0)0.75 163	160	$\tau(O_{14}-H_{15})(72)+\tau(O_{12}-H_{13})(8)$	τ(¹⁴ OH)
ν_5	(136,3)0.67 179	175	$\Phi_2(R)(39)$ - $\alpha(C_4$ - C_{10} - $C_{16})(14)$ + $\Phi_1(R)(8)$	a(CCC)
ν_6	(9,0)0.70 218	213	$\boldsymbol{\beta}(C_4\text{-}C_{10})(29)\text{-}\tau(C_{10}\text{-}C_{16})(26)\text{+}\tau(O_{19}\text{-}H_{20})(8)$	β(C ₄ -C ₁₀)
ν_7	(6,0)0.55 253	248	$\Phi_{3}(R)(24) + \alpha(C_{4}-C_{10}-C_{16})(14) + \gamma(C_{6}-OH)(10) + \gamma(C_{5}-H_{9})(10)$	γ(⁶ COH)
ν_8	(1,1)0.30 260	255	τ(NH₂)(67) -τ(O ₁₉ -H ₂₀)(20)	τ(NH ₂)
ν_9	(9,1)0.21 304	297	β(C₆-OH)(41) +β(C ₁ -OH)(34)	β(⁶ COH)
ν_{10}	(7,1)0.63 321	314	$\alpha(C_{10}-C_{16}-N_{21})(36)-\alpha_2(R)(9)$	a(CCN)
ν_{11}	(5,2)0.18 332	325	δ (C ₁₀ -OH)(12)- α_2 (R)(12)+ γ (C ₁ -OH)(9)+ ν (C ₄ -C ₁₀)(9)	δ(¹⁰ COH)
ν_{12}	(3,3)0.29 402 (2,1)2,52	393	$\gamma(C_1-OH)(31)+\Phi_1(R)(12)+\tau(O_{12}-H_{13})(10)+\alpha(C_4-C_{10}-C_{16})(9)$	γ(¹ COH)
v_{13}	(9,1)0.50 412	403	τ (O ₁₂ -H ₁₃)(75)+ Φ ₃ (R)(8)	τ(¹² OH)
ν_{14}	(64,1)0.74 450	440	$\Phi_{3}(R)(20) + \gamma(C_{1}\text{-OH})(14) - \gamma(C_{6}\text{-OH})(12) - \beta(C_{1}\text{-OH})(9) - \Phi_{2}(R)(9)$	β(¹ COH)
v_{15}	(4,1)0.73 467	457	Φ ₃ (R)(37)-γ(C ₆ -OH)(14)	$\Phi_3(\mathbf{R})$
ν_{16}	(3,0)0.49 535	524	$\delta(C_{10}\text{-OH})(24)$ - $\alpha(C_{10}\text{-}C_{16}\text{-}N_{21})(16)$ +t(CH ₂)(11)	δ(¹⁰ COH)
	(12,1)0.71			(Contd.)

			ational frequencies and proposed assignments for NE conformer (C-II). (<i>Contd.</i>)							
. No.	Frequenci	(PEDs	Modes						
	^{\$} Unscaled	*Scaled								
v_{17}	592 (4,7)0.33	580	$\alpha_3(\mathbf{R})(31) + \beta(C_1 - OH)(21) + \nu(C_1 - C_2)(9)$	$\alpha_2(\mathbf{R})$						
v ₁₈	(4,7)0.55 604 (79,2)0.57	591	$\tau(O_{19}-H_{20})(64)$	τ(¹⁹ OH)						
v ₁₉	625 (52,1)0.57	612	$\alpha_3(\mathbf{R})(15)-\gamma(C_4-C_{10})(9)+\Phi_2(\mathbf{R})(9)-\tau(O_{19}-H_{20})(9)$	<i>α</i> ₃ (R)						
v ₂₀	639 (17,2)0.28	626	$Φ_2(\mathbf{R})(22)$ -γ(C ₄ -C ₁₀)(21)-γ(C ₆ -OH)(14)	$\Phi_2(\mathbf{R})$						
v ₂₁	725 (0,1)0.55	710	$Φ_1(R)(56)$ -γ(C ₆ -OH)(17)-γ(C ₁ -OH)(17)	$\Phi_1(\mathbf{R})$						
v ₂₂	780 (77,10)0.04	764	$ω(NH_2)(14)+ν(C_6-OH)(11)+α_1(R)(11)+ν(C_4-C_{10})(8)$	v(⁶ COH)						
v ₂₃	791 (20,20)0.08	774	$v(C_1-OH)(25)+v(C_1-C_6)(22)+v(C_1-C_2)(8)$	v(C ₁ -C ₆)						
v_{24}	815 (29,0)0.71	797	γ (C ₂ -H ₇)(50)+ γ (C ₃ -H ₈)(19)+ γ (C ₁ -OH)(8)	γ(C ₂ -H ₇)						
v ₂₅	826 (51,4)0.37	808	$\omega(\mathbf{NH}_2)(46) + v(C_{10}-C_{16})(10) - t(CH_2)(9)$	ω(NH ₂)						
v ₂₆	881 (16,3)0.21	863	$\gamma(C_5-H_9)(64)+\Phi_1(R)(15)$	γ(C ₅ -H ₉)						
v ₂₇	910 (85,4)0.22	891	ν(C ₁₀ -OH)(19)-ω(NH ₂)(17)+ ν (C ₁₀ -C ₁₆)(12)	$v(C_{10}-C_{16})$						
v ₂₈	942 (3,0)0.41	922	$\gamma(C_3 - H_8)(54) - \gamma(C_2 - H_7)(25)$	γ(C ₃ -H ₈)						
v ₂₉	964 (9,4)0.09	943	$t(CH_2)(21) + v(C_3 - C_4)(9) + \rho(NH_2)(9) + v(C_4 - C_{10})(8)$	t(CH ₂)						
v ₃₀	970 (6,7)0.69	949	$v(C_{10}-C_{16})(21)+\rho(NH_2)(16)-v(C_4-C_{10})(10)+t(CH_2)(9)$	$\mathbf{v}(\mathbf{C}_4 - \mathbf{C}_{10})$						
v ₃₁	1057 (22,12)0.23 1100	1009 1050	$v(C_{16}-N_{21})(76)$ $v(C_{10}-OH)(31)-v(C_4-C_5)(9)-v(C_{10}-C_{16})(8)$	$v(C_{16}-N_{21})$ $v(^{10}COH)$						
V ₃₂	(16,8)0.13 1126	1075	$v(C_{10}\text{-OH})(24) - \alpha(C_1\text{-OH})(15) - \alpha_1(\mathbf{R})(9) - \beta(C_3\text{-H}_8)(9)$	ν(COH) α ₁ (R)						
v ₃₃ v ₃₄	(155,3)0.40 1165	1113	$\beta(C_2-H_7)(25)-\nu(C_2-C_3)(18)+\alpha(C_1-OH)(16)-\beta(C_3-H_8)(11)$	β(C ₂ -H ₇)						
v ₃₄ v ₃₅	(29,4)0.46 1167	1115	$\rho(\text{NH}_2)$ (20)- $\delta(\text{C}_{10}\text{-H}_{11})(14)+\rho(\text{CH}_2)(12)-\alpha(\text{C}_{10}\text{-OH})(8)$	ρ(02 H)) ρ(NH ₂)						
ν ₃₆	(15,5)0.11 1177	1124	$\alpha(C_1-OH)(21)+\beta(C_5-H_9)(19)-\nu(C_4-C_{10})(13)$	β(C ₅ -H ₉)						
v ₃₇	(29,3)0.22 1206	1152	$\alpha(C_{6}\text{-OH})(29) - \nu(C_{5}\text{-}C_{6})(17) + \beta(C_{5}\text{-}H_{9})(15) + \nu(C_{1}\text{-}OH)(10)$	ρ(°ς H9) α(⁶ COH)						
v ₃₈	(38,4)0.15 1266	1209	α (C ₁ -OH)(14)+ α ₁ (R)(12)+ ν (C ₁ -OH)(10)- β (C ₂ -H ₇)(9)	α(¹ COH)						
v ₃₉	(81,4)0.67 1287	1229	δ (C ₁₀ -H ₁₁)(15)+α(C ₆ -OH)(12)-ν(C ₁ -OH)(10)+δ(C ₁₀ -OH)(9)	δ(¹⁰ CH)						
V ₄₀	(19,4)0.61 1304	1245	$\nu(C_6-OH)(25)-\nu(C_2-C_3)(16)-\nu(C_4-C_5)(11)+\nu(C_1-OH)(10)-\nu(C_1-C_6)(10)$	v(¹ COH)						
v ₄₁	(233,23)0.06 1311	1252	ρ(CH₂)(46)- ω(CH ₂)(24)-ρ(NH ₂)(12)	ρ(CH ₂)						
v ₄₂	(10,5)0.70 1342 (70,2)0,41	1282	$\beta(C_3-H_8)(17)+\beta(C_5-H_9)(16)-\alpha(C_6-OH)(16)-\alpha(C_1-OH)(10)$	β(C ₃ -H ₈)						
V ₄₃	(79,2)0.41 1355 (25,2)0.74	1294	δ(C₁₀-H₁₁)(43) +δ(C ₁₀ -OH)(13)	δ(¹⁰ CH)						
v_{44}	(35,3)0.74 1386 (44,7)0.06	1323	$v(C_3-C_4)(15)+v(C_1-C_2)(14)-\omega(CH_2)(11)-v(C_4-C_5)(9)$	v(C ₃ -C ₄)						

	Table 9 – C	Calculated vib	rational frequencies and proposed assignments for NE conformer (C-II)). (Contd.)
S. No.	Frequencie	es (cm ⁻¹)	PEDs	Modes
	^{\$} Unscaled	*Scaled		
ν_{45}	1394	1331	ω(CH₂)(34) +α(C ₁₀ -OH)(12)-ρ(NH ₂)(10)+ρ(CH ₂)(8)	ω(CH ₂)
	(13,8)0.38			10
v_{46}	1433	1369	α (C ₁₀ -OH)(31)- δ (C ₁₀ -H ₁₁)(22)- ω (CH ₂)(10)	α(¹⁰ COH)
	(36,12)0.21 1492	1425	$\sigma(CH_2)(14)-\nu(C_5-C_6)(13)+\nu(C_2-C_3)(11)-\nu(C_4-C_5)(10)$	$\mathbf{v}(\mathbf{C},\mathbf{C})$
v_{47}	(1,4)0.68	1723	$0(C11_2)(14) - 0(C_5 - C_6)(13) + 0(C_2 - C_3)(11) - 0(C_4 - C_5)(10)$	$v(C_2-C_3)$
ν_{48}	1495	1428	σ(CH ₂)(78)	σ(CH ₂)
-10	(5,7)0.51			- (- 2)
v_{49}	1545	1475	$\beta(C_2-H_7)(18)-\nu(C_1-C_2)(15)-\beta(C_5-H_9)(11)+\nu(C_3-C_4)(10)$	$v(C_1-C_2)$
	(169,2)0.74			
v_{50}	1645	1571	$v(C_1-C_6)(21)-v(C_1-C_2)(18)-v(C_4-C_5)(15)+v(C_3-C_4)(11)$	$v(C_4-C_5)$
	(43,10)0.61 1656	1592		
v_{51}	(30,3)0.75	1582	σ(NH ₂)(95)	σ(NH ₂)
v ₅₂	1661	1587	$v(C_{5}-C_{6})(26)+v(C_{2}-C_{3})(16)+\alpha_{2}(R)(11)-v(C_{3}-C_{4})(8)$	$v(C_5-C_6)$
• 52	(4,38)0.60	1007	$(05 \ 06)(20) \ (02 \ 03)(10) \ w_2(10)(11) \ (03 \ 04)(0)$	((05 06)
v ₅₃	2942	2809	v(C ₁₀ -H ₁₁)(98)	v(¹⁰ CH)
	(52,126)0.20			
ν_{54}	3001	2866	$v(C_{16}-H_{18})(90)+v(C_{16}-H_{17})(9)$	v(C ₁₆ -H ₁₈)
	(43,85)0.11	2020	(C, H,)(00) (C, H,)(10)	
v ₅₅	3076	2938	$v(C_{16}-H_{17})(89)-v(C_{16}-H_{18})(10)$	v(C ₁₆ -H ₁₇)
¥	(19,36)0.48 3151	3009	v(C ₂ -H ₇)(98)	v(C ₂ -H ₇)
v_{56}	(18,109)0.31	3009	$V(C_2 - H_7)(98)$	V(C ₂ -H ₇)
v_{57}	3172	3029	v(C ₅ -H ₉)(99)	v(C ₅ -H ₉)
51	(4,86)0.25			.(-39)
ν_{58}	3211	3067	v(C ₃ -H ₈)(98)	v(C ₃ -H ₈)
	(1,77)0.20			
ν_{59}	3512	3354	$v(N_{21}-H_{23})(67)+v(N_{21}-H_{22})(33)$	v(N ₂₁ -H ₂₃)
	(1,182)0.11 3595	2422	$(\mathbf{N} + \mathbf{H})(7) (\mathbf{N} + \mathbf{H})(2)$	
v_{60}	3595 (7,86)0.60	3433	$v(N_{21}-H_{22})(67)-v(N_{21}-H_{23})(33)$	v(N ₂₁ -H ₂₂)
v_{61}	3699	3532	v(O ₁₉ -H ₂₀)(96)	v(¹⁹ OH)
• 01	(130,93)0.14	5552		(OII)
v_{62}	3793	3623	$v(O_{12}-H_{13})(97)$	v(¹² OH)
	(111,75)0.19			
v_{63}	3852	3679	v(O ₁₄ -H ₁₅)(97)	v(¹⁴ OH)
	(89,127)0.23			

The numbers (in bracket) after the modes are the % potential energy calculated using normal coordinate analysis.

⁸: The first and second numbers within each bracket represent IR intensity (km/mol) and Raman intensity while the number before each bracket represents the corresponding calculated frequency (cm⁻¹), first word after each bracket represent corresponding depolarization ratios of the Raman band.

*: Calculated wavenumbers below 1000 cm⁻¹ were scaled by the scale factor 0.9786 and those above 1000 cm⁻¹ by the scale factor 0.9550 for larger wavenumbers.

The abbreviations are- ν = stretching, ω = wagging, τ = torsion, t = twisting, ρ = rocking, σ = scissoring, δ = deformation, α = planar deformation of ring, β = planar deformation, γ = non-planar deformation, Φ =non-planar deformation of ring. The mode in bold letters in the PEDs column corresponds to the assigned mode.

bending modes. Most of the stretching C-H modes do not show much variation in going from conformer C-I to conformer C-II however, some of the modes show small variations in magnitudes. The in-phase and out-of-phase C-H stretching modes are found to have magnitudes 3049/3067 and 3019/3009 cm⁻¹ and similarly, the in-phase and out-of-phase C-H deformation modes are calculated to be 806/920 and 922/797 cm⁻¹ in conformers C-I/C-II. The C₅-H bond gives rise to the stretching (7b) and non-planar bending modes (5) at 3032/3029 and 858/863cm⁻¹ in C-I/C-II. All the same, the C-H bonds of the phenyl ring participate together with in the three planar C-H bending modes. The planar C-H deformation mode corresponding to the mode 3 (1350 cm⁻¹) of benzene in which all the C-H band in phase is found at

Fig. 7 - Calculated IR spectrum for two low energy NE conformers.

~1244/1282 cm⁻¹ in conformers C-I/C-II. The other two ring planar C-H deformations (18a, 9b) are calculated to have magnitudes 1112/1113 and 1114/1124 cm⁻¹ in conformers C-I/C- II. The corresponding β (C-H) modes (18a, 9b) were computed at 1068/1071/1125/1012 and 1114/1115/1003/1143cm⁻¹ and observed modes correspond to 18a at the frequencies 1112/1163/ 1079/1037 cm⁻¹ in NE/E/Dopamine/Bz [36/28/15/32].

Out of three γ (C-H) modes, one of the three modes shows a small variation while the other two modes (10b, 17b) have the larger variation in going from the conformer C-I to C-II. Similarly, Out of three v(C-H) modes, 2 of the 3 modes show a larger variation. The mode 20b is found at lower wavenumber whereas reverse order has been found for the mode 2 in going from the conformer C-I to C-II. The side chain bond ¹⁰CH has two deformations (δ) and stretching (v) modes. Out of the three, 2 deformations modes are found at the frequencies 1284/1229 and 1302/1294 cm⁻¹ in conformers C-I/C-II. The mode (v₄₂) is found at the lower magnitude in comparison the MIPA. All the three side chain ¹⁰CH modes have been reduced in magnitude in going from conformer C-I to C-II in which the stretching mode has been smaller by ~ 35 cm⁻¹ in comparison to MIPA.

3.6.3 O-H/C-O(H) group modes (18 modes)

The stretching vibration of the O-H group consists in the region 3200-3600 cm⁻¹. For 5-HT, Jha *et al.*³⁷ have assigned the v(O-H) mode at ~ 3667 cm⁻¹. In the present case, the computed frequencies $3531/3532(v_{61})$, $3622/3623(v_{62})$ and $3676/3679(v_{63})$ cm⁻¹ correspond to the side chain, bonded and non-bonded O-H stretching modes, respectively. The computed

Fig. 8 - Calculated Raman spectra for two low energy NE conformer.

		Table	e 10 –	The u	inscaled	compu	uted and	observe	ed mode	es of the	NE, E,	DOPA,	, o-DHB	, Bz and	MIPA m	olecul	es.
S.	NE				Е				DOPA		1	l,2-DHI	В	Bz/MIPA			Modes
No	Calc.		Ob	sd ^a	Calc	Ob	osd ^b	Calc	Ob	sd ^c	Calc	Ob	sd ^d	Calc	Obsc	l ^{e, f}	
	C-I	C-II	IR	R		IR	R		IR	R		IR	R		IR	R	
v_1	34	35	-	-	30	-	-	35	-	-	-	-	-	133	-	-	τ(CC)
ν_2	81	79	-	-	63	-	85	75	-	58	-	-	-	-	-	-	γ(CC)
ν_3	111	114	-	-	80	-	102	129	-	90	-	-	-	268	-	-	τ(CC)
ν_4	179	179	-	-	219	-	196	191	-	200	-	-	-	378	-	-	a(CCC)
v_5	204	163	-	-	200	-	-	406	-	389	163	-	-	-	-	-	non-bonded τ(OH)
v_6	206	218	-	-	198	-	-	295	-	-	-	-	-	-	-	-	β(CC)
v_7	250	253	-	-	158	-	256	243	-	-	194	-	202	-	-	-	non-bonded γ(COH)
ν_8	259	260	-	-	-	-	-	272	-	261	-	-	-	244	-	-	$\tau(NH_2)$
ν ₉	307	304	-	-	308	-	316	310	-	306	292	-	295	-	-	-	non-bonded β(COH)
ν_{10}	320	321	-	-	356	-	297	430	-	-	-	-	-	637	-	-	a(CCN)
ν_{11}	341	332	-	-	275	-	364	-	-	-	-	-	-	-	-	-	side chain δ(COH)
ν_{12}	401	402	-	-	407	-	-	366	-	326	392	-	-	-	-	-	bonded γ(COH)
ν_{13}	412	412	-	-	413	-	-	172	-	153	411	-	-	-	-	-	bonded τ(OH)
ν_{14}	461	467	-	-	460	-	-	455	459	453	457	449	-	409	404	-	16b

5. Io		NE				Е			DOPA			1,2-DHB			Bz/MIPA		
10	Ca	lc.	Ob	sd ^a	Calc	Ob	sd ^b	Calc	Ob	sd ^b	Calc	Ob	sd ^d	Calc	Obse	d ^{e, f}	
	C-I	C-II	IR	R		IR	R		IR	R		IR	R		IR	R	
15	475	450	-	-	484	-	462	473	474	475	448	-	-	-	-	-	bonded
15																	β(COH)
16	549	535	-	-	555	527	-	-	-	-	-	-	-	426	-	-	side chain δ(COH)
17	578	592	-	-	575	-		593	598	591	590	564	564	622	-	606	6b
18	603	625	612	-	603	610	591	527	-	-	559	-	-	622	-	606	6a
19	613	604	-	-	590	-	-	-	-	-	-	-	-	321	-	-	side chain τ(OH)
20	636	639	649	-	639	629	613	641	-	633	568	555	-	409	404	-	16a
20	719	725	689	-	719	733	721	728	724	719	718	-	-	719	707	-	4
22	765	780	-	-	760	983	985	1308	-	-	1265	-	-	-	-	-	non-bonded v(COH)
23	801	791	-	-	797	779	781	791	750	744	779	769	752	1011	-	993	1
23 24	823	942	-	-	829	818	812	828	814	809	746	722	719	686	673	-	10b
25	827	826	-	-	-	-	-	836			-	-	-	837	834	-	$\omega(NH_2)$
26	876	881	-	-	879	866	870	850	-	-	958	-	963	863	-	990	5
2.7	915	910	-	-	900	889		717	-	-	-	-	-	802	748	-	v(CC)
28	940	815	-	-	942	943	947	948	-	-	916	916	910	980	967	-	17b
29	966	964	-	949	1034	-	-	1046	1013	1011	-	-	-	946	-	-	t(CH ₂)
30	978	970	-	-	901	-	-	892	876	871	-	-	-	931	-	-	v(CC)
31	1056	1057	-	-	962	-	-	1096	-	-	-	-	-	1066	1057	-	v(CN)
32	1100	1100	-	-	1088	-		-	-	-	-	-	-	1142	1126	-	side chain v(COH)
33	1119	1126	1105	-	990	1065	1064	971	945	941	861	859	-	1022	1010	-	12
34	1164	1165	-	1112	1118	1163	1163	1121	1079	-	1178	-	-	1060	1037	1060	18a
35	1167	1177	-	-	1166	-	-	1168	1114	-	1050	-	-	1197	-	1178	9b
36	1175	1206	-	-	1169	-	1103	1179	-	1139	1166	-	-	-	-	-	non-bonde α(COH)
37	1208	1266	-	1155	1207	1137	1138	1209	1145	-	1204	1165	1164	-	-	-	bonded α(COH)
38	1268	1304	1175	1177	1274	-	-	1272	1206	1204	1298	-	-	-	-	-	bonded v(COH)
39	1282	1167	-	-	-	-	-	1154	-	1109	-	-	-	1191	1126	-	$\rho(NH_2)$
40	1303	1342	-	-	1303	1254	-	1348	1284	1282	1357	1281	1276	1381	1350	-	3
41	1312	1311	-	1256	1288	-	1259	1333	-	-	-	-	-	-	-	-	$\rho(CH_2)$
42	1344		-	-	1335	-	-	-	-	-	-	-	-	1436	1337	-	$\delta(^{10}CH)$
43	1363		-	1310		-	-	-	-	-	-	-	-	1379		-	δ(¹⁰ CH)
44	1389		-	-	1394	-	1348	1392	1320	1316	1391	1324	-	1337	1309	-	14
45	1399		-	-	1356	1359	-	1415	1341	1350	-	-	-	1418	1337	-	$\omega(CH_2)$
46			1350		1436		1198	-	-	-	-	-	-	1269	-	-	side chain α(COH)
47	1473		-		1474		1464	1471	1392	1389	1504	-	-	1510	1482	-	19b
48	1494		-	-		1406	1405	1508	1460	-	-	-	-	1504	-	-	$\sigma(CH_2)$
49			1496		1555		1498	1554	1498	1491	1540	1469	1477	1510	1482	-	19a
50	1646		-	1567	1646	1599	1610	1644	1583	1579	1651	-	-	1634	-	1599	8b
51	1656		-	-	-	-	-	1657	1615	-	-	-	-	1647	-	-	$\sigma(NH_2)$
52	1658		-	-	1668	1631	1632	1655	1599	1596	1647	1597	1604	1634	-	1599	8a
53 54	2946 3002		-	-	2942 2970	-	-	- 2950	- 2821	-	-	-	-	2982 2910	-	-	$v(^{10}CH)$ $v_s(CH_2)$

S			

	Tal	ble 10	– The	unscal	ed com	nputed a	and obse	erved m	odes of	the NE,	E, DOF	PA, o-D	HB, Bz	and MIP	A molec	ules. (C	Contd.)
S. No			Е				DOPA			1,2-DHB			z/MIPA	Modes			
	Ca	ılc.	Ob	sd ^a	Calc	Ob	sd ^b	Calc	Ob	sd ^b	Calc	Ob	sd ^b	Calc	Obsd ^b		
	C-I	C-II	IR	R		IR	R		IR	R		IR	R		IR	R	
ν_{55}	3075	3076	-	-	3058	2930	2929	3050	-	-	-	-	-	3038	2946	-	$v_{as}(CH_2)$
v_{56}	3161	3211	3000	-	3160	3070	3076	3164	-	3023	3175	-	-	3165	3064	-	20b
ν_{57}	3175	3172	3023	3024	3175	-	-	3150	-	-	3151	-	-	3156	-	3056	7b
ν_{58}	3192	3151	3035	3047	3192	-	-	3191	3035	3054	3198	3052	3056	3192	-	3073	2
ν_{59}	3512	3512	-	-	-	-	-	3499	3145	-	-	-	-	3509	3432	-	$v_{s}(NH_{2})$
ν_{60}	3594	3595	-	-	-	-	-	3577	3215	-	-	-	-	3587	3446	-	$v_{as}(NH_2)$
ν_{61}	3697	3699	3351	-	3695	3315	-	-	-	-	-	-	-	3826	3653	-	side chain v(OH)
v_{62}	3792	3793	3368	-	3793	3376	-	3794	3341	3341	3794	3326	3330	-	-	-	bonded ν(OH)
ν_{63}	3849	3852	-	-	3849		-	3849	3391	-	3853	3450	3463	-	-	-	non-bonded v(OH)
	· · ·	· · ·	d-36, sity, R		f-38] an Inte	nsity											

frequencies for the bonded and non-bonded v(O-H) modes of the NE molecule are very close to those of E, dopamine, and 1, 2-DHB; while for the side chain v(O-H) frequency is found to be computed frequency 3654 cm^{-1} in MIPA and which is lower by $\sim 32 \text{ cm}^{-1}$ from observed frequency³⁸. The computed frequencies $200/160(v_5)$, $403/403(v_{13})$, and $600/591(v_{19})$ cm⁻¹ are assigned to the torsional modes about the non-bonded, bonded and side chain O-H bond for the NE conformers C-I/C-II. The modes v_5 , v_{13} , v_{19} , v_{61} , v_{62} and v_{63} seem to be extremely localized modes. From the above discussion, it can be seen that the stretching frequency due to the non-bonded O-H mode is greater than the bonded O-H whereas reverse order is noticed for torsional frequencies. This could be explicated in terms of the intra-molecular H bonding between the bonded O and H atoms. This causes a slight increase in the O₁₄-H₁₅ bond length, which decreases the effective stretching force constant, which in becoming reduces the stretching frequency. Then again, the intra-molecular H bonding between the atoms O₁₂ and H₁₅ gives rise more resistance against the torsional modes, which effectively raises the torsional force constant and thereby lifts the torsional frequencies.

For the conformers C-I and C-II, the computed frequencies $1122/1152(v_{36})$, $1153/1209(v_{37})$ and $1374/1369(v_{46})$ cm⁻¹ correspond to the non-bonded, bonded and side chain α (COH) vibrations and the calculated frequencies $749/764(v_{21})$, $1050/1050(v_{32})$ and $1211/1245(v_{38})$ cm⁻¹ correspond to the non-bonded, side chain and bonded v(C-OH) vibrations.

Form the PEDs Tables 8 and 9 one can see that for the mode v (¹C-OH) couples with the (¹COH) mode along with several other modes, whereas for the mode v (⁶C-OH) couples only with several other modes.

The wavenumbers v_7 , v_9 , v_{11} , v_{12} , v_{15} and v_{16} correspond to bonded, non-bonded and side chain deformation modes of the three (C-OH) groups. Presently, the calculated wavenumbers 245/248, 393/393 and 537/524 cm⁻¹ are correlated to the two non-planar and a side chain deformation γ (C-OH) modes whereas the frequencies 300/297, 464/440 and 333/325 cm⁻¹ are assigned to the two planar and a side chain deformation β (C-OH) modes, respectively, in conformers C-I and C-II.

3.6.4 NH₂ group modes (6 modes)

The $v_s(v_{59})$ and $v_{as}(v_{60})$ modes of the NH₂ group satisfy the empirical relation given by Bellamy and Williams³⁹ for the two low energy conformers of NE suggesting equivalent nature of the two NH bonds of the NH₂ group. For the NH₂ group the modes v_s , v_{as} , σ , ω , and torsional mode (t) of the NH₂ group do not show significant variations while the rocking mode shows a large variation ~ 109 cm⁻¹ in going form conformer C-I to C-II. The modes v_s , v_{as} , and σ are expected to be localized and pure group modes whereas the remaining modes could be coupled with other normal modes.

3.6.5 CH₂ group modes (6 modes)

Similar to the NH₂ group, it should be noted that the modes $v_s(CH_2)(v_{54})$ and $v_{as}(CH_2)(v_{55})$ modes have magnitudes close to 2867 and 2937 cm⁻¹ for the

conformers C-I and C-II. The modes $\sigma(CH_2)(v_{48}) \omega(CH_2)(v_{45})$ and $\rho(CH_2)(v_{41})$ have been found to have frequencies close to 1427, 1331 and 1252 cm⁻¹ for the conformers C-I and C-II. The twisting modes of the CH₂ group have the magnitude 946 cm⁻¹ for C-I and are reduced to 943 cm⁻¹ for the conformer C-I.

The modes ω , σ , v_s , and v_{as} are found to have the unchanged magnitude in going from conformer C-I to the conformer C-II; while the twisting modes and $\rho(CH_2)$ mode are found to have reduced magnitudes (~3 and 5 cm⁻¹) in going from the conformer C-I to C-II. The mode v_{48} is purely localized and depolarized mode whereas the mode v_{41} is coupled with other modes of vibration in NE molecules. The modes v_{29} and v_{45} are coupled with other modes of vibration.

3.6.6 C₁₀-C₁₆-N₂₁ chain modes (6 modes)

For benzene and its amino derivatives, the side chain C-NH₂ stretching frequency seems in the range^{32,39} 1000-1300 cm⁻¹. The side chain C_{10} - C_{16} - N_{21} produces six modes as the v (C₁₀-C₁₆), v (C₁₆-N₂₁), α $(C_4-C_{10}-C_{16})$, $\alpha(C_{10}-C_{16}-N_{21})$, a torsional mode about the C₄-C₁₀ bond and another torsional mode about the C_{10} - C_{16} bond. The v (C_{10} - C_{16}) (v_{27}) mode shows a small variation of $\sim 4 \text{ cm}^{-1}$ in going from the conformers C-I to C-II. The angle bending mode $\alpha(C_4-C_{10}-C_{16})$ and $\alpha(C_{10}-C_{16}-N_{21})$ have same magnitude (~175 & 313 cm⁻¹) for the conformers C-I and C-II. The torsional mode about the C_4 - C_{10} bond is close to the one conformer to the other conformer and has been enhanced in magnitude by $\sim 1 \text{ cm}^{-1}$ in going from the conformer C-I to C-II. The torsional mode (v_3) about the C₁₀-C₁₆ bond has differed in magnitude by $\sim 2 \text{ cm}^{-1}$ for the conformers C-I (109 cm⁻¹) and C-II (111 cm⁻¹). This mode (v_3) is found at the lower wavenumber in comparison to MIPA (262 cm⁻¹). The stretching mode of the C_{16} - N_{21} bond has been computed frequency 1008 and 1009 cm⁻¹ for the conformers C-I and C-II, which is found at higher wavenumber in comparison to E.

3.6.7 C_4 - C_{10} Linkage modes (3 modes)

The C₄-C₁₀ linkage is the bond connecting the 1, 2-DHB and MIPA moieties to each other. With the C₄-C₁₀ linkage, a stretching bond v (C₄-C₁₀), an inplane bending β (C₄-C₁₀) and out-of-plane bending deformations γ (C₄-C₁₀) of the whole 1,2-DHB moiety with respect to the MIPA moiety.

The v(C-C) vibration was assigned at the frequency 868 cm⁻¹ in N, N-DMT by Vidak *et al.*⁴⁰ In the present case, the mode v(C₄-C₁₀) has magnitude 958 cm⁻¹ for

the conformer C-I; while its magnitude is reduced by ~ 9 cm⁻¹ for the conformer C-II. Similarly, for the γ mode corresponding to the C₄-C₁₀ bond has the same magnitude (79 cm⁻¹) for the conformer C-I while for C-II it has the somewhat lower magnitude (77 cm⁻¹); whereas the β mode (v₆) of C₄-C₁₀ linkage show variation of ~12 cm⁻¹ between the conformer C-I and C-II. This mode (v₆) is somewhat higher magnitude (194 cm⁻¹) from E while it is significantly lower magnitude (289 cm⁻¹) from dopamine molecule.

4 Conclusions

Comparative vibrational and structural investigations of the two low energy conformers of norepinephrine molecule have been carried out at the B3LYP/6-311++G** level. Out of the 11 possible conformers, 2 conformers have been found up to room temperature. The bond lengths and angles do not express the significant variations while the dihedral angles vary significantly variations in going from conformer C-I to C-II. Some of the vibrational modes of the benzene moiety are conformation-dependent to some extent whereas most of the normal modes of vibration of the MIPA side chain vary significantly in going from conformer C-I to conformer C-II.

Due to strong O-H.....N interaction the side chain O-H (0.971Å) and C-O bond lengths have been found larger than the bonded and non-bonded O-H and C-O length whereas the bond angle α (C-O-H) (104.9°) has been found lower than the bonded and non-bonded angle α (C-O-H). The torsional frequency; due to the non-bonded O-H is lower than that due to the bonded O-H. Due to strong O-H.....N interaction, the side chain τ (C-O(H)) frequency is higher than bonded and non-bonded τ (C-O(H)) frequencies whereas reverse order is noticed for v(OH) stretching frequencies. The MEP for the two lowest energy conformers suggested that the sites of the maximum positive and negative ESP vary on changing the conformation that means the reactive sites for different conformers are dissimilar. The atomic charges also change significantly from one conformer to other. The three -OH stretching vibrations are highly localized modes. The τ (O-H) for conformer C-II has the same order of magnitudes (~160 and 403 cm⁻¹) as compared to 1,2-DHB (~ 160 and 402 cm⁻¹). This is an evidence of the inter-molecular H bonding with the O atom. The non-bonded τ (C-O(H)), γ (COH), ν (CC), ρ (NH₂), α (COH) and v_s (CH₂) modes of norepinephrine have been found at higher frequencies, whereas β (CC), α (CCN), t(CH₂) and v(CN) have been found at lower frequencies in going from dopamine to norepinephrine.

The planar ring deformation and trigonal bending modes of norepinephrine have been found at higher frequencies in comparison to dopamine. From the Williams and Bellamy empirical relation, the nature of the two NH bonds of the NH₂ group is different. The computations of the HOMO and LUMO energies of NE conformers in the ground state have been carried out. The value of energy gap, ~ 5.431 eV, indicates it to be a soft molecule. The HOMO-LUMO energy gap endorses the pharmacological active property of norepinephrine. The molecular electrostatic potential (MEP) shows that the positive potential sites are about the H atoms and the negative potential sites are delivered at the electronegative atoms. The MEP surface suggests that the sites close to the O_{14} (C-I), O_{12} (C-II) and O_{19} atoms of the side chain are regions of the most negative ESP and the sites close to the H₁₃, H₁₅ and N₂₁ atoms (C-I and C-II) are regions of the most positive ESP.

References

- Hardmaman J G, Limbird L E & Molinoff P B, Goodman Gilmans; the pharmacological basis of therapeutics, 9th Eds; (McGraw-Hill: New York), 1996.
- 2 Bergin R & Carlstrom D, Acta Cryst, B24 (1968) 1506.
- 3 Bustard T M & Egan R S, Tetrahedron, 27 (1971) 4457.
- 4 Pullman B & Courriere P, Quantum mechanics of molecular conformation, B Pullman Ed, (John Wiley & Sons), (1976) 547.
- 5 Alagona G & Ghio C, Int J Quantum Chem, 90 (2002) 641.
- 6 Nagy P I, Alagona G & Ghio C & Takacss-Novak K, J Am Chem Soc, 125 (2003) 2770.
- 7 Snock L C, Van Mourik T & Simons J P, *Mol Phys*, 101 (2003) 1239.
- 8 Snock L C, Van Mourik T, Carcabal P & Simons J P, *Phys Chem Chem Phys*, 5 (2003) 4519.
- 9 Van Mourik T & Fruchtl H A, Mol Phys, 103 (2005) 1641.
- 10 Van Mourik T, Chem Phys Lett, 414 (2005) 364.
- 11 Park M K, Yoo H S, Kang Y K & Lee N S, *Bull Korean chem Soc*, 13 (1992) 230.
- 12 Benoit D M, J Chem Phys, 129 (2008) 234334.
- 13 Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T,

Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C Jaramillo, J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian 09, Revision B01, Gaussian, Inc, Wallingford CT, 2010.

- 14 Dennington R, Keith T & Millam J, GaussView, Version 412, Semichem Inc, Shawnee Mission, KS, 2007.
- 15 Jha O, Yadav T K & Yadav R A, Spectrochim Acta A, 189 (2018) 473.
- 16 Rauhut G & Pulay P, J Phys Chem, 99 (1995) 3093.
- 17 Andersen A M, *Acta Chem Scand B*, 29 (1975) 239.
- 18 Marstokk K M & Mqllendal H, J Mol Struc, 35 (1976) 57.
- 19 Sato H, Dybal J, Murakami R, Noda I & Ozaki Y, J Mol Struct, 35 (2005) 744.
- 20 Meenakshi R, Mol Simulat, 36 (2010) 425.
- 21 Dewar M J S, *The molecular orbital theory of organic chemistry*, (McGraw-Hill and Inc), (1969).
- 22 Coulson C A & McWeeny R, Coulson's Valence Oxford University Press, 1979.
- 23 Pir H, Günay N, Avcı D & Atalay Y, Spectrochim Acta A, 96 (2012) 916.
- 24 Padmaja L, Ravi Kumar C, Sajan D, Joe I H, Jayakumar V S & Pettit G R, *J Raman Spectrosc*, 40 (2009) 419.
- 25 Sagdinc S & Pir H, Spectrochim Acta A, 73 (2009) 181.
- 26 Politzer P & Murray J S, Theor Chem Acc, 108 (2002) 134.
- 27 Okulik N & Jubert A H, J Mol Des, 4 (2005) 17.
- 28 Gunasekaran S, Thilak K R & Ponnusamy S, *Indian J Pure* Appl Phys, 45 (2007) 884.
- 29 Yadav R A & Singh I S, The J Sci Res, 33 (1982-83) 133.
- 30 Frisch A, Nielsen A B, Holder A J, Gauss View user manual, Gaussian, Inc, Pittsburgh, PA, 2000.
- 31 Martin J M L, Alsenoy V & Alsenoy C V, GAR2PED, University of Antwerp, 1995.
- 32 Varsanyi G, Vibrational spectra of benzene derivatives, (Academic Press: New York), 1969.
- 33 Ikezawa Y, Yoshida A & Sekiguchi R, *Electrochim Acta*, 46 (2001) 769.
- 34 Pulay P, Fogarasi G, Pang F & Boggs J E, J Am Chem Soc, 101 (1979) 2550.
- 35 Silverstein M, Clayton B G & Morill C, Spectometric identification of organic compounds, (Wiley: New York), 1981.
- 36 Ramirez F J & Lopez Navarrete J T, Vibrat Spectrosc, 4 (1993) 321.
- 37 Jha O, Yadav T K & Yadav R A, Spectrochim Acta A, 173 (2017) 307.
- 38 Cacela C, Fausto R & Duarte L, Vibrational Spectrosc, 26 (2001) 113.
- 39 Bellamy L J & Williams R L, J Chem Soc, (1956) 2753.
- 40 Vidak A, Sapic I M & Dananic V, *Integr Mol Med*, 2 (2015) 354.