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Two dimensional, steady, forced convection magnetohydrodynamic flow of an incompressible, viscous electrically 

conducting fluid in a forward stagnation region of an infinite solid surface with Newtonian heating, constant wall 

temperature and constant heat flux has been investigated. Governing partial differential equations for the exploration have 

been formulated and converted to nonlinear ordinary differential equations by inserting convenient variables. An efficient 

finite element scheme along to Gauss elimination method has been introduced to find the numerical solutions of the resultant 

equations. Variation in velocity and temperature distributions against the pertinent parameters like magnetic parameter, 

Prandtl number and Eckert number have been displayed graphically while skin-friction coefficient and Nusselt number have 

been discussed quantitatively. A comparison of the computational results has been found in excellent agreement with open 

literature for limiting cases. 
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1 Introduction  

Free convection occurs due to the temperature 

difference of the fluid in its entire fluid domain while 

forced convection is the heat flow occurring due to 

externally applied forces. Forced convection is 

usually done to enlarge the heat transformation rate, 

which is brought about by various methods like 

enhancing the thermal conductivity, changing flow 

geometry and boundary conditions of the fluid. It 

plays a vital role in manufacturing and technological 

processes including mixing of one substance with 

another, heating and cooling of body parts by blood 

circulation, fluid radiator systems, cooling processes 

of foods, action of a propeller in a fluid and in 

aerodynamic heating. In all the above processes, it is 

imperative since the increment of the heat transfer 

rate from the body surface to encompassing liquid 

medium into reduce heat as much as possible. 

Although few improvements in the heat transfer 

properties can tend to considerable savings. In many 

electronic components like capacitors, solenoids, 

inductors and transistors, extrinsic fans are necessary 

to avoid component loss because natural convections 

have nearly low cooling ability. In the books of Nield 

and Bejan
1
 and Shang

2
, the relevant literature can be 

seen. Moreover, a lot of investigations have been 

studied on heat transfer flow over a plate along to 

forced convection by several researchers such as 

Seddeek
3
, El-Amin

4
, Duwairi

5
 and Merkin and Pop

6
. 

Recently, Sasmal et al.
7
, Chaudhary and Kumar

8
, 

Satish and Venkatasubbaiah
9
, Mohseni et al.

10
, 

Atashafrooz et al.
11

 and Sharma and Paul
12

 have 

examined different aspects of forced convection and 

found computational solutions.  

The flow of viscous fluid over a stagnation domain 

has a valuable bearing on various engineering and 

technical processes. So, the fluid flow nearby the 

stagnation domain has captured the attention of 

researchers for a long time period. Most of the time a 

line or stagnation point occurs inside the domain of 

flow but sometimes flow stagnates via a solid sheet. 

Stagnation region creates the highest pressure rate, the 

highest heat transfer and the highest mass 

decomposition rate. It should be noted that the 

solution of stagnation point flows are exist for a tiny 

domain in the stagnation point vicinity of a two or 

three dimensional frame but they produce a number of 

physical flows of technological and industrial 
—————— 
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implication. This problem arises in a broad group of 

engineering procedures and industrial manufacturing 

particularly flow over the tips of rockets, blood flow 

problems, electronic devices cooling through fans, 

textile processes and paper industries, central 

collectors bared to wind currents, submarines, 

boundary layer with material conducting conveyers, 

plastic plates aerodynamic extrusion, oil ships and 

aircrafts. It is also noted that the velocity at stagnation 

point evolves along the increment in magnetic field 

for the stretching velocity is lesser the free stream 

velocity. Heimenz
13

 initiated the boundary layer flow 

in the stagnation domain over an infinite surface. 

Later, Homann
14

 extended the problem for 

axisymmetric case. Further various numerical and 

analytical explorations explaining different physical 

conditions of the fluid flow over a stagnation point are 

introduced by Eckert
15

, Mahapatra and Gupta
16

, Lok 

et al.
17

 and Jat and Chaudhary
18

. Recently, Mahapatra 

and Nandy
19

, Chaudhary and Choudhary
20

, Mahapatra 

and Sidui
21

, Dholey
22

, and Fang and Wang
23

 

represented the stagnation point flow problem in 

different configurations. 

In all of the above cited investigations, much 
applications has been gained to investigate the 
boundary layer flow towards heat transfer via either a 
constant heat flux at the surface or a constant wall 
temperature. After that, there is additional important 
case of boundary condition in which the surface heat 
transfer rate depends on the wall temperature linearly 
or nonlinearly. When the wall heat exchange rate is 
proportional to the temperature of local surface from 
the surrounding wall along to finite heat capacity, it is 
acknowledged as the conjugate convective flow or 
Newtonian heating. Although Newtonian heating is of 
utmost importance in the variety of mechanical 
instruments along with heat fins and heat exchangers, 
this heat transfer procedure is assumed to be 
negligible in the literature. Merkin

24
 pioneered the 

analysis in this field and started to describe the term 
Newtonian heating in heat transfer problems. Later 
several authors like Pop et al.

25
, Lesnic et al.

26
, 

Merkin et al.
27

, Hayat et al.
28

, Kushwaha and Sahu
29

, 
Chaudhary et al.

30
 and Aghayari et al.

31
 have studied 

Newtonian heating effect and convective heat transfer 
over various geometry of flow.  

Analysis of motion of an electrically conducting 

fluid due to the influence of magnetic field is a topic 

of significance in heat transfer problems because of 

its numerous applications in different engineering and 

industrial problems like MHD marine propulsion, 

boundary layer domination in aerodynamics, ion 

propulsion, microelectronic devices, MHD power 

generators, nuclear reactors cooling, petroleum 

industries, crystal growth, MHD bearings and MHD 

pumps. In all the above processes, cooling rate and 

the appropriate final product characteristics may be 

contained via using the electrically conducting fluid in 

the existence of magnetic field. From last few decades 

the effect of magnetic field have presented 

extensively due to its frequent occurrence in many 

technological processes in geophysics, astrophysics 

and in the area of metallurgy like molten metal MHD 

stirring, magnetic-levitation casting, exotic lubricants 

and suspension solutions, solidification of liquid 

crystals, foodstuff processing and molten metal 

purification by non-metallic formations. Molten metal 

sprayed from a height on the substrate containing 

sulphides, oxides and silicates etc, as stagnation point 

flow, applied transverse magnetic field and 

electromagnetic force help to separate the non-

metallic inclusions from the molten metal. Probably 

Andersson
32

 examined the hydromagnetic flow of 

visco-elastic fluid past a stretching sheet. The 

investigation of MHD stagnation point flow towards a 

stretchable plate was discussed by Mahapatra and 

Gupta
33

. Following him, many researchers such as 

Abel and Mahesha
34

, Chaudhary et al.
35

, Chaudhary 

and Choudhary
36

, Benos and Sarris
37

, Chaudhary and 

Kanika
38

 and Rao et al.
39

 discussed different 

magnetohydrodynamic flow problems and presented 

numerical and analytical solutions considering several 

aspects of the problems. 

Goal of the current analysis is to analyze a 

mathematical structure of the two dimensional, steady 

forced convection flow of an electrically conducting 

fluid nearby the forward stagnation point with the 

impacts of magnetic field and viscous dissipation. The 

same problem was also inspected by Salleh et al.
40

 in the 

absence of magnetic field and the viscous dissipation 

near the plate which is very important in variety of 

technological processes. In the present paper, heat 

transfer is presented and compared in three different 

cases as Newtonian heating (NH), constant wall 

temperature (CWT) and constant heat flux (CHF) which 

is not available in literature yet. The obtained results 

represent productive information for application and can 

be used as a magnification of previous results. 
 

2 Problem Formulation 

Two-dimensional forced convection laminar 

stagnation point flow of a viscous incompressible 
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electrically conducting fluid at a solid plate is 

considered here. In this model rectangular coordinates 

are used and x  and y axes are taken 

corresponding to the infinite plate and perpendicular 

to it keeping origin at the stagnation point of the wall. 

A uniform magnetic field is applied with strength 
0B , 

which is subjected to the fluid in the y axis 

direction, as presented by Fig. 1. The magnetic 

Reynolds number is taken smaller than unity therefore 

induced magnetic field becomes very small in the 

comparison of the applied magnetic field, which can 

be decayed. Also, viscous dissipation near the  

sheet is also taken into the account. The external free 

stream flow velocity   axxue   varies linearly along 

x axis, where a  is a positive constant and x  is the 

coordinate measured forward the infinite surface. The 

temperature of ambient fluid is taken as a constant 

value T . The wall is also subjected to a NH, CWT 

and CHF of the form Th
y

T
s

y














0

 , wTT   and 



w

y

q

y

T














0

 respectively, where T  is the fluid 

temperature, 


a
hs   

is a constant,   is kinematic 

viscosity, wT  is the fluid temperature at the surface, 

wq
 
is the constant wall heat flux and   is the thermal 

conductivity. Therefore, under the given 

considerations, the basic equations may be defined as 

follows (Bansal
41

): 
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


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




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


  … (3) 

along with the boundary conditions in the case of 

NH, CWT and CHF 

  
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
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y
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y
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e
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,:

)(),(),(,0,0:0


 

 

… (4) 

where u  and v  are the velocity factors in the x  

and y  directions, respectively, e is the electrical 

conductivity,   is the fluid density,  is the thermal 

diffusivity,   is the coefficient of viscosity and pC

is the specific heat at constant pressure. 
 

3 Similarity Analysis 
The governing equations (1) to (3) along with the 

boundary conditions equation (4) can be represented 

in dimensionless form by presenting the following 

non-dimensional variables (Salleh et al.
40

): 

    faxyx ,  … (5) 

y
a


   … (6) 

           CHF
q

h

TT
CWT

TT

TT
NH

T

TT

w

s
w



 







 








 ,,

 

 … (7) 

x
v

y
u












,

 
 … (8) 

where  yx,
 
is the stream function,  f  is the 

dimensionless stream function,   
is the similarity 

variable and    is the dimensionless temperature.  

Utilizing equations (5) to (8), the continuity 

equation (1) is satisfied automatically, and the 

momentum and the energy equations (2) and (3) are 

converted as:  

  0112  fMffff  … (9) 

  01
Pr

1 22  fMEcfEcf  … (10) 

subjected to reduced boundary conditions: 
 

 

Fig. 1 — Flow configuration. 
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 … (11) 

where prime stands for differentiation with respect to 

 , 
a

B
M e




2

0  is the magnetic parameter, 



Pr is 

the Prandtl number and 




TC

u
Ec

p

e

2

(NH), 

 


TTC

u
Ec

wp

e

2

 (CWT) and 



w

sp

e

q
hC

u
Ec

2


 (CHF) is 

the Eckert number. 
 

4 Solution Procedure 

To find the computational solution of the Eqs (9) 

and (10) subjected to the appropriate boundary 

conditions Eq. (11), Galerkin finite element method is 

applied in association with Gauss elimination scheme. 

Initially, introducing a new dependent variable h  

such that: 

hf   … (12) 

Equations (9) to (11) were converted into the 

following set of differential equations: 

  0112  hMhhfh  … (13) 

  01
Pr

1 22  hMEchEcf  … (14) 

with the reduced boundary conditions: 

 

0,1:

)(1),(1),(1,0,0:0









h

CHFCWTNHhf  

 … (15) 

For the computational procedure, the free stream 

boundary conditions at   is shifted to a 

sufficiently large finite value at 6  which is 

very approximate to earn the properties of free stream 

flow field asymptotically being values of considered 

physical parameters. Further, the whole space is 

separated into 1000 equal two-nodded linear 

elements. These are continuous and the linear 

Lagrange polynomial formula is imposed for every 

typical element.  

The weak form of Eqs (12) to (14) for an individual 

element  1, ee  , is considered as: 
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1
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e
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  … (16) 
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1
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2

e

e

dhMhhfhw



  … (17) 
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1
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e
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


  … (18) 

where 21 , ww  and 3w  are weight functions related to 

the functions hf , and  respectively. 

Introducing the shape function i  for an element 
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and the finite element approximations are assumed 

of the form 

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2

1

2

1

,
j
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j

jj hhff  and 



2

1j

jj  

with  2,1,321  iwww i . 

Now the element equations for Eqs (16) to (18) are 

assembled over the entire space using the connected 

inter-element condition, which provides a big number 

of linear equations also named a global finite element 

model. 
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Here the complete area of expertise is split into 

1000 linear sub-domains. So the whole domain has 

1001 nodes and at each node, three unknown 
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functions hf , and  are to be determined. Therefore 

the element equations for entire domain are assembled 

and a matrix of order 3003 3003 is obtained. The 

system of 2998 equations remains to be solved via an 

iterative method after imposing the boundary 

conditions. To solve the set of linear equations in the 

present study, Gauss elimination method is applied. 

The step size is assumed as 006.0  and the 

iterative procedure is stopped when the following 

condition is fulfilled 

71 10 
i

j
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j
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where   stands for either hf ,  or   and j  

represents the iterative step. 

 

5 Physical Quantities 

The local skin friction coefficient 
fC  and the local 

Nusselt number 
xNu  

are the important physical 

quantities of practical interest in present study which 

are given as: 

2

2

0

e

y

f
u

y

u

C


















  … (20) 





















TT

y

T
x

Nu
w

y

x

0  … (21) 

Using the similarity variables (5) to (8), the 

equations (20) and (21) can be signified as: 

 0
Re

2
fC

x

f
  … (22) 

 
       

 
 CHF

Nu
CWT

Nu
NH

Nu

x

x

x

x

x

x

0

1

Re
,0

Re
,0

0

1

Re 





 

 … (23) 

where 


xue

x Re
 
is the local Reynolds number.  

 

6 Numerical Method Validation 

The proposed computational method, applied in the 

previous section is validated here. Table 1 shows the 

comparison of the results for the impact of various 

values of the Prandtl number Pr on the rate of heat 

transfer  0   in the absence of the magnetic 

parameter M  and the Eckert number Ec  for the case 

of CWT with the earlier published works. Further, the 

numerical values of the temperature profile  0  in 

the case of CHF are also compared for different 

values of the Prandtl number Pr  with the literature of 

previous researchers in the limiting cases. From the 

table, it is evident that the present study data are in 

superlative agreement with those researchers. The 

efficiency and the reliability of the obtained values 

are also claimed by the table. 

 

7 Numerical Results and Discussion 

This part is committed to bring out the variations in 

the velocity  f  , the temperature   , the surface 

shear stress  0f   and the surface heat flux  0  due 

to some pertinent parameters like the magnetic 

parameter M , the Prandtl number Pr and the Eckert 

number Ec . Computational results of the velocity

 f   and the temperature    are demonstrated 

through graphs while the computational results of the 

surface shear stress  0f   and the heat transfer rate 

 0   are shown in table. 

Table 1 — Comparison of  0   and  0  for various values of Pr where 0.0 EcM and   232588.10 f . 

Pr  
 0   (CWT)  0  (CHF) 

Eckert15 Salleh et al.40 Present Results Lok et al.17 Salleh et al.40 Present Results 

0.1  0.2195 0.2379586 4.5557 4.5557 4.202411 

0.2  0.2964 0.3003920 3.3743 3.3742 3.328983 

0.4  0.3958 0.3959727 2.5267 2.5267 2.525427 

0.6  0.4663 0.4663406 2.1444 2.1444 2.144356 

0.7 0.496 0.4959 0.4958680 2.0166 2.0166 2.016665 

0.8 0.523 0.5228 0.5227418 1.9130 1.9130 1.912991 

1.0 0.570 0.5705 0.5704650 1.7529 1.7529 1.752955 

5.0 1.043 1.0436 1.0434330 0.9583 0.9583 0.958375 

7.0  1.1786 1.1783750 0.8485 0.8485 0.848627 

10.0 1.344 1.3391 1.3387960 0.7468 0.7468 0.746940 



CHAUDHARY et al.: MHD FORCED CONVECTION FLOW NEAR STAGNATION POINT 

 

 

543 

Effects of several values of M  on the velocity 

 f   profile and the temperature  
 
profiles for 

NH, CWT and CHF cases are displayed in Figs 2 and 

3 to 5, respectively while the remaining parameters 

are taken constant. From these figures, it is observed 

that the velocity within the boundary layer grows-up 

along to the enhancing nature of M . Subsequently, it 

is noted that the temperature decreases significantly 

with the raising values of M  in all three considered 

cases while in the case of NH, the reverse 

circumstance appear for 5.1 . It is also apparent 

that the actual M  impact is negligible in all cases for 

higher values of  . Physically, the momentum 

boundary layer thickness reduces over to the booming 

values of the applied magnetic parameter due to 

damping effects. This is revealed by the reason that 

the magnetic field is applied perpendicular to the fluid 

flow, which has a tendency to generate a drag like 

force namely Lorentz force which enhances the fluid 

velocity.  

The temperature    profile for different values 

of Pr  are given through Fig. 6 to 8 for NH, CWT and 

CHF cases, respectively, the other parameters are kept 

 
 

Fig. 2 — Velocity distribution for various values of M . 

 
 

Fig. 3 — Temperature distribution of the NH case for various 

values of M  with 7.0Pr  and 1.0Ec . 
 

 
 

Fig. 4 — Temperature distribution of the CWT case for various 

values of M  with 7.0Pr  and 1.0Ec . 
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Fig. 5 — Temperature distribution of the CHF case for various 

values of M  with 7.0Pr  and 1.0Ec . 
 

 
 

Fig. 6 — Temperature distribution of the NH case for various 

values of Pr  with 1.0M and 1.0Ec . 
 

 
 

Fig. 7 — Temperature distribution of the CWT case for various 

values of Pr  with 1.0M and 1.0Ec . 
 

 

Fig. 8 — Temperature distribution of the CHF case for various 

values of Pr  with 1.0M and 1.0Ec . 
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constant. From these figures it is clearly appreciated 

that the temperature declines over to boosting values 

of Pr  for all cases but in the case of NH the reverse 

phenomenon is true for 25.1 . This is due to the 

reason that the fluid temperature asymptotically 

access to zero in the free stream domain. Therefore, 

the Prandtl number controls the thermal boundary 

layers in heat transfer problems, and may be worn to 

enhance the rate of cooling. 

Figures 9 to 11 exhibit the temperature    

distributions in NH, CWT and CHF cases respectively 

for the development in Ec  while the remaining 

parameters are fixed. It is apparent from these figures, 

that Ec  has the decreasing influence on the 

dimensionless temperature for the case of NH. 

Furthermore, the temperature field evolves along with 

the increasing values of Ec  in the CWT and CHF 

cases respectively. This is because of the greater 

values of the Eckert number lead a significant 

generation of heat being viscous dissipation nearby 

the plate. Thus, viscous dissipation in a flow near the 

stagnation point is benign to attain the temperature.  
 

Fig. 10 — Temperature distribution of the CWT case for various 

values of Ec  with 1.0M and 7.0Pr  . 
 

 
 

Fig. 11 — Temperature distribution of the CHF case for various 

values of Ec  with 1.0M and 7.0Pr  . 

 
 
Fig. 9 — Temperature distribution of the NH case for various 

values of Ec  with 1.0M and 7.0Pr  . 
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Variation of the surface shear stress  0f  and the 

surface heat flux  0   in the cases of NH and CWT for 

different value of M , Pr , and Ec  are demonstrated in 

Table 2, taking other parameters constant. Table 

indicates that the wall shear stress  0f   increases over 

to the raising values of M . It is also clear from this 

table that the values of the surface shear stress are 

positive for all values of M . Because, positive sign of 

wall shear stress signifies that fluid utilizes a drag type 

force on the wall in this case. The heat transfer rate 

 0  increases with the enlarging values of M , Pr , 

and Ec  in the cases of NH. Further, the surface heat 

flux  0  increases with the step-up in M and Ec even 

though an opposite behavior is noted for Pr  in the case 

of CWT. Practically, positive sign of the surface heat 

flux signifies that there is a heat flow to the surface and 

conversely. 

 

8 Concluding Notes 

Impact of Newtonian heating on the 

magnetohydrodynamic flow nearby the stagnation 

domain in comparisons of constant wall temperature 

and constant heat flux presented theoretically. The 

governing conservation equations were converted into 

a structure of ordinary differential equations and 

numerically solved via Galerkin finite element 

method in association with the Gauss elimination 

technique. Computational values of the velocity, the 

temperature, the local skin friction coefficient and the 

local Nusselt number at the surface were 

demonstrated along to the magnetic parameter, the 

Prandtl number and the Eckert number. Main 

observations of present analysis is remarked as: 

(i) The velocity is derived to be increased, allied 

with a production in the surface velocity gradient, 

and so the shear stress increased in the presence 

of the magnetic field. Until, the wall temperature 

decreases with the applied magnetic parameter in 

all three cases. It is also noticeable that behavior 

of the temperature in NH case slightly changes 

after eta greater than 1.5. Moreover, the surface 

heat transfer rate has an increasing effect in the 

cases of NH and CWT as the enlarging value of 

the magnetic parameter. 

(ii) Impact of enhancing nature of the Prandtl number 

tends to decline the temperature profile for all 

three considered cases. In addition, for the case of 

NH, the behavior of the temperature profile 

becomes quite opposite after the point 25.1 . 

Although, the surface heat flux for the case of NH 

increases with the enlarging value of the Prandtl 

number but adverse phenomenon is noted in the 

case of CWT. 

(iii)  Finally, the temperature profile decreases along 

with the rising behavior of the Eckert number in 

the case of NH while a reverse impact is observed 

in the case of CWT and CHF. Consequently, 

increasing the Eckert number will produce an 

increment in the rate of heat transfer for NH and 

CWT cases. 
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