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Viscous dissipation and radiation effects on unsteady flow of laminar incompressible viscous electrically conducting 

fluid through stretching surface in a porous media with magnetic field and heat generation/absorption have been 

investigated. Taking suitable similarity variables, the governing boundary layer equations are converted into a set of 

ordinary differential equations and solved numerically by Runge-Kutta fourth order method along with shooting technique. 

The effects of the various physical dimensionless parameters such as unsteadiness parameter, permeability parameter, 

magnetic parameter, radiation parameter, Prandtl number, heat generation/absorption parameters and Eckert number for 

velocity and temperature distributions have been analyzed in detail through graphical representations. Further skin friction 

coefficient and Nusselt number at the surface are numerated and compared with previous researchers. 
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1 Introduction 
Magnetohydrodynamics (MHD) is related to the 

study of the motion of electrically conducting fluids 

and their interactions with magnetic fields. MHD 

flows toward a stretching sheet have been attracted a 

great attention in the past few decades because of its 

increasing applications in industrial and technological 

processes such as annealing and spinning of metal 

wires, drawing and extrusion of plastic and rubber 

sheets, packed bed reactors, glass blowing, hot rolling 

and the enhanced recovery of petroleum resources. 

The mixture issued from a slit is subsequently 

stretched in all of the above mentioned engineering 

processes to get the desired thickness. Crane
1
 was the 

first who found an analytical solution for the steady 

two-dimensional flow on a linearly stretched surface 

in a quiescent incompressible fluid. Later, many 

researchers like Andersson et al.
2
, Ariel

3
, Elbashbeshy 

and Bazid
4
, Kelson

5
, Das

6
, Khan et al.

7
 and Chaudhary 

et al.
8
 have presented various aspects of stretching 

sheet problems for non-magnetic and magnetic cases.  

Porous material is a solid permeated by an 
interconnected network of pores filled with a fluid. 
Many natural matters like soils, rocks, bones and 

manmade substances, for example cement, foams and 
ceramics can be considered as porous media. Fluid 
flow through porous medium is a subject to most 

common interest and has emerged a separate field of 
study because of its vast importance in numerous 
technological applications such as geothermal 
systems, grain storage, heat exchangers, catalytic 
reactors, metal processing, etc. Following the  
work of Vafai and Kim

9
, many researchers like  

Ishak et al.
10

, Rosali et al.
11

 and Chaudhary and 
Kumar

12
 have considered various aspects of heat 

transfer problem in porous medium and obtained 
similarity solutions. Furthermore, Chaudhary and 
Choudhary

13
, and Shit et al.

14
 presented an excellent 

review of boundary layer flow with porous medium 

and some related applications. 

Heat transfer in the boundary layer flow of 
participating fluid is significantly affected by thermal 
radiation especially at high absolute temperature 
levels. All bodies emit energy continuously due to 
their temperature, and thus emitted energy is called 
thermal radiation. This process is very useful in space 
technology and also very important in various 
practical applications namely engines integrated 
circuit and it’s cooling, cooling of nuclear reactors, 
propulsion devices, design of reliable equipments of 
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space vehicles and aircrafts, plasmas, turbines, 
satellites and missiles. The thermal radiation effects 
on the flow with and without a magnetic field with 
several cases were presented by Bestman and 
Adjepong

15
, Makinde and Ogulu

16
, Pal and Mondal

17
, 

and Jat and Chaudhary
18

. Some other studies have 
been carried out by Chaudhary et al.

19
, Sandeep et 

al.
20

 and Chaudhary and Choudhary
21 

with thermal 
radiation heat transfer under the different 
configurations. 

Inspired by the research work of Elbashbeshy and 

Emam
22

, the main objective of this paper is to  

study the magnetohydrodynamic effects on viscous 

incompressible fluid and heat transfer in the presence 

of viscous dissipation and radiation effects with heat 

generation or absorption. 
 

2 Mathematical Analysis 

Consider two-dimensional unsteady flow of a 

viscous incompressible electrically conducting  

fluid and heat transfer due to radiation over a 

stretching sheet in a porous medium with heat 

generation/absorption. Cartesian coordinate system 

 YX ,  
is assumed where the X  and Y axes are 

taken along the directions of stretching surface and 

normal to it, respectively. A uniform transverse 

magnetic field of constant strength 
0B  is also 

assumed, as shown in Fig. 1. The magnetic Reynolds 

number is taken sufficiently small to neglect of the 

induced magnetic field. The surface is stretched with 

linear velocity 
bt

ax
U w




1
 and temperature of the 

sheet is 
  2/32
1

1

2 btx

a
TTw


 


 where, a  is the 

positive constant, b  is the rate of stretching, t  is the 

time, T  is the free stream temperature and   is the 

kinematic viscosity. The following three equations 

represent the equation of continuity, momentum and 

energy, respectively. 
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Subject to the boundary conditions: 





TTuy

TTvUuy ww

,0:

,0,:0
  ... (4) 

where, u  and v  are the components of velocity in the 

x  and y  directions, respectively, K  is the 

permeability, 
e
 
is the electrical conductivity,   is 

the fluid density, pC  is the specific heat at constant 

pressure, T  is the temperature of the fluid,   is the 

thermal conductivity, rq is the radiative heat flux, Q
 

is the heat source when 0Q  or heat sink when 

0Q  and 
 
is the coefficient of fluid viscosity. 

The radiative heat flux is simplified by using  

the Rosseland approximation for radiation as 

(Brewster
23

): 

y

T

k
qr
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4

*

*

3

4
   ... (5) 

where, 
* and 

*k are the Stefan-Boltzmann constant 

and the absorption coefficient, respectively. 

Assuming that there is a temperature differences 

within the flow, such the term 
4T  may be expressed 

as a linear function of temperature by using Taylor 

series about T and neglecting higher order terms: 

434 34   TTTT    ... (6) 

Using Eqs (5) and (6), the Eq. (3) can be written as: 
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Fig. 1 – Schematic of the physical system. 
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Using the standard definition of stream function 

such as yu    and xv   , the following 

similarity transformations (Elbashbeshy and Emam
22

) 

are introduced: 

 
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where, 
 
is the similarity variable, and )(f  and 

    are the dimensionless stream function and 

temperature, respectively. The Eqs (2) and (7) are 

converted into:  
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with the transformed boundary conditions: 
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where, primes denote differentiation with respect to  
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a
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 is 

the Eckert number. 

In practical applications, the quantities of physical 

interest are the skin friction coefficient fC  and the 

Nusselt number xNu , which are defined as: 

)0(Re2
2/1

fC xf
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
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3 Solution Procedures 

Equations (9) and (10) with the boundary 

conditions (11) are solved numerically by Runge-

Kutta fourth order method along with shooting 

technique. Introducing the new set of variables 

1321 ,,, qppp  and 2q , the following set of linear 

differential equations of first order are obtained 
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with the boundary conditions 
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where, fp 1  and 1q . 

In order to solve Eqs (16) and (18) with the 

boundary conditions (19) by Runge-Kutta method the 

values for 
3p  and 2q  are required at the surface. So 

the initial guesses values for  03p  and  02q  are 

chosen and Runge-Kutta method of fourth order is 

applied taking the step size 001.0 . Comparing 

the estimated values of 2p  and 1q for different values 

of various parameters at the far field boundary 

condition 6  (say) with the given boundary 

conditions   062 p
 
and   061 q , the values of 

 03p  and  02q  are improved accordingly from the 

initial values to give an approximate solution. The 
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process is repeated until the results converge to six 

places of decimals. 
 

4 Validation 

This section is devoted to validate the 

computational method which was applied in the 

previous section. The results of velocity gradient

)0(f   and heat transfer rate )0(  for different 

values of governing parameters are compared in the 

limiting cases with the previous published work of 

Elbashbeshy and Emam
22

 in Table 1. From this table, 

it is noteworthy that the present results are in 

excellent agreement.  
 

5 Results and Discussion 

In order to get clear insight of the considered 

model, the results of velocity )(f   and temperature 

)(  for various parameters like the unsteadiness 

parameter A , the permeability parameter  , the 

magnetic parameter M , the thermal radiation 

parameter R , the Prandtl number Pr , the heat 

source/sink parameter   and the Eckert number Ec  

are plotted through graphs, while the other parameters 

are taken constant. Further, the values of )0(f 
 
and 

)0(   which are proportional to local skin friction 

coefficient 
fC
 

and local Nusselt number 
xNu , 

respectively have been numerated through table. 

Effects of the unsteadiness parameter A  on the 

fluid velocity  f  and the temperature    have 

been demonstrated in Figs 2 and 3, respectively, 

taking other parameters constant. It may be  

observed that the velocity and the temperature 

decrease faster with the increasing values of the 

unsteadiness parameter A  while the reverse 

phenomenon occurs for 3 in Fig. 2. This is due  

to the fact that the thermal boundary layer thickness 

decreases faster when unsteadiness parameter 

increases before 3  but ultimately it increases the 

velocity of the fluid.  

Figures 4 and 5 present the velocity  f   and 

temperature    for different values of the 

permeability parameter , respectively, keeping other 

parameters constant. It is noteworthy that the velocity 

and the temperature decrease with the increasing 

values of the permeability parameter . The actual 

 
 

Fig. 2 – Variation of the velocity for different values of A  with 

1.0 and .01.0M  
 

 
 

Fig. 3 – Variation of the temperature for different values of  

A  with ,01.0,1.0  M  5.0,10Pr,3.0  R
 

and 

.01.0Ec  

Table 1 – Comparison of )0(f   and )0( 
 
for various values of Pr,,, RA 

 
and   with .0.0 EcM

 

A    R  Pr    
)0(f 

 
)0( 

 

Elbashbeshy and Emam22 Present result
 

Elbashbeshy and Emam22 Present result
 

0.4 0.1 0.3 10 -0.5 1.17853 1.178629 0.53765 0.537818 

0.8 1.30035 1.300447 0.98601 0.986231 

 0.3    1.37550 1.375596 1.00056 1.000777 

 0.5    1.44668 1.446767 1.01364 1.013854 

 0.7    1.51445 1.514543 1.02552 1.025732 
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effect of the permeability parameter is to make the 

velocity and temperature distribution more uniform 

within the boundary layer. So, it can be effectively 

used for the fast cooling of the sheet. 

Effects of the magnetic parameter M  on the 

velocity  f   and the temperature    profiles have 

been plotted in Figs 6 and 7, respectively, while the 

other parameters are constant. From these figures it is 

evident that the velocity decreases with the increasing 

values of the magnetic parameter M  but the reverse 

phenomena occurs for the temperature distribution. 

The application of a uniform magnetic field normal to 

the flow direction gives rise to Lorentz force which 

acts in the negative direction of flow. This force has 

tendency to slow down the movement of the fluid and 

enhances its temperature. 

 
 

Fig. 6 – Variation of the velocity for different values of M with 

8.0A  and .1.0  
 

 
 

Fig. 7 – Variation of the temperature for different values of  
M with ,3.0,1.0,8.0  RA   5.0,10Pr    and 

.01.0Ec  
 

Influences of several values of the thermal 

radiation parameter R  and the Prandtl number Pr  on 

the temperature  
 

distribution are displayed in 

Figs 8 and 9 when the other parameters are kept 

constant. It can be seen that the increase in thermal 

radiation parameter R  and the Prandtl number Pr
causes the decrease in the temperature profile. From a 

physical point of view, the fluid with a higher value of 

the Prandtl number posses a large heat capacity, and 

hence intensifies the heat transfer while, a smaller 

Prandtl number increases the thermal conductivity 

and therefore heat is able to diffuse away from  

the surface.  

In Figs 10 and 11, the consequences of the 

variation in the heat source/sink parameter  and the 

Eckert number Ec  on the temperature    profiles 

 
 

Fig. 4 – Variation of the velocity for different values of  with 

8.0A  and .01.0M  
 

 
 

Fig. 5 – Variation of the temperature for different values of  
  with ,01.0,8.0  MA 5.0,10Pr,3.0  R

 
and 

.01.0Ec  
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are shown taking other parameters constant. It is 

noticed that both the parameters has an increasing 

effect on the temperature profiles. This is a 

consequence of the fact that for higher values of the 

Eckert number, there is significant generation of heat 

due to viscous dissipation near the sheet. Therefore, 

viscous dissipation in a flow through permeable 

surface is beneficial for gaining the temperature. 

The numerical results for the local skin friction 

coefficient )0(f   and the heat flux )0( 
 

are 

tabulated in Table 2 for various values of the 

unsteadiness parameter A , the permeability parameter

 , the magnetic parameter M , the thermal radiation 

parameter R , the Prandtl number Pr , the heat 

source/sink parameter   and the Eckert number Ec . 

From this table it is observed that the local skin 

friction coefficient )0(f 
 

and the local Nusselt 

number )0(  decrease with the increasing values of 

the unsteadiness parameter A , the permeability 

parameter   and the magnetic parameter M , 

keeping other parameters constant. Moreover, the 

local Nusselt number )0( 
 

decreases with the 

increasing values of the thermal radiation parameter

R  and the Prandtl  number Pr , while the opposite 

phenomenon occurs for the heat source/sink 

parameter and the Eckert number Ec , keeping other 

 
 

Fig. 8 – Variation of the temperature for different values of  

R with ,1.0,8.0  A  5.0,10Pr,01.0  M  and 

.01.0Ec  
 

 
 

Fig. 9 – Variation of the temperature for different values of  
Pr  with ,1.0,8.0  A  5.0,3.0,01.0  RM  and 

.01.0Ec  
 

 
 

Fig. 10 – Variation of the temperature for different values of  

 with ,1.0,8.0  A  10Pr,3.0,01.0  RM  and 

.01.0Ec  
 

 
 

Fig. 11 – Variation of the temperature for different values of  

Ec  with ,1.0,8.0  A  10Pr,3.0,01.0  RM  and 

.5.0  
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parameters constant. Further, it is observed that the 

values of the local skin friction coefficient )0(f  are 

always negative for all the values of physical 

parameters considered. Physically, positive sign of 

skin friction coefficient )0(f 
 
implies that the fluid 

exerts a drag force on the sheet and negative sign 

implies the opposite meaning. It is also evident that 

the Nusselt number  )0( 
 

is negative for all the 

values of physical parameters considered, which 

means that there is a heat flow from the wall. 

 

6 Conclusions 

A numerical approach was applied to simulate the 

problem of the flow and heat transfer of two 

dimensional boundary layer flow of an electrically 

conducting fluid towards an unsteady stretching 

surface in porous medium in the presence of magnetic 

field and viscous dissipation. Several conclusions can 

be drawn from the results of this study: 

(i) The velocity and the wall shear stress decrease 

with the rising values of the unsteadiness parameter, 

the permeability parameter and the magnetic 

parameter. Thereafter, the velocity enhances with an 

increment in the value of the unsteadiness parameter 

for eta greater than three and (ii) The temperature and 

the local Nusselt number reduce with the exciting 

values of the unsteadiness parameter, the permeability 

parameter, the magnetic parameter, the thermal 

radiation parameter and the Prandtl number, while 

reverse is true in the temperature field for the values 

of the magnetic parameter. Moreover, the thermal 

boundary layer as well as the surface heat flux 

developed along to the enlarging values of the heat 

source/sink parameter and the Eckert number.  
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