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We report high pressure study of CdS using the full-potential linear augmented plane wave (FP-LAPW) method based 

on density functional theory approach. In this approach, generalized gradient approximation (GGA) and Engel- Vosko 

generalized gradient approximation (EV-GGA) have been used for the exchange correlation potential in the calculations. 

The equilibrium lattice constant, electronic band structure, elastic constants, Debye temperature and melting temperature of 

binary solid CdS have been calculated under ambient and high pressure. Furthermore, the linear optical properties such as 

dielectric function, absorption, optical conductivity reflectivity, refractive index and energy loss are computed and analyzed 

in detail within the energy range up to 14 eV. The obtained results are in good agreement with earlier reported experimental 

and other theoretical results. 
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1 Introduction 

The IIB-VIA semiconductor, cadmium sulfide has 

gained wide attention because of its outstanding 

electronic, optical properties and technological 

importance
1-7

. The CdS is very important 

semiconductor which is widely used in different fields 

as it has many applications in photodetectors, solar 

cell, forming quantum dots and passivating the 

surfaces of other materials. The CdS exists in 

hexagonal wurtzite structure (WZ)) or cubic 

zincblende structure (ZB). It is a direct band gap 

semiconductor. Due to the thermal stability and color 

in yellow of CdS can form pigments in colors ranging 

from deep red to yellow with the addition of CdTe
8
. 

The electronic properties of CdS have been of 

considerable investigation by both theories and 

experiments. The band gap is very important 

parameter which can affect significantly device 

transport properties. Xu and Ching
1
 have observed the 

energy gap of 2.02 eV using the first-principles 

orthogonalized linear combination of atomic orbital 

method, which is in reasonable agreement with 

experimental values
9,10

. Zakharov et al. calculated 

quasi-particle band structures of CdS using the GW 

approximation and obtained satisfactory agreement of 

results when compared with the experiment
2
. Further, 

Wei et al. explained the structure stability of CdS in 

both zinc-blende and wurtzite structures using the 

band structure calculations
3
. The investigations of 

phase transitions also have been extensively studied 

by experimentally and theoretically using different 

methods
11-15

.  

However, most of the above mentioned studies were 

carried out experimentally and there were comparatively 

smaller effort to understand the theoretical electronic, 

elastic, thermodynamic and optical properties which are 

important for better understanding for this class of 

materials at high pressure.  

The present study provides the significant 

properties of CdS binary compound at different 

pressure and different phases. In this work, we have 

used WIEN2k code for investigation of volume 

collapse, band gap, elastic constants, average sound 

velocities, Debye temperature, melting temperature 

and optical properties of CdS semiconductor 

compound at ambient zinc-blende (B3) and high 

pressure rocksalt (B1) phases. The first principles 

calculations are one of the most powerful tool for 

theoretical studies of various properties of the 

condense matter with great accuracy.  
————— 
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2 Method of Computations 

The calculations have been carried out with a self-

consistent scheme by solving the Kohn-Sham 

equations, using a FP-LAPW method in the 

framework of the density functional theory (DFT) as 

implemented in the WIEN2K code
16

. The generalized 

gradient approximation (GGA) was used for the 

exchange-correlation potential
17-22

. In the method, the 

unit cell was divided into two regions. The spherical 

harmonic expansion was used inside the non- 

overlapping spheres of muffin-tin radius (Rmt) and 

the plane wave basis set in the interstitial region (IR) 

of the unit cell. The Rmt for Cd and S were chosen in 

such a way that the spheres did not overlap. For 

expansion of the basis function, we set RmtKmax=8, 

which controlled the size of the basis set, where Kmax 

is the plane wave cut-off and Rmt is the smallest 

muffin-tin radius of atomic sphere radii. The 

maximum value of l were taken as lmax=10, while the 

charge density is Fourier expanded up to Gmax=14. For 

the calculation of electronic properties calculation we 

have used 72 k-points in the irreducible Brillouin 

zone for structural optimization. A denser sampling of 

the BZ was used to calculate the optical properties of 

the sample. A mesh of 3000 k-points was used for the 

optical calculations. Accurate convergence criteria 

have been considered for calculation of all 

parameters.  
 

3 Results and Discussion 
 

3.1 Electronic properties 

The calculated total energies are fitted to the 

Murnaghan’s equation of state (EOS)
23

 to obtain the 

pressure-volume relationship (P=dE/dV) for the both 

zinc-blende (B3) and rock-salt (B1) phases. The 

position of minimum of EOS defines the equilibrium 

lattice parameter and unit cell volume at ambient and 

high pressure. The equilibrium lattice constants are 

obtained by calculating total energies by changing the 

volume. The optimized lattice constant of CdS is 

obtained as 5.89 Å in zinc blende phase whereas 5.48 

Å for rock salt phase under the application of high 

pressure at about 3.85 GPa. The stability of particular 

structure corresponds to the lowest Gibbs free 

energy
31

, which is given by: 
 

G = U + PV – TS … (1) 
 

Where, U is the internal energy, P the pressure,  

V the volume, T the temperature and S is the entropy.  

We have optimized (at T=0 K) both the cell 

parameters and atomic positions for zinc-blende (B3) 

and NaCl (B1) phases to investigate the pressure-

induced structural transition. At T=0 K, the Gibbs free 

energy can be taken equal to the enthalpy
31

:  
 

H = U + PV … (2) 
 

The calculated enthalpies vs pressure plots for both 

phases are displayed in Fig. 1. The enthalpies versus 

pressure curves corresponding to the B3 and B1 phases 

suggesting that the transition pressure (Pt) from B3 to 

B1 is 3.85 GPa. The obtained value of phase transition 

pressure is well agreed with the literature
34

. The 

equation of state curves (plotted between V (p)/V (0) 

and pressure) for both zinc-blende and rock-salt phases 

are plotted in Fig. 2. From these curves, one can 

estimate the volume collapse in the point of transition 

(3.85 GPa). The computed value of the volume 

collapse is estimated at about 18 %. 

It is clearly seen that the equilibrium atomic cell 

volume reduces on the application of high pressure, 

which corresponds to the change in the lattice 

parameter and density. The obtained lattice constants 

are 5.89 and 5.48 angstrom for B3 and B1 phases, 

 
 

Fig. 1  Enthalpy vs pressure of CdS. 
 

 
 

Fig. 2  Volume vs pressure of CdS. 
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respectively in good agreement with the literature
13,24-26

. 

Figure 3 represents the change in density with 

pressure of CdS. The obtained values of density are 

4.658 and 5.791 g (g/cm
3
) for ambient phase (B3) and 

high pressure (B1) phase, respectively. It should be 

noted that at high pressure the density of CdS is found 

to be increased as compared to ambient pressure. 

Because the lattice distance of atoms decreased and 

come closer under pressure.  

By using optimized structural results, the electronic 

structures including the band structure, DOS, and 

PDOS are computed for Zinc-blende and rock-salt 

phase of CdS. It is well known fact that DFT 

underestimates the energy gaps up to 40% when 

compared with the experimental value. This may be 

due to the reason that the exchange correlation term 

cannot be calculated accurately. However, EV-GGA 

improves the band gap in contrast to the local density 

approximation (LDA) and generalized gradient 

approximation (GGA). Therefore, we have used  

EV-GGA instead of LDA and GGA
36

. Figure 4 and 5 

represents the calculated band structure of CdS in ZB 

and RS phase. The calculated direct band gap 1.62 eV 

along the Г direction listed in Table 1 and found well 

agreement with the experimental value. Further, it 

was found that the direct band gap increases with the 

pressure. It may be due to the reason that when a 

hydrostatic pressure is applied to a direct-band gap 

semiconductor, the inter-atomic distance decreases, 

and the direct band gap increases while the indirect 

band gap decreases.  

A very small indirect band gap about 0.1 eV is seen 

in L-X direction, indicating a semi metallic nature of 

 
 

Fig. 3  Density vs pressure of CdS 
 

 
 

Fig. 4  Band structure in ZB phase of CdS. 

 
 

Fig. 5  Band structure in RS phase of CdS. 
 

Table 1  The calculated direct-band gaps for zinc blende phase 

of CdS using EV-GGA with the other theoretical and 

experimental work 

Calculations Direct band gap (eV) at Г point 

Present 1.62 

Theory (Ref. [2]) 1.37 

Theory (Ref. [27]) 2.61 

Theory (Ref. [25]) 1.45 

Experimental (Ref. [26]) 2.55 
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cadmium sulphide in RS phase. Fermi energy is shown 

by dotted line. In order to indicate the overall profile of 

the different bands of CdS, we have identified the 

bands with their corresponding electronic states. It can 

be seen that the lowest-lying band in the valence band 

region (appears between 10.3 eV-11.6 eV) mainly 

arises from the 3s states of S while the bands in valence 

region just below EF are predominantly due to 5s and 

5p orbital of Cd. The conduction band above EF is 

mainly due to 4d states of Cd which hybridize with p 

and d states of S. Further, we have calculated and 

plotted the total density of states (TDOS) and partial 

density of (PDOS) for ZB and RS phases of CdS as 

shown in Figs 6 and 7. The electronic state consisting 

of three regions: lower valence band (LVB), upper 

valence band (UVB) and conduction band (CB). The 

total density of state (DOS) describes the electron 

distribution in the energy spectrum. It may be seen 

from the different partial DOS histograms that the 

peaks found in lowest energy region mainly arise from 

the s states of S while the peaks in next higher energy 

region just below EF are predominantly due to 5s and 

5p orbital of Cd. The peaks obtained in the next further  

Higher region (in the conduction band above EF) 

are mainly due to 4d states of Cd which hybridize 

with p and d states of S. The LVB density of the state 

peak is found at -12 eV and it has a 4.2 eV width 

which is separated by a large gap of about 8.2 eV 

from the UVB states existing at about 4 eV. There is 

no sharp peak found near the Fermi level for s-3p 

while a narrow sharp peak found in the UVB near -4 

eV. This means that the partial DOS for each atom are 

not equal. Finally, Fermi energy is calculated and 

plotted in all above figures by dotted line. Further, it 

is observed that the Fermi level is found to be shifting 

 
 

Fig. 6  (a) Total DOS and (b) Cd-s partial DOS of CdS in ZB phase. 

 
 

Fig. 7  (a) Total DOS and (b) S-s partial DOS of CdS in RS phase. 
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gradually to higher energies with increase in pressure. 

It may be due to increase in electron concentration 

under pressure. Due to change in the Fermi energy, 

conduction band width (which is the difference in 

energy between Fermi level and lowest eigen value 

corresponding to G-point) is found to become broader 

with increase in pressure.  
 

3.2 Elastic properties 

The mechanical and dynamical behaviors of 

crystals are linked with the elastic constants and 

provide significant information about the nature of 

forces existing in the solids. We have used the charpin 

method within Wien2k code to compute the elastic 

constants of cubic CdS in both phases. A small strain 

must be applied to the crystal to obtain the elastic 

constants. Further, they can be estimated by 

computing the total energy as a function of proper 

lattice deformation. For mechanical stability of cubic 

crystal, three independent elastic constants C11, C12 

and C44 should match with the conditions
29

: C11-

C12>0, C44>0, C11+2C12>0. The calculated elastic 

constants are also found to obey the cubic stability 

conditions including the fact that C12 should be 

smaller than C11. The following sets of three 

equations were used for computing the elastic 

constants: 
 

               … (3) 
 

         
 

 
                 

 
 … (4) 

 

                     
 
 … (5) 

 

The first equation gives the relationship between 

the bulk modulus and elastic constants whereas, the 

second equation represents the variation of strain 

energy with volume conserving rhombohedral strain 

(    The relationship of strain energy with the volume 

conserving tetragonal strain (   is represented by third 

equation.  

In our calculations, we consider only small lattice 

distortions in order to maintain the elastic domain of 

the crystal. Furthermore, other elastic constants like 

shear modulus G, Young modulus E, anisotropic 

parameter A, Kleinmann parameter ξ and Poisson ratio 

γ have also been calculated for the ZB and RS 

structures of CdS and presented with the already 

reported theoretical calculations in the Table 2. The 

shear modulus or modulus of rigidity (G) describes an 

items tendency to shear, i.e., deformation of shape at 

constant volume when acted upon by divergent forces. 

Hence, shear modulus (G) can be expressed as: 
 

   
     

 
 … (6) 

 

Here, Reuss modulus RG  is given by:  
 

)(34

)(5

121144

441211

CCC

CCC
GR




  … (7) 

 

The Voigt modulus vG  is defined as: 
 

)3(
5

1
121144 CCCGV   … (8) 

 

The Kleinmann parameter is an important 

parameter relating to the position of the cation and 

anion sublattices as given by relation
37

: 
 

1211

1211

27

8

CC

CC




  … (9) 

 

Further, Young's modulus, also known as the 

tensile modulus or elastic modulus is a measure of the 

stiffness of an elastic material and also used to 

characterize the materials. In anisotropic materials, 

Young's modulus may have different values 

depending on the direction of the applied external 

force with respect to the material's structure. If the 

material is stretched rather than compressed, it usually 

contract in the directions transverse to the direction of 

stretching. This is a common observation when a 

Table 2  The calculated elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young modulus E (GPa), 

anisotropic parameter A, Kleinmann parameter ξ and Poisson ratio γ for CdS in the ZB and RS structures 

CdS Calculations C11 C12 C44 B G E A ξ γ 

ZB phase Present work 90.26 44.19 39.27 59.55 31.70 80.76 0.358 0.61 0.273 

Theory ([Ref. 29]) 81.79 61.06 31.0       

Theory (Ref.[35]) 89.38 53.52 39.11       

Theory (Ref. [25]) 97.8 59.7 30.6       

Exp.          

RS phase Present work 121.83 53.12 44.91 76.03 40.33 102.8 0.173 - 0.274 

Theory (Ref.29) 157.82 59.66 35.33       
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rubber band is stretched, when it becomes markedly 

thinner. The Poisson ratio is the ratio of relative 

contraction to relative stretching of material. In 

certain rare cases, a material may actually shrink in 

the transverse direction when compressed (or expand 

when stretched) which will produce a negative value 

of the Poisson ratio. Thus, the Young modulus E and 

the Poisson ratio   are connected to the hardness for 

polycrystalline materials. These quantities can be 

expressed by the following relations
37

: 
 

GB

BG
E




3

9  … (10) 

 








 


B

EB

3

3

2

1
  … (11) 

 

The Poisson's ratio of a stable, isotropic and linear 

elastic material cannot be less than −1.0 or greater than 

0.5 due to the constraint that Young's modulus, the shear 

modulus and bulk modulus have its positive values. 

The width of the bonds of shear modulus is related 

to the anisotropy constants as given by the relation: 
 

44 12 11

11

2C C C
A

C

 
  … (12) 

 

As the anisotropy constant tends to approaches to 

unity, the gap between the bonds disappear and the 

crystal goes to isotropic phase. It is clearly observed that 

CdS under high pressure also possesses mechanical 

stability. The elastic constants are strongly affected by 

applied pressure. It can be noted that the elastic 

constants C11, C12 and C44 are increased with the 

pressure increased because the lattice parameter of CdS 

becomes shorter under high pressure. The ductility of 

CdS is given by an important parameter B/G ratio. It is 

found 1.87 for ZB phase and 1.90 for RS phase. It 

should be noted that at high pressure CdS is found more 

ductile than ambient phase. The calculated values of 

elastic constants are found in reasonable agreement with 

the available theoretical and experimental results in the 

literature for ZB phase. The calculated results are 

obtained in good agreement with the earlier reported 

theoretical results 
29

 for high pressure RS phase. 

Whereas, to the best of our knowledge, there is no 

experimental data of elastic parameters available for 

high pressure RS phase of CdS in the literature and so 

comparison could not be possible. 
 

3.3 Thermodynamic properties 

In this section we have calculated the average 

sound velocity, Debye temperature, melting 

temperature and Vickers hardness for both ZB and RS 

phase of CdS. The observed results are shown in  

Table 3. Debye temperature is important fundamental 

parameter related to the many physical properties of 

solids like elastic constant, specific heat and melting 

temperature. Debye temperature calculated from elastic 

constants at low temperature is same as determined 

from specific heat measurement. Debye temperature 

can be obtained by using the average sound velocity 

(Vm), which strongly depends upon the directions in an 

anisotropic material. The two type of waves, 

longitudinal and shear waves are observed in solids. 

Using the stiffness constant Cij and crystal density of 

CdS, we have calculated the bulk sound velocity. The 

average sound velocity is given by the following 

formula
31

: 
 

3 3 1/3(2 / 1 / ) / 3)m t l      … (13) 
 

Where, vt and vl are the transverse and longitudinal 

sound velocity obtained by using the isotropic shear 

modulus G, the bulk modulus B and the crystal 

density g, they are calculated by using the following 

formulas
31

: 
 

  3/43 GBvl  , and /Gvt   … (14) 
 

The Debye temperature (θD) can be calculated from 

the average sound velocity vm by using the following 

formula
31

: 
 

  
1/3

/ 3 / 4B mD h k V    … (15) 
 

Where, h is the Planck constant, kB is the 

Boltzmann constant and Va the atomic volume. 

Another empirical formula was usually also used to 

predict the Debye temperature ΘD of materials from 

Table 3  Calculated value of density, longitudinal sound 

velocity, transverse sound velocity, average sound velocity, 

Debye temperature, melting temperature and Vickers hardness for 

both ZB and RS phases of CdS 

Parameters  ZB phase RS phase 

CdS This work Others  This work Others 

G(g/cm3) 4.658  5.791  

νl(m/s) 4675.4  4734.6  

νt(m/s) 2608.9  2639.4  

νm(m/s) 2904.7  2938.8  

θD(K) 293a, 299b 265c 286d 319a, 324b  

Tm(K) 1086  1273  

Hv(GPa) 4.22 3.2e 5.29  

aequation (15), bequation(16), cRef.38, dRef.39, eRef.40 
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their elastic constant Cij. This formula was applied 

successfully by Siethoff
32

. The Debye temperature ΘD 

is given as function of the elastic constant Cij by the 

following expression
32

: 
 

 1/21/6
sD aGc/MsCθ   … (16) 

 

Here, Cs is a further constant and s is the number 

of atoms in the crystallographic unit cell. The elastic 

constants enter Eq. (16) via the elastic modulus
32

 G, 

which may be written as: 

    
1/3

4411
1/2

12114444 CC-CC-CCCGc




  32 12 //

… (17) 
 

The melting temperature
31

 (Tm): 

11m C5.91553T   

The Vickers hardness (Hv) can be expressed by 

several formulas
33

, among them the following: 
 

  3/BG2H
0.58523

v 
 … (18) 

 

Where, G is the isotropic shear modulus and B is 

the Bulk modulus. 

The calculated average sound velocity, Debye 

temperature, melting temperature (Tv), Vickers 

hardness (Hv) of CdS are found to be increased in 

high pressure RS phase than ZB phase. Debye 

temperature calculated from average sound velocity 

(using Eq. 15) is found very close to the elastic 

constant empirical formula (using Eq. 16). 

Unfortunately, there is no experimental and 

theoretical data available in the literature for RS phase 

of CdS and so comparison could not be possible.  
 

3.4 Optical properties 

The frequency dependent dielectric function has 

been used to describe the linear optical properties. 

The optical properties are obtained from the complex 

dielectric-function spectrum     ( ) = Re     ( ) + i 

Im     ( ) =  1 (ω) + i 2 (ω). The imaginary part of the 

dielectric tensor can be computed from the electronic 

band structure of solid. The dielectric function,  2 (ω) 

is strongly correlated to the joint density of states 

(DOS) and transition momentum matrix elements. 

Using the dispersion of real and imaginary parts of 

dielectric functions one can calculate dispersion of 

other optical parameters such as refractive indices, 

optical conductivities, absorption coefficient, 

extinction coefficient and e loss function. We have 

used the following well- known relations
28

 for the 

calculation of optical properties: 

Im     ( ) = 

          
    

  ω              
        

 

             
         

        ( c k ₋     k₋  ) … (19) 
 

Re     ( ) = + 

 

 
 P 

ω       ω
  

ω   ω 

 

 
 ω  … (20) 

 

The optical conductivity is given by: 
 

Re     ( ) = 
ω

  
 Im     ( ) … (21) 

 

The refractive index, n ( ) is given by: 
 

n( ) =  
   ω           ω   

 
  … (22) 

 

The extinction coefficient, k ( ) is given by: 
 

k ( ) =  
   ω          ω   

 
 … (23) 

 

The linear optical properties of cubic CdS in ZB 

and RS phase has been investigated by calculating the 

optical parameters, dielectric function  (ω), refractive 

index n( ) and eloss function L( ). The dispersion of 

the real and imaginary parts of dielectric function, 

 2(ω) and  1(ω), for CdS in ZB and RS phase are 

 
 

Fig. 8  (a-b) Real and imaginary dielectric function in ZB and 

RS phases of CdS. 
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shown in the Fig. 8(a and b). 

Figure 8(a) shows that the first main and highest 

peak value of  1 (ω) exists at energy 3.51 eV for ZBb 

while 3.52 eV for RS phase, respectively. The static 

dielectric constant  1 (0) without any contribution 

from lattice vibration is equal to about 5.97 for ZB Cd 

while 8.63 for RS CdS, respectively. It may be 

underline that wide band energy gap yields a smaller 

value of  1 (0). The analysis of  2 (ω) spectra of  

Fig. 8(b) shows the threshold energy occurring at 0.53 

eV and 1.2 eV for CdS in ZB and RS phase. It is clear 

from the spectrum that the major energy spectral 

peaks for ZB phase situated at 5.67 eV for CdS, as 

well as for the RS phase 4.20 eV for CdS, 

respectively. The highest peak in  2(ω) corresponds to 

the transition from occupied Cd-s to unoccupied S-s 

band states.  
 

Figure 9(a) shows the theoretically obtained 

absorption spectrum  ( ) for the CdS compound in 

ZB phase. It is noted that the absorption edge start 

from about 0.16 eV corresponding to the direct Г- Г 

transition. The absorption spectrum  ( ), shows a 

very intense absorption, which occurs at about 8 eV 

for CdS due to excitations of photons. The find out 

results are seems to be similar to the experimental 

findings reported earlier
41

 with reference to the peaks 

position and height. In case of RS phase the 

absorption edge start from about 0.20 eV for CdS, 

corresponding to the transition of electrons from 

valence band to conduction band. The optical 

conductivity spectra are obtained for ZB and RS 

phases as shown in Fig. 9(b), respectively. The inter-

band transition is called Drude transition and photon 

absorption by electron is called inter-band absorption. 

As shown in the Fig. 9(b), the optical conduction 

starts from the energy of about 0.10 eV for CdS in the 

ZB phase and by increasing photon energy, the optical 

conduction arises and reached at the maxima. The 

reason of starting optical conduction σ (ω), from 

above said energy range, is the gap of energy. As the 

excited electrons have no enough energy to pass the 

energy gap, and transfer to the conduction band. It is 

observed that all the peak structures in σ (ω) are 

shifted a little towards the higher energies with 

decrease in the peak heights as compared to their 

corresponding peaks in RS spectrum. The results 

obtained are found similar to the experimental 

findings
41

 reported by others with reference to the 

peaks position and height. The optical conduction 

σ(ω) starts with energy of about 0.16 eV for CdS in 

 
 

Fig. 9  (a-d) Absorption, optical conductivity, reflectivity and refractive index in ZB and RS phases of CdS. 
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the RS phase and by increasing photon energy, the 

optical conduction rises and reached at maximum 

similar to the case of ZB phase. It is observed that all 

the structures in σ (ω), are shifted a little towards the 

lower energies with increase in the peak heights as 

compared to ZB case.  

Figure 9(c), show the calculated frequency 

dependent reflectivity spectra R (ω) for the CdS 

compound in ZB and RS phases. A similar reflection 

spectrum is found when compared with the reported 

experimental data
41

 with reference to the peaks 

position and height. Thus, the reflectivity spectrum of 

the investigated compound CdS shows some 

difference with very similar features and agreed well 

with one another for ZB and RS phases. This is due to 

the fact that the band structures for this compound are 

indeed seem to be quite similar and a small difference 

of band structure is responsible for the difference in 

reflectivity spectra of ZB and RS phases. A strong 

reflectivity maximum is observed in the between 

energy range 6.5 eV-10.2 eV which arises as a result 

of inter-band transitions. Whereas, in RS phase a 

strong reflectivity minimum is also observed at 

energies ranging from about 2.5-4 eV this is 

representing a collective plasma resonance. Whereas, 

in RS phase the strong reflectivity maximum between 

energy ranges between 4.5-9.25 eV arises from the 

inter-band transitions. The depth of the plasma 

minimum can be determined by the imaginary part of 

the dielectric function at the plasma resonance and is 

representative of the degree of overlap between the 

inter-band absorption regions. Figure 9(d) represents 

the refractive index spectra for the CdS compound in 

ZB and RS phases. This shows that the refractive 

index is significant only up to of 3.85 eV for ZB and 

beyond this energy it starts to drop and after 5.5 eV it 

drops sharply. In RS phase the refractive index is 

significant only up to 4.28 for CdS and beyond this 

energy it drops sharply. Our theoretically calculated 

static refractive index is 2.46 and 2.99 for ZB and RS 

phases, respectively. There is no theoretical or 

experimental data available in literature to compare 

the results. 

The extinction coefficient k ( ) which is calculated 

and presented in Fig. 10(a) for ZB and RS phase. The 

local maxima of the extinction coefficient k ( ) for 

ZB and RS phases found correspond to the zero of  1 

( ) at (6.50 eV) and 4.25 eV refer to Fig. 8(a) for ZB 

and RS phase, respectively. The electron energy loss 

function L( ), is a significant factor and found related 

to the energy loss of fast electrons traversing in the 

material. The electrons, which excite the atomic 

electrons of the outer shell is called valence loss or 

valence inter-band transitions. In the case of inter-

band transitions, which consist mostly of plasmon 

excitations, the scattering probability for volume 

losses is directly connected to the energy loss 

function. In the Fig. 10(b), the most prominent peak 

in the energy loss spectrum is associated with the 

plasmon peak and located at 12.93 eV and 12.90 eV 

for ZB and RS phase, respectively and the 

corresponding frequency is called plasma frequency
42

 

  ω  . The calculated results are found similar to the 

experimental findings
43

 with regard to the peaks 

position and height for ZB structure. There is no 

experimental data available for RS phase in the 

literature, so comparison could not be possible. 
 

4 Conclusions  

In summary, a first principles study has been 

performed to calculate the various properties of CdS at 

 
 

Fig. 10  (a-b) Extinction coefficient and Eloss function in ZB and RS phases of CdS. 
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ambient and high pressure phases using the  

FP-LAPW method with the generalized gradient 

approximation (GGA). The electronic band structure and 

density of states reveal the existence of band gap 1.62 

eV at Fermi level. The structural and elastic parameters 

have been computed and they are found to be in good 

agreement with the other available results. Moreover, the 

Debye temperature, melting temperature and Vickers 

hardness are also computed and analysed of both phases. 

Furthermore, the optical parameters such as dielectric 

function  (ω), refractive index n( ) and optical 

conductivity σ(ω), absorption I( ), reflectivity R( ) 

extinction coefficient k( ) and eloss function L( ) were 

also be calculated and analyzed. The calculations show a 

static refractive index of 2.46 and 2.99 for ZB and RS 

phases of CdS. But, there is no experimental and 

theoretical data available for RS phase in the literature, 

so comparisons could not be possible. This high pressure 

behavior of CdS will further lead to guide more advance 

experimental and theoretical study of the material and 

helps the design of devices which can operate under 

high pressure conditions. 
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