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The effective electrical conductivity (EEC) of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) 
polymer composites filled with copper has been studied. The nonlinear behavior has been observed for effective electrical 
conductivity versus filler content. Several approaches have been described to predict the electrical conductivities of polymer 
composites. EEC is described by artificial neural network (ANN) and it demonstrates the accurate match of experimental data for 
EEC with different training functions (TRAINOSS, TRAINLM, TRAINBR, TRAINSCG, TRAINBFG, and TRAINRP). The 
ANN approach satisfied the experimental data for EEC of polymer composites reasonably well. The complex structure encountered 
in LDPE/Cu and LLDPE/Cu, along with the difference in the EEC of the components, make it difficult to estimate the EEC exactly. 
This is the reason for which artificial neural network has been employed here. By using ANN approach experimental results 
indicate that EEC of polymer composites increases with increasing filler content at the same concentration. 
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1 Introduction  
Electrical conductive polymer composite is formed 

by adding insulating polymer matrix with conducting 
filler like copper particle, metal particle and carbon 
particle1,2. Conducting polymer composite has many 
remarkable properties because of the resistivity 
variation with mechanical, electrical and thermal 
conductivity. Conductive polymer composite materials 
have many applications in engineering, shielding, 
switching, sensors or self-regulated heating2. Polymer 
contain thermal and electrical insulating behavior like 
epoxy, rubber etc. These composites have many 
practical applications in electrical shielding, electrical 
heating and in analytical devices. The property of 
conducting phase is adjustable and when the volume 
fraction of conducting filler is low, the resistivity of 
its components is close to insulating material. The 
effective electrical conductivity can be improved by 
increasing the volume fraction of conductive filler. 
The schematic of artificial neural Network approach 
is explained in Fig. 1.  

Polymer composite filled with metal has electrical 
character which is close to the property of metal. The 

metallic property of these composites depends  
upon many factors like electrical and physical 
characteristics3. The transfer of heat flow and 
electrical charge determine the EEC of polymer. The 
behavior of conductive polymer composite also 
depends upon the shape of particles and spatial 
distribution with polymer matrix. In past few years 
some approach have been developed to study the 
effective properties of two phase composite materials4 
but the investigations on the size and shape 
dependence of EEC of composites are still limited.  
To explain such phenomenon, we built a theoretical 
approach for polymer composites comprising copper 
particles. Theoretical prediction is not only useful for 
the purpose of analysis and optimization of the 
performance of composite material but also for the 
developments of new designs. This has been become 
possible after theoretical prediction of EEC for multi-
phase composite materials.  

ANNs are electronic models works on principle of 
brain’s neural structure. This brain modeling plays a 
less technical role in developing the machine 
solutions. The ANN is novel way to compute the data 
and provide interesting graceful degradation during 
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system overload7. Nowadays, the biologically inspired 
methods are good tools of computing. Researchers 
have reported that animal brains are capable of some 
functions which are limited by computers8,9. But 
computers have not capable recognizing simple 
patterns and much less efficiency those patterns of the 
past into actions of the future7. Computers performs 
mathematics with good efficiency but unable to map 
simple pattern of the past into future actions. 

Biological research gives understanding of the 
natural thinking mechanism. Present study validates 
that brains store information in the forms of patterns. 
Few patterns are difficult to recognize and allow us to 
distinguish these pattern individual faces from several 
angles. Processing of stored into as patterns and then 
utilize this pattern for problem solving is a new field 
in computing8. Artificial neural networks are a group 
of models inspired by biological neural networks and 
used to guess functions9 which depends upon a large 
number of unknown inputs. In artificial neural networks, 
there are systems of interconnected "neurons" which 
exchange messages between collectively. Zeng et al.11 
predicted the superconducting and non-superconductors 
transition temperatures for different compounds 
through data-enhanced technology by developing 
convolutional neural networks. Ali et al.12 predicted 
the comparison of photovoltaic nano fluid and nano-
PCM system using artificial neural network. Shiet  
et al.13 predicted the mechanical and electrical 
properties of engineered cementitious composite for 
the design of efficient material. They also discussed 
the parameters which affects the performance of 
artificial neural network. Ahmadi et al.14 used two 
artificial neural network algorithms to predict relative 
thermal conductivity of Al2O3/Water nanofluid  

and compared the effects of the temperature, 
concentration and particle size. Qi et al.15 used ANN 
and particle swarm optimization methods to predict 
the unconfined compressive strength of cemented 
paste backfill strength. Varol et al.16 used ANN model 
to predict the degrees of accuracy for density and 
hardness of AA2024-SiC nanocomposites. Shahsavar 
et al.17 applied group method of data handling neural 
network to develop the correlations for liquid 
paraffin-Fe3O4 thermal conductivity and viscosity.  
Pal et al.18 modified Lewis-Nelsen model, according 
to this model electrical conductivity of plastic 
considering electrically-conductive filler particles 
(carbon) into plastic matrix and thermal conductivity 
of plastic can be enhanced. The mathematical relation 
is given by: 
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where m  is the maximum packing concentration, 

K-effective electrical conductivity and Kc is conductivity 
of composite. 

Cai et al.19 used percolation model developed  
to describe the effective electrical conductivity of 
particle filled composites with the help of effective 
medium and given by below percolation equation: 
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where, σeff is the effective conductivity of 
composite, ϕm is maximum packing concentration } 

 
 

Fig. 1 — Artificial neural network approach. 
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and s is percolation threshold. σ1 is conductivity of 
insulator. Zhang et al.20 used Monte-Carlo simulations 
for the prediction EEC of short fiber composites  
and demonstrate the relationships between the 
conductivity and different dependent parameters. 
Torquato et al.21 investigated that effective conductivity 
in any dispersion is higher provided that the average 
size of the cluster in dispersed phase is far smaller 
than the size of the sample. Miller et al.22 studied the 
effective properties (magnetic, electrical, thermal) for 
statistically isotropic and homogeneous materials. The 
cumulant method and the effective medium theory are 
two numerical methods developed by Hori et al.23 to 
predict the EEC. Their findings are matched with the 
data of computer simulation to compute the effective 
conductivity of a three dimensional random network. 
Hori et al.24 also studied that perturbed solution  
can be acquired by many‐point correlation functions 
of the permittivity field. Hori et al. also applied 
perturbed extensions to predict the effective permittivity 
with the help of electric displacement, electric field, 
Lorentz field and T matrix and debate several 
approximate solutions involving the actual‐medium 
estimate25. Hori et al. predicted the effective 
permittivity of random heterogeneous materials and 
expressed it in terms of many‐point correlation 
functions of the spatial variation of permittivity26. Río 
et al.27 investigated the porous Silicon model in which 
EEC of crystalline Si rises to a maximum value at an 
optimum porosity. Jin et al.28 performed simulation 
for the study of phase field model to predict EEC in 
complex microstructures. Weber et al.29 experimentally 
and analytically determined the electrical properties 
of Al-Si eutectic alloy. Gabaldón et al.30 studied  
the effect of porosity on the EEC of the ceramic 
membranes which increases with the decrease  
of pressure. Brederlow et al.31 studied, that EEC can 
be reduced by streamers, as the gas pressure is 
increased. Zamel et al.32 studied the effect of the 
porous assembly on the EEC of three-dimensional 
carbon paper of long cylindrical fibers. In the past few 
years, many theoretical models33-37 are investigated to 
estimate the EEC of composites. Glorieux et al.38 
employed the neural network approach to study the 
eddy-current inverse problem. Tsai et al.39 studied  
the influences of conversion of polarity on the 
electrode of the electrical discharge machining 
process. Therdthai et al.40 established a non-linear 
relationship with the help of ANN approach and 
studied the effect of milk ingredients and temperature 

on the electrical conductivity. Hezave et al.41 
investigated the applicability of artificial neural 
network to predict the electrical conductivities of 
ternary systems comprising with PF6, water and 
ethanol. Sarkar et al.42 used ANN approach to study 
the wire electrical discharge machining of gamma 
titanium aluminide that depends upon surface 
roughness and cutting speed. Artificial neural network 
approach is also used to predict the EEC of complex 
composites used for different applications43,44. Graphite- 
filled wax/polyethylene blends materials are synthesized 
for the thermal energy storage applications45,46. 

In the present research, artificial neural network  
is well appropriate for the complex behavior of 
particulate polymer composites5,6. There are limited 
experimental and theoretical evaluations on the EEC 
polymer composites filled by fiber that would demand 
exact value of the EEC of polymer composites. This 
work employee an ANN for the prediction of EEC of 
copper powder filled low density polyethylene and 
linear low density polyethylene composites.  
 

2 Back Propagation Algorithm (FFBP) 
ANNs can be classified into feedback and 

feedforward networks. In feedback networks, 
connections between processing elements are in both the 
forward and backward directions. In feedforward 
networks, the connections between the processing 
elements are in the forward direction only. The 
feedforward network also called multilayer perceptron 
and is trained with the backpropagation algorithm, and 
radial basis function. A multilayer feedforward network 
learns by backpropagation, in which error propagates 
back is called feedforward backpropagation (FFBP). 

The following mathematical equations are used to 
model the FEBP algorithm: 
(i) The difference between actual and desired activity 

is called derivative error (DE) which is given by:  
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(ii) When step first is the multiply by of the rate of 
change of output per unit as total change in input 
occurs that gives quantity (Q) which is given by: 
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(iii) When the step second is multiply by activity level 
of unit that gives quantity (S) which is given by: 
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(iv) When weight on connection is multiply by the 
step third that gives output unit which is given by: 
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Two activation functions are used for ANN 
approach  
(A)  A Pure Linear function (PURELIN) is given by: 
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(B)  A Tangent Sigmoid function (TANSIG) 
which can be written as: 
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The activity of output layer is given by two steps: 
 

First, it gives the total weight by the formula 
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where, jy  is the activity of thk  level and 
jkW  is the 

weight between thj  and thk  unit. Second, it finds out 

the activity kY  by employing some mathematical 

functions.  
 

3 Training Algorithms 
There are different backpropagation training 

algorithms in MATLAB. The details of the training 
functions are described in Table 1. 
 

4 Results and Discussion 
The LDPE and LLDPE based composites filled 

with copper have a complex inner structure. 

Therefore, it may not be practical to describe all 
details of the structure accurately. The effective 
electrical conductivity depends on various characteristics 
of the material, accounting for all these in order to 
predict effective electrical conductivity is a tedious 
task either numerically or theoretically, and even 
more difficult to establish a real model for the non-
linear problem. The complex geometry along with the 
large difference in the electrical conductivity of the 
constituents makes it difficult to calculate the effective 
electrical conductivity. For this reason, artificial 
neural networks have been utilized in the case of 
copper powder filled low density polyethylene. 

The study of nonlinear behaviour of EEC is shown by 
using ANN approach. The six different training functions 
of ANN approach are used to study of nonlinear behavior 
of the EEC. The mapping of input and output pattern is 
done by the help of FFBP networks.  

A three layer feed forward network is used for 
prediction of the EEC of LDPE and LLDPE based 
composites filled with copper. The network’s input 
has range from one to three. The first layer contains 
two TANSIG neurons, whereas second one contain 
one PURELIN, 1000 epochs are run in TANSIG-
PURELIN threshold function. The final layer is third 
layer that is output layer for six training functions of 
the FFBP network. The ANNs give very excellent 
result of effective electrical conductivity of the copper 
filled LDPE and LLDPE composites 
 

5 EEC of LLDPE/Cu  
The experimental values of EEC37 of LLDPE/Cu 

composites are plotted by using different training 
functions (TRAINOSS, TRAINLM, TRAINBR, 
TRAINSCG, TRAINBFG and TRAINRP) of ANNs 
approach. Figures 2-7 show the variation in the 
experimental value of EEC LLDPE/Cu those 
predicted with the help of the training function of 
ANN and other models with the volume fraction of 
filler (copper). Over a wide range (0 to 24%) of 

Table 1 — Explanation of the different training algorithms. 

Training  Function Description 

TRAINSCG Scaled conjugate gradient backpropagation general-purpose training algorithm 
TRAINOSS One-step secant backpropagation Compromise between conjugate gradient methods and quasi-Newton 

methods 
TRAINLM Levenberg–Marquardt backpropagation It is the fastest training algorithm for networks of moderate size.  
TRAINBR Bayesian regularization  Modification of the Levenberg–Marquardt training algorithm  
TRAINBFG BFGS quasi-Newton backpropagation It has more computation in each iteration than conjugate gradient 

algorithms 
TRAINRP  Resilient backpropagation  It updates weight and bias values according to the resilient

backpropagation algorithm 
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volume fraction of copper (filler) are taken in the  
Figs 2 to 7. All training function of artificial neural 
network gives the one output that is EEC. It is 
observed that the EEC of composites increases 
directly with filler loading. The maximum value of 
EEC is 0.1204 mho/cm (TRAINBFG) which is 
achieved for LLDPE containing 24% volume fraction 
of copper. The increment in the EEC of LLDPE/Cu 
composites was expected, as EEC of filler (Cu) was 
significantly higher (σCu= 15.89 mho/cm) than that of 
LLDPE (σLLDPE=0.1204 mho/cm). With the increase 
in volume content of copper in LLDPE, Cu particles 
improved and start interacting with each other, which 
results in the increase in EEC by increasing the 
volume fraction of copper. Many models failed to 
predict the EEC of LLDPE/Cu composites over a full 
range of filler concentration used. From all the graphs 
it can be observed that the calculation of R. Pal model 
(ϕm=0.6) does not give the satisfactory result of 
EEC18. While Wen Zhong model (ϕm=0.6 and s=0.97) 

gives satisfactory result with experimental and 
predicted EEC at the higher concentration of filler 
(22% and 24%)19. Figure 8 shows that the percentage 
deviation in EEC using different functions of ANN 
for the LLDPE/Cu. TRAINBR and TRAINLM give 
least deviation among the all functions. TRAINOSS 
and TRAINSCG provide the maximum deviation 
between all the training functions.  
 

6 EEC of LDPE/Cu  
The ANN approach which contains six different 

functions (TRAINOSS, TRAINLM, TRAINBR, 
TRAINSCG, TRAINBFG, and TRAINRP) has been 
employed and the EEC of LDPE/Cu is plotted. 
Figures 9-14 show the changes in the experimental 
data37 of EEC LLDPE/Cu those predicted by the 
training function of ANN and other models  
with the volume fraction of filler (copper).  
The volume fraction of copper (filler) 0 to 24% is 
taken over a wide range in Figs 9-14. Six  
different  training  functions  of  ANN  gives  the  one  

 
 

Fig. 2 — EEC of LLDPE/Cu with training function TRAINOSS. 
 

 
 

Fig. 3 — EEC of LLDPE/Cu with training function TRAINLM. 
 

 

 
Fig. 4 — EEC of LLDPE/Cu with training function TRAINBR. 

 

 
 

Fig. 5 — EEC of LLDPE/Cu with training function TRAINSCG. 
 



SINGH et al.: COPPER POWDER FILLED LDPE/LLDPE COMPOSITES 
 
 

491

 

output. It seems that the EEC of the composites 
increases with the increment in filler loading. The 
maximum value of EEC is 0.1160 mho/cm 
(TRAINBFG and  TRAINRP)  which  is  achieved  by  

 

for LDPE having 24% volume fraction of copper.  
As the volume of filler increases the content of LDPE 
also increases because the molecule of filler interacts 
with each other  resulting  in  an  increase  in  EEC  as  

 
 

Fig. 6 — EEC of LLDPE/Cu with training function TRAINBFG. 
 

 
 

Fig. 7 — EEC of LLDPE/Cu with training function TRAINRP. 
 

 
 

Fig. 8 — Deviation (%) in EEC using different training functions
of ANN for the LLDPE/Cu. 

 

 
 

Fig. 9 — EEC of LDPE/Cu with training function TRAINOSS. 
 

 
 

Fig. 10 — EEC of LDPE/Cu with training function TRAINLM. 
 

 
 

Fig. 11 — EEC of LDPE/Cu with training function TRAINBR. 
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volume fraction of copper increases. The increment  
in the EEC of LDPE/Cu composites was expected,  
as the EEC of LLDPE (σLLDPE=0.1160 mho/cm) is 
lower than filler (Cu) (σCu= 15.89 mho/cm. Many 
techniques failed to predict the EEC of LLDPE/Cu 

composites over a full range of filler concentration 
used. From all the graphs, we observed that the 
calculation of R Pal model18 (ϕm=0.6) does not give 
the satisfactory result with EEC. While the calculation 
result by Wen Zhong model19 (ϕm=0.6 and s=0.97)  
of equation is satisfactory in agreement with 
experimental and predicted EEC at the higher 
concentration of filler (at 22%). At the very high 
concentration our predicted result does not match  
with Wen Zhong model. Prediction of EEC by  
using different training functions of ANNs gives 
satisfactory results. Figure 15 shows the percentage 
deviation in EEC using different functions of ANN 
for the LDPE/Cu. TRAINOSS and TRAINSCG give 
the most deviation among all the training functions. 
TRAINBR and TRAINLM give least deviation 
among the all functions. 
 

7 Conclusions  
A 3 layered feed forward neural network that is 

fully connected with the succeeding layer through 
connection weights is used for the prediction of EEC 
of copper filled with LDPE and LLDPE composites. 
It has been shown that the ANN method has a good 
prediction capability for nonlinear behaviour of  
EEC of copper filled LDPE/LLDPE composites.  
In comparison with other unfilled polymer, EEC 
increases in filler content of polymer. The EEC of 
particulate polymer composites is dependent on input 
parameters. In this work, we have used six training 
functions (TRAINOSS, TRAINLM, TRAINBR, 
TRAINSCG, TRAINBFG and TRAINRP) of ANN 
network. The reported result on EEC of copper 
powder filled LDPE/LLDPE composites by different 
training functions of ANN approach agreed perfectly 

 
 

Fig. 12 — EEC of LDPE/Cu with training function TRAINSCG. 
 

 
 

Fig. 13 — EEC of LDPE/Cu with training function TRAINBFG. 
 

 
 

Fig. 14 — EEC of LDPE/Cu with training function TRAINRP. 

 
 

Fig. 15 — Deviation (%) in EEC using different training functions 
of ANN for the LDPE/Cu. 
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with experimental value. In comparison with existing 
theoretical models, the present ANN technique does 
not demand any additional empirical parameter. 
Hence, it has good modelling efficiency for a new  
3 or more phase complex materials. It is well-known 
that the ANN approach can be comprehensive to 
investigation of further material’s EEC of particle 
filled composites. 
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