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The purpose of this work is to develop a theoretical model to calculate the bulk moduli of FCC nanoparticles that account 

for their size and structure. The bulk modulus for spherical nanoparticles has been derived from the cohesive energy which 

had been calculated by summing up the potential energy function of every pair of atoms of these metallic nanoparticles. 

The ab initio pair potential energy function has been formed by inverting the cohesive energy function proposed by 

(Rose et al., 1981), using the Chen-Mobius method. The results show that, as the size decreases, the bulk modulus decreases 

for spherical nanoparticles, which agrees with previous experimental and theoretical predictions. The results also predicted 

an “amorphous” structure for ultra-small nanoparticles and were consistent with previous experimental work. 
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1Introduction 

At present, there is no internationally accepted 

definition of nanoparticles. However, it is quite 

common to define nanoparticles as objects with 

diameters in the range of 1-100 nm. Consequently, 

nanoparticles are comprised of a number of atoms 

from few to few thousands. At the Nano-scale level, 

the bulk modulus of nanoparticles shows inconsistent 

trends for different materials. For example, the bulk 

modulus is enhanced as the size decreases for some 

nanomaterials, such as, γ-Fe2O3
1, CeO2

2, Au3 and Ag3

and diamond4. On the other hand, the bulk modulus 

decreases for some other nano materials, such as, γ-

Al2O3
5, CdSe6 and PbS7. For Nickel, the bulk modulus

does not show appreciable size dependence8,9. The 

authors concluded that the bulk modulus of nickel 

nanoparticles is unchanged from its bulk value. 

 Theoretical predictions conducted by G. Ouyang et 

al., had shown an enhancement of the bulk modulus 

of Ag10. On the contrary, Tbarakat predicted a 

decrease in the bulk modulus of Mo and W spherical 

nanoparticles as their sizes decrease11. 

 The modulus as well as many other physical 

properties of matter can be found from the cohesive 

energy. Over the last two decades, many researchers 

tried to build physically acceptable potential energy 

functions (PEF) and models, and to find out the nature 

of atom-atom interactions within a nanoparticle12-27, or 

nanotubes
28-30

. Semi-empirical PEFs with adjustable 

parameters have been worked out by many 

researchers19,25,26. However, a parameter-free functional 

pair potential has not been reported in the literature31.  

A.E. Carlsson, GelattJr, and H. Ehrenreich (CGE) 

were the first to introduce the inversion relation 

between the cohesive energy and the pair potential 

energy function31. In other words, if the cohesive 

energy as a function of the interatomic separation is 

determined, it is possible to find the pair potential 

function32. The cohesive energy is calculated then by 

summing up the energy of all pairs of atoms within a 

bulk or a nanoparticle. The CGE methodology 

generates a slowly converging series. Unless 

supercomputing machines are employed, CGE cannot 

be used with slowly converging potential functions, 

like Rose's33,34. It is not possible to truncate the 

summation after a certain number of terms of the 

series for slowly converging potential functions.  

As an alternative to the CGE method, Nan-Xian 

Chen used another technique to invert the cohesive 

energy function35. He generalized the Mobius 

inversion formula in number-theory and was able to 

apply his method to multidimensional inverse lattice 

problems with all three kinds of cubic lattice 

structures (FCC, BCC and SC). The remarkable 
—————— 
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modification that was introduced by Chen to the CGE 

method generates a faster converging series that 

allows cutting the summation at 10-20 terms  

without losing the accuracy of the calculation of the 

cohesive energy35. 

 In this paper, the cohesive energy function 

proposed by Rose et al.33,34, which was successful to 

predict the bulk cohesive energy and many other 

thermo dynamical properties, has been tested and 

modified for nanoparticles. The potential energy 

functions of bulk materials was used by many 

researchers to calculate the cohesive energy and other 

properties of nanoparticles14,36,37.Chang Q Sun et al. 

used the well-known Lennard-Jonnes PEF to predict 

the cohesive energy for molybdenum and tungsten14. 

The Sutton-Chen potential is a many-body function 

that was suggested to represent the delocalized 

metallic bulk bonding. This Sutton-Chen PEF was 

used by Joswig et al. to calculate the total energy of 

aluminum clusters that include upto 58 atoms36. In 

addition, the variable-charge electrostatic plus 

potential (ES+) was developed for bulk properties 

calculation37. SamanAlavi et al. used molecular 

dynamics simulation for the prediction of the melting 

temperature of aluminum nanoparticles by employing 

ES+ PEF37. Using Rose et al. PEF in this work is 

assumed to predict the correct cohesive energy and 

modulus of FCC transition metals due to two main 

reasons. First, the bonds are metallic for the current 

work as well as for Rose et al. Reducing the size from 

bulk to nanoparticles is not expected to change the 

nature of atom-atom interaction. Second, the difference 

between bulk and nano properties calculations is the 

size which will be taken into account in running the 

summations over all pairs of atoms. The cohesive 

energy has been used to calculate the bulk modulus. 

Section Two of this paper explains in brief the 

procedure of finding the pair potential via the Chen-

Mobius method and shows how the cohesive energy 

for bulk material is calculated. Section Three explains 

the model that has been used to calculate the bulk 

modulus in detail and applies the method to spherical 

nanoparticles with examples for the calculation of the 

moduli of gold, silver and nickel nanoparticles. 
 

2 Methods of Calculation 

In the present work, the Chen-Mobius technique 

has been used to calculate the cohesive energy and the 

bulk moduli of Au, Ag and Ni metallic nanoparticles 

using the pair potential energy function(PEF) 

suggested by J. H. Rose et al33. The calculations have 

been conducted at       for convenience and 

simplicity, since the difference in the cohesive energy 

between the absolute zero and the melting point does 

not exceed 5%38. 

The potential energy of N interacting atoms (at rest, 

     ) can be written as a many-body expansion: 
 

             ... (1) 
 

Explicitly, 
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Where               and                       denote the two- and 

three-body PEFs respectively. In this series, the two 

body interaction    is dominant. If only up to dipole-

dipole interactions are considered, the total cohesive 

energy (at      ) is given by the sum over all 

couples of dipoles within the particle. So, the total 

energy is given by: 
 

   
 

  
         

 
   

 
   
    

   … (3) 

 

Where    denotes the interaction distance between  

i and j atoms. The crystal structures for nano-Ni, Cu, 

Au and Ag were reported by many researchers to be 

the same as that of bulk39-42. So their structures at the 

nano level are FCC. 

 In this work, the atoms are assumed to interact via 

the pair potential        derived by Chen et al.43. The 

derivation is explained in detail in reference43 and 

outlined in the appendix of44. This pair potential is 

expanded in terms of the cohesive energy function 

    suggested by Rose et al.33 and given by: 
 

                 
 
      … (4) 

 

Where    is a monoatomic sequence that represents 

the radii of spherical shells of a FCC nanoparticle.   's 

are coefficients of series expansion that can be found 

from the relation: 
 

          
  

  
       

 
          … (5) 

 

Where     is the kronecker delta. The summation of 

Eq. 5 runs over all the factors of   
42. By determining 

the   ,    and   , Eq. 4 can be used to find        

whenever     is chosen. The calculations of   ,    

and    are straightforward and explained in detail in 

the appendix of44. The first twenty        and    terms 

for FCC structure are listed in table (1). A customized 

code has been written to generate the atom's 
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coordinates for FCC crystals, the minimum cohesive 
energy for bulk/nanoparticles as well as the bulk 
modulus, and the associated nearest neighbor 
distances. The procedures for finding 𝜙ൣ𝑟௜௝൧ are 
explained in section 2.2. 
 

2.1 Pair potential and cohesive energy of FCC metals 
 To find the pair potential 𝜙(𝑟), one must set the 

function 𝐸(𝑐௟𝑟). In the present work, the universal 
cohesion equation of J. H. Rose et al. is used for 𝐸(𝑐௟𝑟). Rose et al.30 suggested a cohesive energy 
function E(r) that successfully described the behavior 
of many bulk metals.  

This function is expressed as: 
  𝐸(𝑟) =  −𝐸଴(1 + 𝑟∗)𝑒ି௥∗  … (6) 
 r∗ = 𝛼଴ටଽ୆బΩ୉బ ቀ୰ୢ − 1ቁ,Where Ω, d, E0and B0 are 

the atomic volume, the nearest neighbor distance, the 
sublimation energy, and the bulk modulus, 
respectively. While α0 equals "one" in Rose's function, 
in this paper, it is a fitting parameter for finding the 
cohesive energy at the nano level. 

For FCC elements, Ω =ଵସa3. "a" is the lattice 
parameter. The atomic volume can be written in terms 
of the nearest neighbor distance "d" as: Ω= ௗయସ(ௗ ௔⁄ )య. 
By substituting 𝑑 𝑎⁄ = 𝑔, 

the inter-atomic distance is given by: 𝑟௜௝∗ =𝛼଴ට ଽ୆బସ௚య୉బ ൫dଵ ଶ⁄ 𝑟௜௝ − dଷ ଶ⁄ ൯. Plugging this expression 

for r௜௝∗  in Eq. 6, Eq. 4 can be written as: 
 

 … (7) 
 

Using equation (3), the cohesive energy can be 
calculated by running the summation over i, j and l. 

𝐸 = −𝐸଴෍෍෍൦𝛽௟ ൮1ே
௝ୀଵ

ே
௜ୀଵ ௜ஷ௝

∞

௟ୀଵ
+ 𝛼଴ඨ 9B଴4𝑔ଷE଴ ൫𝑐௟dଵ ଶ⁄ 𝑟௜௝
− dଷ ଶ⁄ ൯൲𝑒ିఈబඨ ଽ୆బସ௚య୉బ൫௖೗ୢభ మ⁄ ௥೔ೕିୢయ మ⁄ ൯൪  

 … (8) 

2.2 Stability 
A nanoparticle is assumed stable at its minimum 

energy. The stability condition is: డாడΩ = 0.Since the 
“Ω” and “d” are related via the relation: Ω = 𝑁𝑔𝑑ଷ, 
the stability condition can be written as: డாడௗ = 0, 
where N is the number of atoms in the 
bulk/nanoparticle. Therefore, the stability condition 
reveals: 
 

… (9) 
 

Upon running the summation of Eq. 9, stability is 
found at a certain value of “d” for every nanoparticle 
that includes 40 atoms and more. For ultra-small 
particles (less than 40 atoms), stability is lost at all 
values of "d", i.e., Eq. 9 cannot be verified for any 
value of "d".  
 
3 Results and Discussion  
 

3.1 Cohesive energy for bulk and nanoparticles 
The cohesive energy of Au, Ag and Ni bulk and 

nanoparticles consisting of 40-12215 are calculated 
using Eq. 8. The quantity (in the exponent of  

equation 7); 𝛼଴ට ଽ஻బସ௚యாబ is assumed constant since there 

is a mutual simultaneous change in the nearest 
neighbor distance “d” as well as in 𝛼 and in the 

mechanical properties 𝐵 and 𝐸, i.e., 𝛼ට ଽ஻ସ௚యா is equal 

to its corresponding bulk value 𝛼଴ට ଽ஻బସ௚యாబ, at all 

values of N. By looking at Eq. 7, this assumption is 
valid since the forces within a nanoparticle are 
conservative, and therefore, the potential energy 
becomes exclusively atom-atom distance-dependent. 

 The summation of Eq. 8 has been run over the first 
20 terms of the series, i.e., l takes the values 1, 2, 3, 
…. 20. This summation uses the values of 𝑐௟,𝑠௟ and 𝛽௟ 
given in table (1) and the values of 𝐸଴ and ට ଽ୆బସ௚య୉బ 
given in table (2).  

Equation 8 predicts the bulk cohesive energy per 
atom for Au, Ag and Ni (FCC) elements as shown in 
Fig. 1. 

The variation of the bulk cohesive energy of the 
three metals is presented, where the stable energies 
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(as a function of the nearest neighbor distance "d") are 

reached at d = 2.885 , d =2.892  and d =2.488   for 

Au, Ag and Ni, respectively. The cohesive energies 

are in agreement with the values available in the 

literature45 and show that the current calculations for 

the energy function have an excellent agreement with 

the experimental predictions.  

At the nano level, a nanoparticle that is comprised of 

N atoms is cut from a bulk FCC sample. The 

nanoparticles are initially assumed to have the same 

crystal structure as the bulk (FCC)38-41. As a result of 

cutting the nanoparticle, the constituent atoms lose 

stability. The atoms rearrange themselves to retrieve 

back the stability, and "d" is reduced as a result. It was 

evident that the nanoparticles are not stable at any “d” 

for N less than 40 atoms. This result can be interpreted 

in view of amorphous structure. The nanoparticle 

becomes amorphous, where no equilibrium can be 

found at any value of the nearest neighbor distance “d”. 

This result was predicted by H. K. Kim et al.49. 

This calculation of the cohesive energy predicted 

values of   different from “1”. These values of  are 

found by fitting the experimental data to the 

prediction of the current work. To get the best fit for 

the experimental measurements, the cohesive energies 

for different values of "α0" are calculated for Au,  

Ag and Ni, as shown in Fig. 2.  

Table 1 — The lattice parameters      , and     for FCC cubic structure 

l 1 2 3 4 5 6 7 8 9 10 

  
  1 2 3 4 5 6 7 8 9 10 

   12 6 24 12 24 8 48 6 36 24 
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Table 2 — Bulk parameters of Rose's equation for Au, Ag and Ni. 

Element Atomic 

Diameter 

(Å) 

Lattice 

Parameter 

"a"(Å) 

Nearest Neighbor 

Distance  

"d" (Å) 

g=d/a Surface 

Tension  

(eV/ Å2) 

Shear  

Modulus  

(eV/ Å3) 

Bulk  

Modulus  

(eV/ Å3) 

Sublimation  

Energy 

(eV) 
 

  

     
        

Au 2.884(48) 4.08(38) 2.88(38) 0.70588 0.096875(46) 0.16218(46) 1.07625(4) 3.54889(45) 1.39285 

Ag 2.989(48) 4.09(38) 2.89(38) 0.7066 0.078125(46) 0.189(46) 0.72374(4) 2.63573(45) 1.32334 

Ni 2.48(45) 3.52(38) 2.49(38) 0.70739 0.1315(47) 0.47417(46) 1.12304(45) 3.93284(45) 1.34726 

 

 
 

Fig. 1 — The bulk cohesive energy of Au, Ag and Ni predicted by 

the current PEF. 

 

 
 

Fig. 2 — The variation of the cohesive energy of Au, Ag and Ni 

as a function of the particle size N. The inset shows the size 

dependence of the scaled cohesive energy E/E0. 
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The scaled cohesive energies        were 

compared with the predictions of H. K. Kim et al. for 

molybdenum and tungsten, since they were reported 

to have FCC-structure at the nano level (inset of 

figure 2)49. The inset figure shows the scaled curves 

that collapse into almost one. Figure 2 shows the 

cohesive energy curves as a function of size N, where 

the best fit reveals "α0" values of 0.40, 0.42 and 0.52 

for Au, Ag and Ni, respectively45. 
 

3.2 Bulk modulus for spherical nanoparticles 

The bulk modulus B is related to the cohesive 

energy   via the relation:    
   

   . This relation 

can also be written as:   
 

   

   

    (for FCC 

structure). Using the expression for the energy 

(equation 8), B can be written as: 
 

 
 … (10) 
 

As has been done with calculating  , the 

summation10 is run for different values of N(at the 

equilibrium value of “d”). The calculated bulk 

modulus for spherical Au, Ag and Ni nanoparticles is 

shown in Fig. 3. It is clear that   decreases as N 

decreases. Q F Gu et al. predicted a modulus of 

1.7875-1.8125 eV/m3 for Au (30 nm in diameter)3. 

They found also a value of .756-.868 eV/m3 for Ag 

(10 nm in diameter). Compared to the values for the 

sizes mentioned (Fig. 3), the values of 0.46 eV/m3 

and0.875 eV/m3 are for Au and Ag, respectively. 

These deviations are attributed to shape factor as well 

as to the very small sizes of the samples of QF Gu  

et al.3. 

A better comparison can be found by comparing 

the current findings to previous predictions for 

transition metals11, where Tbarakat predicted similar 

results using Mie-type two-body plus Tellar-Axilord 

many-body PEFs to calculate the bulk modulus of Mo 

and W spherical nanoparticles Fig. 4
11

. 

It is clear that this model and the PEF used in this 

work predict the size dependence of B as well as E for 

spherical nanoparticles. B decreases slowly upon 

decreasing the particles’ size till N approaches 2000 

atoms, after which it decreases very rapidly.  
 

4 Conclusion 

 In conclusion, the present work shows that the 

modified Rose energy function predicted the correct 

experimental behavior of the moduli of Au, Ag and 

Ni spherical nanoparticles. It also shows that this 

potential energy function used here fits exactly the 

bulk measurements of the experimental cohesive 

energy of Au, Ag and Ni metals. Controlling the size 

of a nanoparticle will enable researchers to control the 

physical properties of nanoparticles. This will open 

the door for researchers to a variety of practical 

applications that can make use of this phenomenon. 

 
 

Fig. 3 — The size dependence of the bulk modulus of spherical 

nanoparticles using the modified Rose PEF(Eq. 8). 

 

 
 

Fig. 4 — The size dependence of the bulk modulus of FCC 

spherical nanoparticles of Mo and W predicted by Tbarakat10. 
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The current results can be further used to predict other 

mechanical properties of elements of other structures 

and composite materials. This work is a step forward 

towards controlling the mechanical, electrical, 

magnetic and optical properties of nano materials. 
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