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A speculative investigation has been presented to explore the significant features of MHD convective Casson fluid flow 

past a semi-infinite moving vertical porous plate with heat source/sink are included in the flow configuration. The governing 

partial differential equations are remodeled into ordinary differential equations using appropriate non-dimensional variables. 

The ensuing differential equations are solved analytically using two term perturbation technique method. The result of flow 

heat and mass transfer analysis on the velocity, temperature and concentration profiles and also physical parameters like 

Skin friction, Nusselt number, and Sherwood numbers are shown graphically, also shown in tabular form. The results shows 

that Casson parameter enhances the velocity, temperature and concentration fields are decreases for increasing the values 

radiation and chemical reaction. Under some restriction the resultant outcome were compared with previous published 

results and is found in admirable agreement. 
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1 Introduction 

The analysis of non-Newtonian Casson fluid can be 

described as a shear thinning liquid at zero rate of 

shear having an infinite viscosity, at an infinite rate of 

shear, a yield stress below having zero viscosity and 

no flows occurs. If a yield stress greater than the shear 

stress is applied to the fluid, it behaves like a solid, 

where as if a yield stress less than shear stress is 

applied and it starts to move. This is widely used for 

modeling blood flow in narrow arteries. Many 

researchers have used the Casson fluid model for 

mathematical modeling of blood flow in narrow 

arteries at low shear rates. Few examples of Casson 

fluids are tomato sauce, jelly, concentrated fruit juice, 

honey, blood etc.  

Shehzad et al.
1
 described the mass transfer effects 

on MHD Casson fluid flow with chemical reaction. 

Vajravelu et al.
2
 analyzed in flow of the casson fluid 

dispersal of chemically reactive species over 

permeable an unsteady stretching surface. Abid et al.
3
 

discussed unsteady heat transfer and boundary layer 

flow of a Casson fluid past an oscillating Newtonian 

heating with vertical plate. Sekhar et al.
4
 analyzed 

convective heat and mass transfer of unsteady MHD 

Casson fluid past a permeable semi-infinite vertical 

moving plate with heat source/sink. Animasaun
5
 

developed effects of thermal conductivity, variable 

viscosity and thermophoresis on Non-Darcian MHD 

free convective heat and mass transfer of dissipative 

Casson fluid flow with nth order of chemical reaction 

and suction. Suresh et al.
6
 studied effect of radiative 

and dissipative free convective heat transfer flow of a 

Casson fluid due to variable internal heat generation 

and thermal conductivity past a stretching sheet. 

Falodun et al.
7
 computed numerically heat transfer  

on unsteady incompressible magnetohydrodynamic 

(MHD) boundary layer fluid flow of a vertical 

moving plate. Falodun
8
 studied the effect of 

thermophoresis on MHD heat and mass transfer flow 

past of Casson fluid a semi-infinite vertical plate. 

Makinde et al.
9
 discussed the effect of chemical 

reaction on MHD Casson fluid flow with porous 

stretching sheet. Rama Krishna Reddy et al.
10

 

presented Free convective MHD flow past a porous 

plate. Nagasantoshi
11

 studied heat and mass transfer 

of non-Newtonian flow of Nano fluid over a 

stretching sheet with non-uniform variable viscosity 

and heat source. Gvrreddy
12

 discussed Soret and 

Dufour effects on flow of MHD micropolar fluid 

through a non-Darcy porous medium over a linearly 

stretching sheet. Suneetha et al.
13

 represented effects 

of heat source and radiation effects on MHD flow 
—————— 
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through porous stratum over a permeable stretching 

sheet with chemical reaction. Vijaya et al.
14

 

developed effects of radiation and Soret on an 

unsteady Casson fluid flow through vertical porous 

channel with contraction and expansion. Ramana 

Reddy et al.
15

 represented numerical solutions of 

unsteady heat transfer MHD flow over a stretching 

surface with injection or suction. 

In view of these an investigation, the major 

concerns of present pattern are to consider the 

magnetohydrodynamic convective Casson fluid flow 

past a semi-infinite vertical moving porous plate with 

heat source/sink are included in the flow. 

In most of the previous works semi-infinite plate 

kept at rest. In the present work, it is assumed that the 

plate is embedded in a uniform porous medium and 

moves with a constant velocity in the flow direction in 

the presence of a transverse magnetic field under the 

influence of radiation and chemical reaction effects. 

The mathematical modelling of flow arrangement 

yields simultaneous non-linear partial differential 

equations. The appropriate two term perturbation 

technique method employed to governing equations to 

deduce two non-dimensional ordinary differential 

equations. The numerical values of the physical 

parameters like Skin friction, Nusselt number, and 

Sherwood number are shown graphically, also 

presented in tabular form.  
 

2 Mathematical Analysis 

We consider an unsteady two-dimensional free 

convective MHD flow of a viscous, an electrically 

conducting, heat absorbing and incompressible fluid 

past a semi-infinite permeable vertical plate insert in a 

uniform porous medium which having boundary 

condition at the collaborate of fluid layers and porous 

medium. A uniform transverse magnetic field of 

strength B0 is applied perpendicular to the flow 

direction as shown in the Fig. 1. The effects of 

radiation, heat source/sink and first-order destructive 

chemical reactions are considered. The transversely 

applied magnetic Reynolds number and magnetic 

field are considered to be very small so that induced 

magnetic field and Hall Effect are negligible. It is 

considered that there is no applied voltage which 

results the deficiency of electric field. The length of 

the plate is large enough and the motion is two-

dimensional so all the physical variables are independent 

of x .  

The wall is maintained at constant concentration 

Cw and temperature Tw, greater than the surrounding 

concentrationC
  and temperatureT

  , respectively. 

Also, it is considered that there exists a first-order 

homogeneous Casson fluid and the heat source.  

It is considered to be homogeneous porous and exist 

everywhere in local thermodynamic equilibrium. 

Remaining properties of the porous medium and the 

fluid are taken to be constant.  

For an isotropic flow of a Casson fluid, the 

rheological equation of state is given: 
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where 
ij ije e   and 

ije  is the (i, j)th
 distortion 

rate component,   is the resulted from rate of 

distortion with itself, the product 
c  is a critical value 

reliant upon the non-Newtonian model, 
B  is the 

non-Newtonian viscosity relevant to a plastic dynamic 

fluid and 
yP is the yield fluid pressure. Under these 

assumptions, the governing equations can be 

expressed as: 
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Fig.1 — Physical configuration of the problem. 
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where x  and y  
are the dimensional distances 

along to the plate. u  and v  are the of dimensional 

velocity components along x  and y  directions. g is 

the gravitational acceleration, T   is the fluid 

dimensional temperature near the plate, T
  is the 

stream dimensional temperature far away from the 

plate , C   is the dimensional concentration of the 

fluid, C
  is the stream dimensional concentration far 

away from the plate. βT and βC - expansion 

coefficients of the thermal and concentration 

respectively. p  is the pressure, Cp is the specific 

heat, B0 is the coefficient of magnetic field, µ is fluid 

viscosity, ρ is the density, k   is the thermal 

conductivity, σ is the density of the fluid magnetic 

permeability, 





  is the kinematic viscosity, D is 

the diffusivity of the molecular, Q0 is the dimensional 

coefficient of the heat absorption and β is the Casson 

parameter. The third and fourth terms of RHS of Eq. 

(2) denote the thermal and concentration buoyancy 

effects, respectively.  
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where ,  T ,C ,p w wU     are the wall dimensional 

velocity, temperature and concentration, respectively. 

,  T ,C ,U  
  

 
are the free stream dimensional 

velocity, temperature and concentration, respectively 

0, nU  are constants. 

The radiative flux vector rq  can be written by 

using the Rosseland approximation as: 
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where, 
* and 1  k 

 
are the Stefan-Boltzmann 

constant and mean absorption coefficient respectively. 

We considered that the temperature difference is 

sufficiently small within the flow such that 
4T   can 

be represented as a linear function of the temperature. 

This is obtained by expanding in a Taylor series 

neglecting higher order terms about the free stream 

temperature T
 , thus  

 

4 3 44 3w wT T T T 
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From Eq. (1) the velocity of the suction at the plate 

surface is a function of time only. Assuming that it 

takes exponential form as follows: 
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where 0V  is a scale of suction velocity which has 

non-zero positive constant, A is a real positive 

constant and   and A are small less than unity. Eq. 

(2) gives the Outside boundary layer 
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Let us introducing the non-dimensional quantities 
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In the view of the above dimensionless variables, 

the basic field of Eqs (2) - (4) can be expressed in 

non-dimensional form as: 
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Where, 1
N M

K
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The corresponding boundary conditions (5) and (6) 

in non-dimensional form are: 
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3 Solution of the Problem 

Equations (12)-(14) represent a set of partial 

differential equations that cannot be solved in closed-

form. However, it can be reduced to a set of ordinary 

differential equations in dimensionless form that  

can be solved analytically. This can be done by 

representing the velocity, temperature and concentration 

as: 
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Substituting Eqs (17)-(19) into Eqs (12)-(14)  

and equating the harmonic and non-harmonic  

terms, and neglecting the higher order, 
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Where the prime denotes ordinary differentiation 

with respect to y,  

The corresponding boundary conditions are: 
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without going into the details, the solutions of Eqs . 

(20)- (25) With the help of boundary conditions (26) 

and (27), we get: 
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In view of the above solutions, the velocity, 

temperature and concentration distributions in the 

boundary layer become: 
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Here the constants are not given due to the sake of 

brevity. The Skin-friction coefficient, the Nusselt 

number and the Sherwood number are significant 

physical parameters for this type of boundary- 

layer flow. These parameters can be defined and 

determined as follows. 
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4 Skin Friction 

In the non-dimensional form the skin friction  

on the plate y = 0, after getting the velocity field is 

given by: 
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5 Nusselt Number 

The heat transfer coefficient can be obtained by the 

temperature field, which is in non-dimensional form 

in terms of Nusselt number is given by  
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0where,Re is the Reynolds numberx

V x
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6 Sherwood Number 

The rate of mass transfer coefficients can be 

obtained with the concentration field, in the non-

dimensional form in terms of Sherwood number is 

given by
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7 Results and Discussion 

The system of non-linear coupled ordinary 

differential Eqs (12)-(14) having boundary conditions 

are solved analytically, using two term perturbation 

techniques. Numerical values obtained for the 

problem are expressed in terms of graphs for various 

flow parameters. Impact of magnetic parameter (M), 

Casson parameter (β), permeability parameter (K), 

Grashof number (Gr), modified Grashof number (Gc), 

Prandtl number (Pr), heat source (Q), radiation 

parameter (R), chemical reaction (Kr) and Schmidt 

number (Sc) on the velocity, temperature and 

concentration profiles are discussed. 

Figures 2 and 3 represent the velocity profiles for 

different values of magnetic parameter (M) and 

permeability parameter (K) for different values 

respectively. In Fig. 2 the velocity profile falls with 

the raising of magnetic parameter values, due to the 

presence of a magnetic field in an electrically 

conducting fluid produced Lorentz force that acts 

against the flow, if the magnetic field applied in the 

normal direction as within the study. But the reveres 

trend is observed, the velocity profiles for increasing 

values of permeability parameter in Fig. 3. It is  

quite interesting to observe that enhancing values of 

porosity regime (K), the improved velocity of fluid 

brought about the boundary layer thickness likewise 

increment. Velocity distribution for various values of 

Grashof number (Gr) and modified Grashof number 

(Gc) are represented in Figs 4-5 respectively as seen 

in these figures the maximum peak value is obtained 

in the absence of buoyancy force, this is because of 

 
 

Fig.2 — Velocity profiles for different values of magnetic parameter. 

 

 
 

Fig. 3 — Velocity profiles for different values of permeability 

parameter. 
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the buoyancy forces improves the boundary layer 

thickness and the fluid velocity increases in the 

increasing the values of the Grashof number and 

modified Grashof number. The impact of Prandtl 

number (Pr) for the temperature and velocity profiles 

are as shown in the Figs 6-7 respectively at the 

temperature and velocity both are decreases for 

increasing values of Prandtl number, due to smaller 

values of Prandtl number are similar to raising the 

thermal conductivities and so heat is ready to 

decreases far away from the heated surface for greater 

values of Prandtl number. 

The impact of the Casson parameter (β) and the 

velocity profiles as shown in Fig. 8 it is observed that 

the velocity profiles increases for increasing values of 

Casson fluid parameter. due to the effect of cooling of 

the plate. Figure 9 represent the temperature profiles 

for various values of heat source/sink parameter  

(Q), it is noticed that as the value of heat source 

parameters increases, the temperature profiles 

decreases. It is clear that the hydro magnetic boundary 

layer falls as the heat source/sink effect increase also 

observed that in the absence of heat absorption the 

velocity attains maximum peak value. Figure 10 

depicts the temperature profiles for dissimilar values 

of radiation parameter (R), it is observed that for the 

rising values of radiation parameter, the temperature 

falls due to the boundary layer wideness. Figures 11 

and 12 represent the concentration and velocity 

profiles for various different values of chemical 

reaction parameter (Kr). It is noticed that both the 

concentration and velocity profiles are decreases for 

increasing value of chemical reaction parameter. For 

an increase in viscosity of fluid which means velocity 

boundary layer thickness decreases. Also due to 

increase in values of Kr , the concentration of fluid 

particles near the plate drops, which results in 

decreasing the effect  of  mass  buoyancy  forces   and  

 
 

Fig. 4 — Velocity profiles for different values of Grashof number. 

 

 
 

Fig. 5 — Velocity profiles for different values of modified 

Grashof number. 
 

 
 

Fig. 6 — Velocity profiles for different values of Prandtl number. 
 

 
 

Fig. 7 — Temperature profiles for different values of Prandtl number. 
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thus decrease the fluid velocity. Due to increase in  

Kr, the constituents from higher concentration zone 

moves towards the species in lower concentration 

zone results of which decreases the concentration 

boundary layer thickness, thus decreasing the values 

of concentration. Figures 13 and 14 exhibit the effect 

of the velocity and concentration profiles for different 

values of Schmidt number (Sc). It is noticed that both 

the velocity and concentration profiles are decreases 

for increasing value of Schmidt number. Because 

Schmidt number is a dimensionless number defined  

as the ratio of momentum diffusivity and mass 

diffusivity, and is used to characterize the fluid flows 

in which there are simultaneous momentum and mass 

diffusion convection processes. Figure 15 represents 

the effect of magnetic parameter (M) on the skin 

friction profiles. It is noticed that the magnetic 

parameter increases, decrease the skin-friction. Also  

it is noticed that from the Figs 16, 17 and 19 that  

the skin-friction coefficiet increases for the increased 

values of radiation parameter(R), permeability 

parameter(K) and chemical reaction parameter(Kr) 

 
 

Fig. 8 — velocity profiles for different values of Casson parameter. 
 

 
 

Fig. 9 — Temperature profiles for different values of heat source 

parameter. 
 

 
 

Fig. 10 — Temperature profiles for different values of radiation 

parameter. 
 

 
 

Fig.11 — Concentration profiles for different values of Chemical 

reaction parameter. 
 

 
 

Fig. 12 — Velocity profiles for different values of Chemical 

reaction parameter. 
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respectively. Due to the dimensionless shear stress  

at the surface. Figures 18-20 represent the effect  

of chemical reaction parameter (Kr) and radiation (R) 

on the Nusselt number and Sherwood, respectively. It 

is observed that the Nusselt number and Sherwood 

number both increases for increasing values radiation 

and chemical reaction parameter respectively. Because 

of convection and conduction heat flows are parallel 

to each other and to the surface normal of the 

boundary surface, and are all perpendicular to the 

mean fluid flow and also with the mass transfer option 

respectively.  

The comparison presented in this Table 1  

reveal that for the selected values of the parameter 

(Gc), the values of skin friction determined in this 

study are in excellent agreement with previously 

published works. 

 
 

Fig. 13 — Concentration profiles for different values of Schmidt 

number. 
 

 
 

Fig. 14 — Velocity profiles for different values of Schmidt number. 
 

 
 

Fig. 15 — Skin friction coefficient for different values of M with K. 
 

 
 

Fig. 16 — Skin friction coefficient for different values of K with M. 
 

 
 

Fig. 17 — Skin friction coefficient for different values of R with Pr. 

 

 
 

Fig. 18 — Nusselt number for different values of R with Pr. 
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Table 2 report the alterations in skin- 

friction, Nusselt and Sherwood factors against 

physical parameters, namely, M, Kr, Sc, Pr,  

Q,
   , Gr, Gc, K and R respectively. Skin friction 

falls when raising of the parameters M, Kr, Sc, Pr, Q, 

R but the revers trend is observed in the  

parameters   , Gr, Gc, K Nusselt and Sherwood 

numbers are decreases with the increase of Pr, Q, R 

and Kr, Sc respectively. Nusselt and Sherwood wood 

numbers being constant when increasing of M, Kr, Sc,
 

  , Gr, Gc, K and M, Pr, Q,
   , Gr, Gc, K , R 

respectively . 

 
 

Fig. 19 — Skin friction coefficient for different values of Kr with Sc. 
 

 
 

Fig. 20 — Sherwood number for different values of Kr with Sc. 

Table 2 — Comparison of 
fC

 
Nu  & xSh  for various values of M, Kr, Sc, Pr, Q,   , Gr, Gc, K, R. 

M Kr Sc Pr Q   Gr Gc K R fC  Nu  xSh  

0.1 0.5 0.6 0.71 0.2 0.5 5 2 0.5 0.5 1.7799 -1.2658 -0.9261 

0.5 

         

1.7671 -1.2658 -0.9261 

1 

         

1.7573 -1.2658 -0.9261 

1 0.5 0.6 0.71 0.2 0.5 5 2 0.5 0.5 1.7573 -1.2658 -0.9261 

 

1 

        

1.718 -1.2658 -1.1324 

 

1.5 

        

1.6915 -1.2658 -1.2968 

1 0.5 0.22 0.71 0.2 0.5 5 2 0.5 0.5 1.8914 -1.2658 -0.4604 

  

0.3 

       

1.8531 -1.2658 -0.5664 

  

0.6 

       

1.7573 -1.2658 -0.9261 

1 0.5 0.6 0.71 0.2 0.5 5 2 0.5 0.5 1.7573 -1.2658 -0.9261 

   

1 

      

1.6859 -1.4769 -0.9261 

   

3 

      

1.3843 -3.2215 -0.9261 

1 0.5 0.6 0.71 0.5 0.5 5 2 0.5 0.5 1.7044 -1.4182 -0.9261 

    

1 

     

1.6412 -1.6324 -0.9261 

    

1.5 

     

1.5953 -1.8155 -0.9261 

1 0.5 0.6 0.71 0.2 0.1 5 2 0.5 0.5 0.6752 -1.2658 -0.9261 

     

0.2 

    

1.0478 -1.2658 -0.9261 

     

0.3 

    

1.3393 -1.2658 -0.9261 

1 0.5 0.6 0.71 0.2 0.5 1 2 0.5 0.5 1.1249 -1.2658 -0.9261 

      

2 

   

1.283 -1.2658 -0.9261 

      

3 

   

1.4411 -1.2658 -0.9261 

1 0.5 0.6 0.71 0.2 0.5 5 1 0.5 0.5 1.569 -1.2658 -0.9261 

       

2 

  

1.7573 -1.2658 -0.9261 

       

3 

  

1.9456 -1.2658 -0.9261 

1 0.5 0.6 0.71 0.2 0.5 5 2 0.5 0.5 1.7573 -1.2658 -0.9261 

        

1 

 

1.7839 -1.2658 -0.9261 

        

1.5 

 

1.8008 -1.2658 -0.9261 

1 0.5 0.6 0.71 0.2 0.5 5 2 0.5 0.5 1.7573 -1.2658 -0.9261 

         

1 1.6763 -1.5087 -0.9261 

         

1.5 1.6213 -1.7086 -0.9261 

Table 1 — Comparison for the numerical values of 
fC  with 

previously published data when Sc = 0.6, Pr = 0.71, Q = 2,   = 2, 

Gr = 2, K = 0.5  with Kr = 0, R = 0. 

Gc Sekhar4 Present study 

0 2.7200 2..7210 

1 3.2772 3.2776 

2 3.8343 3.8349 

3 4.3915 4.3924 

4 4.9487 4.9489 
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8 Conclusions 

Numerical results for velocity, temperature and 

concentration profiles are procured for constant 

variation of various different ranges and for the 

different values of the flow significant parameters. 

The outcomes of the problem are summarized as 

follows: 

(i) For the increased values of the Permeability 

parameter (K), Grashof number (Gr), modified 

Grashof number (Gc) and Casson parameter (β) 

increase the velocity profiles, but the reverse trend is 

observed in magnetic parameter(M). 

(ii) The fluid velocity and temperature decreases 

when Prandtl number (Pr) increases.  

(iii) The Temperature level of the fluid decreases 

when the Heat source parameter (Q) and Radiation 

parameter (R) increases. 

(iv) Higher chemical reaction parameter (Kr) and 

Schmidt number (Sc) causes the numerous reductions 

in velocity and Concentration profiles. 

(v) With the effect of Permeability parameter, 

radiation parameter and chemical reaction parameter 

is to increase the skin-friction coefficient whereas 

reverse trend is observed with the increase in 

magnetic parameter and the Nusselt number and 

Sherwood number increases with the increases of 

Radiation and Permeability parameter respectively. 
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