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A general analysis has been developed to study the two-dimensional, laminar flow of a viscous, incompressible, 

electrically conducting fluid near a stagnation point of a stretching sheet through a porous medium with heat generation in 

the presence of a magnetic field. The governing boundary layer equations have been transformed to ordinary differential 

equations by using suitable similarity variables. The solutions of momentum and energy equations have been obtained 

independently by a perturbation technique for a small magnetic parameter. The effects of various parameters such as 

magnetic parameter, porosity parameter, stretching parameter, Prandtl number, Eckert number and heat generation 

coefficient for velocity and temperature distributions along with local skin friction coefficient and local Nusselt number 

have been studied in detail through graphical and numerical representations. 
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1 Introduction 

 Flow of an incompressible viscous fluid over a 

stretching surface has important applications in the 

industry such as the extrusion of polymer in a melt-

spinning process, the aerodynamic extrusion of plastic 

sheets, manufacturing plastic films, artificial fibers 

etc. Further, glass blowing, continuous casting of 

metals and spinning of fibers involve the flow due to 

a stretching surface. Crane
1
 probably was first who 

studied the flow at a stretching sheet and produced a 

similarity solution in closed analytical form for the 

steady two-dimensional problem. Gupta and Gupta
2
, 

Dutta et al
3
., Chiam

4
, Mahapatra and Gupta

5
, 

Andersson
6
, Elbashbeshy and Bazid

7
, Miklavcic and 

Wang
8
 and Jat and Chaudhary

9
 studied the heat 

transfer to steady the two-dimensional stagnation 

point flow over a stretching surface taking into 

account different aspects of the problem.  

 Recently, boundary layer flow through porous 

media is a subject of great interest due to its various 

applications such as oil recovery, composite 

manufacturing processes, filtration processes, paper 

and textile coating, geothermal engineering. Its 

engineering and geophysical applications are flow of 

groundwater, geothermal energy utilization, insulation 

of buildings, energy storage, recovery and chemical 

reactor engineering. Attia
10

, Jat and Chaudhary
11,12

, 

Pal and Hiremath
13

, Bhattacharyya and Layek
14

, 

Rosali et al
15

., Singh and Pathak
16

, Mukhopadhyay 

and Layek
17

 and Ram et al
18

. studied the boundary 

layer flow near the stagnation point of a stretching 

sheet through porous and non-porous boundaries 

under different physical situations. Very recently 

Mahapatra and Nandy
19

 analyzed a stability of dual 

solutions in stagnation-point flow and heat transfer 

over a porous shrinking sheet with thermal radiation.  

 In the present paper, steady two-dimensional 

stagnation point flow has been investigated in a 

porous medium with heat generation of an electrically 

conducting fluid over a stretching surface in the 

presence of magnetic field. The results of velocity and 

temperature distribution, skin friction and surface heat 

transfer for different parameters such as the magnetic 

parameter, the porosity parameter, the stretching 

parameter, the Prandtl number, the Eckert number and 

the heat generation coefficient have been obtained. 

 

2 Formulation of the Problem 

 Consider the steady two-dimensional stagnation 

point flow (u,v,0) in a porous medium with heat 

generation of a viscous incompressible electrically 

conducting fluid near a stagnation point at a surface 

placed in the plane y=0 of a Cartesian coordinates 

system with the x-axis along the surface, such that the 

surface is stretched in its own plane with velocity 

proportional to the distance from the stagnation point 

in the presence of an externally applied normal 

magnetic field of constant strength (0,H0,0). The 
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stretching surface has velocity uw and temperature Tw, 

while the velocity of the flow external to the boundary 

layer is ue and temperature T∞. The system of 

boundary layer equations (refer to Fig. 1) is given by: 
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where υ is the kinematic viscosity, K the Darcy 

permeability, σe the electrical conductivity, µe the 

magnetic permeability, ρ the density, Cp the specific 

heat at constant pressure, κ the thermal conductivity, 

Q the volumetric rate of heat generation and µ is the 

coefficient of viscosity of the fluid under 

consideration. The other symbols have their usual 

meanings. 

 The boundary conditions are: 
 

0: , 0;

: ;

w w

e

y u u cx v T T

y u u ax T T∞

= = = = =

= ∞ = = =
  ... (4) 

where c is a proportionality constant of the velocity of 

the stretching sheet and a is a constant proportional to 

the free stream velocity far away from the stretching 

sheet.  

 

3 Analysis 

 The continuity Eq. (1) is identically satisfied by 

stream function Ψ (x,yx,y), defined as: 

 

,u v
y x

ψ ψ∂ ∂
= = −

∂ ∂
  ... (5) 

 

 For the solution of the momentum and the energy 

Eqs (2) and (3), the following dimensionless variables 

are defined: 

 

( ) ( ),x y c x fψ υ η=   ... (6) 

 

c
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Eqs (5) to (8), transform Eqs (2) and (3) into: 

 

( )2 2 2Re 0mf f f f f M f C C′′′ ′′ ′ ′ ′+ − − − − + =   ... (9) 

 
2 2 2Pr Pr Pr Pr Re 0mf B Ec f Ec fθ θ θ′′ ′ ′′ ′+ + + + =  

 ... (10) 
 

where the prime (′) denotes differentiation with 

respect to η, 0Re e

m e
H

c

σ
µ

ρ
=  the magnetic 

parameter, M
K c

υ
=  the porosity parameter, 

a
C

c
=  

the stretching parameter, Pr
pCµ

κ
=  the Prandtl 

number, 

p

Q
B

c Cρ
=  the heat generation coefficient 

and 
( )

2

w

p w

u
Ec

C T T∞

=
−

 the Eckert number. 

 The corresponding boundary conditions are: 
 

0 : 0, 1; 1

: ; 0

f f

f C

η θ

η θ

′= = = =

′= ∞ = =
 ... (11) 

 
 

Fig. 1 — Physical model and coordinate system 
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 It may be noted that Chiam
4
 assumed Re 0m M= =  

and a c=  without any justification and derived the 

solution of the Eq. (9), satisfying the Eq. (11), as 

( )f η η=  leading to u ax= , v ay= − . From this he 

inferred that no boundary layer is formed near the 

stretching surface. 

 For numerical solution of the Eqs (9) and (10), we 

apply a perturbation technique as: 
 

( ) ( ) ( )2

0

Re
i

m i

i

f fη η
∞

=

=�   ... (12) 

 

( ) ( ) ( )2

0
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j
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∞

=

=�   ... (13) 

 

 Substituting Eqs (12) and (13) and its derivatives in 

Eqs (9) and (10) and then equating the coefficients of 

like powers of 
2Rem

, we get the following set of 

differential equations: 

 

( )2 2
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with the boundary conditions: 

 

0 0
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Eq. (14) is obtained by Attia
10

 for the non-magnetic 

case and the remaining equations are ordinary linear 

differential equations and have been solved numerically 

by standard techniques. The velocity and temperature 

distributions for various values of the parameters are 

shown in Fig 2 and Figs 3 and 5, respectively. 

 
 

Fig. 2 — Velocity distribution against η for various values of Rem, 

M and C 
 

4 Skin Friction and Surface Heat Transfer 

 The physical quantities of interest, the local skin 

friction coefficient Cf and the local Nusselt number 

Nu i.e. surface heat transfer are given by: 
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which in the present case, can be expressed in the 

following forms: 
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Fig. 3 — Temperature distribution against η  for various values of 

Rem, M and C with Pr=0.7, Ec=0.0 and B=0.1 
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where Re wu x

υ
=  is the local Reynolds number. 

 Numerical values of the functions f″(0) and θ ′(0), 

which are proportional to local skin friction and local 

heat transfer rate at the surface, respectively for 

various values of the parameters are presented in 

Tables 1, 2 and 3, respectively. 

 
5 Results and Discussion 

 Figure 2 shows the variation of velocity distribution 

against η for various values of the parameters, 

namely, the magnetic parameter Rem, the porosity 

parameter M and the stretching parameter C. It may 

be observed that the velocity increases as the 

stretching parameter C increases, whereas it decreases 

as the magnetic parameter Rem, increases for a fixed 

η. Also, it can be seen that the velocity increases as 

the porosity parameter M decreases for C<1 and when 

C>1, the opposite phenomenon occurs. 
 Figures 3 to 5 show the variation of the temperature 

distribution   against   η   for   various   values   of  the  

 
 

Fig. 4 — Temperature distribution against η  for various values of 

Rem, C and Pr  with M=3, Ec=0.0 and B=0.1 
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Fig. 5 — Temperature distribution against η  for various values of 

Rem, C and Ec with M=3, Pr=0.7 and B=0.1 

parameters, namely, the magnetic parameter Rem, the 

porosity parameter M, the stretching parameter C, the 

Prandtl number Pr, the Eckert number Ec and the heat 

generation coefficient B. From Figs 3 to 5, it may be 

observed that the temperature distribution increases 

with the increasing value of the magnetic parameter 

Rem. It is also seen that for fixed Prandtl number Pr, 

temperature distribution decreases with increasing 

value of the stretching parameter C and same 

phenomenon occurs for the Eckert number Ec. In  

Fig. 3, it is seen that temperature distribution 

increases with the increasing value of the porosity 

parameter M for C<1 and when C>1, the opposite 

phenomenon occurs. In Fig. 4, it is observed that the 

temperature distribution decreases with the increasing 

value of the Prandtl number Pr. 
 

 In Tables 1-3, the numerical values of the functions 

−f″(0) and −θ ′(0) for various values of the magnetic 

parameter Rem, the porosity parameter M, the 

stretching parameter C, the Prandtl number Pr and the 

Eckert number Ec with the heat generation coefficient 

B=0.1 are given, respectively. It may be observed 

from the Tables 1-3 that the boundary values of f″(0) 

and θ ′(0) for the non-magnetic flow are the same as 

those obtained by Attia
10

. Further, it may be observed 

from the Tables 1-3 that for C<1, the value of −f″(0) 

increases with the increasing values of the porosity 

parameter M and the magnetic parameter Rem, and 

when C>1 same phenomenon occurs for the magnetic 

parameter Rem, while opposite phenomenon occurs 

for the porosity parameter M. It may also be observed 

that when the stretching parameter C increases, the 
 

Table 1 — Numerical values of −f
 
″(0) for various values of the parameters Rem, M and C 

 
C=0.5 C=1.5 M 

Rem=0.0 Rem=0.2 Rem=0.5 Rem=0.0 Rem=0.2 Rem=0.5 

 

0 0.6673 0.6939 0.7707 -0.9095 -0.8752 -0.7746 
 

3 1.0910 1.1056 1.1485 -1.2533 -1.2308 -1.1642 
 

 

Table 2 — Numerical values of −θ′(0) for various values of the parameters Rem, M, Pr and Ec with C=0.5 and B=0.1 

 

Ec=0.0 Ec=0.0 M Pr 

Rem=0.0 Rem=0.2 Rem=0.5 Rem=0.0 Rem=0.2 Rem=0.5 

 

0.1 0.2148 0.2148 0.2140 0.2148 0.2148 0.2133 

0.7 0.5089 0.5089 0.5058 0.5089 0.5089 0.5010 0 

1.0 0.6220 0.6220 0.6186 0.6220 0.6220 0.6221 

0.1 0.2103 0.2102 0.2100 0.2103 0.2102 0.2094 

0.7 0.4821 0.4821 0.4809 0.4821 0.4821 0.4769 3 

1.0 0.5888 0.5888 0.5874 0.5888 0.5888 0.5820 
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value of −f″(0) decreases. Moreover, for the fixed 

value of the Prandtl number Pr, value of the function 

−θ ′(0) decreases with the increasing values of the 

porosity parameter M, the Eckert number Ec and  

the magnetic parameter Rem when C<1 while the 

opposite phenomenon occurs for the porosity 

parameter M when C>1. Again the function  

−θ ′(0) increases with the increase of the Prandtl 

number Pr and the stretching parameter C for the 

fixed value of the porosity parameter M. Also, when 

the stretching parameter C increases, the value of 

−θ ′(0) increases. 

 
6 Conclusions 

 In the present paper, the two-dimensional 

stagnation point flow in a porous medium with heat 

generation of an electrically conducting fluid over a 

stretching surface in the presence of magnetic field 

has been studied. Similarity equations are derived and 

solved numerically. It is found that the velocity 

boundary layer thickness increases with the increasing 

value of the stretching parameter and decreases with 

the increasing value of the magnetic parameter. It is 

further concluded that velocity boundary layer 

thickness increases with the increasing value of the 

porosity parameter when the stretching parameter is 

greater than one while it decreases when the 

stretching parameter is less than one, but the reverse 

phenomenon occurs for the thermal boundary layer 

thickness. Further, the thermal boundary layer 

thickness decreases with the increasing value of the 

Prandtl number and the Eckert number but for fixed 

Prandtl number the thermal boundary layer thickness 

decreases with the increasing value of the stretching 

parameter. From the results, it can be concluded that 

skin friction and Nusselt number vary in reverse 

phenomenon as compared to velocity boundary layer 

thickness and thermal boundary layer thickness, 

respectively with different parameters. 

Nomenclature 
u Component of velocity in x direction 

v  Component of velocity in y direction 

x Along the surface distance 

y  Normal distance 

ue  Velocity of the flow external to the boundary layer 

K  Darcy permeability 

H0 Externally applied normal magnetic field of constant 

strength 

Cp  Specific heat at constant pressure 

T Temperature 

Q  Volumetric rate of heat generation 

T∞  Temperature of the flow external to the boundary layer 

uw  Velocity of the stretching surface 

c  Proportionality constant of the velocity of the stretching 

sheet 

Tw  Temperature of the stretching surface 

a  Constant proportional to the free stream velocity far away 

from the stretching sheet 

f Dimensionless stream function 

f′ First order derivative with respect to η  

f″ Second order derivative with respect to η 

f′″ Third order derivative with respect to η 

Rem  Magnetic parameter 

M  Porosity parameter 

C  Stretching parameter 

Pr  Prandtl number 

B Heat generation coefficient 

Ec  Eckert number 

Cf  Local skin friction coefficient 

Nu Local Nusselt number 

Re  Local Reynolds number 

 

Greek symbols 

υ  Kinematic viscosity 

σe  Electrical conductivity 

µe  Magnetic permeability 

ρ  Density 

κ  Thermal conductivity 

µ  Coefficient of viscosity 

Ψ  Stream function 
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