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Polymer gears have proven to be an adequate replacement for traditional metal gears in various applications. They are 

lighter, have less inertia, and are much quieter than their metal counterparts. Polymer gears, however, are rarely employed 

because there is a lack of failure data. Hence, there is tremendous scope for fault detection of polymer gears. In this paper, a 

novel technique of polymer gear fault detection is proposed following the double decomposition of vibration signals. The 

experimentally acquired vibration signals are processed through two steps of decomposition, i.e., empirical mode 

decomposition and discrete wavelet transform based Time-Frequency decomposition. Subsequently, entropy features (EF), 

Hjorth parameter (HP), and a combination of EF and HP are extracted. A combination of these feature sets is used to train 

the classifier: support vector machine (SVM), ensemble learning, and decision tree. Among all classification methods, the 

ensemble learning classifier reached the maximum classification accuracy of 99.2 % using a combination of EF and HP 

features. Furthermore, EMD and DWT are compared with the proposed double decomposition method (EMD-DWT) for 

accuracy validation. The experiments demonstrated that the proposed EMD-DWT method is efficient and yields promising 

results for classifying polymer gear faults. 
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1 Introduction 

Polymer gears research has grown over the last few 

decades due to their low manufacturing costs and 

superior properties such as low density, low damping 

characteristics, and ability to absorb excessive 

vibrations.
1
 Due to new developments such as 

material and processing in polymer gears, it can be 

effectively be used under severe loading conditions 

and at a high rotating speed.
2
 Pitting, wear, root 

cracking, and pitch circle cracking are the most 

common causes of polymer gear failure.
3
 However, 

when compared to metal gears, there are very few 

studies on failure detection of plastic gears. This 

unexpected failure in the polymer gear results in the 

shutdown of the machine and accidents during 

operation. This is the main reason behind the 

autonomy gear fault detection that has gained the 

most attention from researchers. Efficient polymer 

gear fault detection technique using vibration signal 

analysis can restrict sudden failure of the polymer 

gear and reduce the accident, repair cost and shut 

down of the machine. Thus, detecting polymer gear 

faults using a vibration signal is a difficult task 

because the vibration signal is nonlinear and non-

stationary in nature. It is also affected by external 

noise from different parts of the machine and the 

damping characteristic of the polymer gear. For 

accurate detection of these faults, vibration signal 

from gears setup must be separated from external 

noise. However, the effectiveness of signal analysis 

depends on signal processing techniques. Therefore, 

various condition monitoring features are proposed by 

many authors for fault detection of gears and bearings 

from vibration signals analysis.
4
  

In the past few years, various signal processing 

methods have been used in the fault detection of 

rotating components. The signal processing technique 

is broadly classified into three groups:
5
 time domain, 

frequency domain, and time-frequency domain. The 

statistical properties of the signal, such as standard 

deviation, crest factor, root mean square (RMS), 

kurtosis, and so on, are important in time dependent 

analysis. The fast Fourier transform (FFT) algorithm 

is used in frequency dependent analysis to convert 

measured time-domain signals into the frequency 

domain. The study of these two methods, i.e., time 

and frequency domain, are reliable and accurate when 

applied to a stationary signal. Still, for non-stationary 

signals, they are not very reliable.
6
 To avoid these 

issues, A method for analyzing time and frequency 
—————— 
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has been developed. Previously, various literature is 

available based on time-frequency methods for fault 

detection of rotating components like gear and 

bearings.
7–14

 The WT is a very useful method for 

detecting abrupt changes in non-stationary signals.
15

 

WT is broadly classified into two groups continuous 

wavelet transform (CWT) and discrete wavelet 

transform (DWT). The DWT based technique is 

widely used to detect a fault in gears.
16–19

 In recent 

years, several new signal processing methods for 

classifying gear faults are already developed and 

successfully implemented. For instance, Amarnath 

and Praveen
20

 studies gear fault detection using 

empirical mode decomposition (EMD) based on 

statistical parameter analysis. In another work, 

Sharma and Parey
21

 employed EMD with RMS-based 

probability density function and entropy for gear fault 

detection. Some scholars are focused on the failure 

detection of polymer gear. For example, Iba et al.
22

 

proposed a new method to cancel background 

vibration noise in meshing plastics gear pairs and 

detect gear failure using neural oscillators. Kien et 

al.
23

 investigate the plastic gear fault detection using a 

convolution neural network. Kumar et al.
24

 studied 

the polymer gear fault detection based on statistical 

features extracted from vibration signals. 

Han et al. 
25

 investigate the combined effect of 

EMD, particle swarm optimization-SVM and fractal 

box dimension. EMD-DWT based double 

decomposition is a relatively new technique for signal 

processing and feature extraction. Although EMD-

DWT analysis is mainly shown in the area of 

biomedical signal processing 
26,27

, it has not been used 

in the field of gear fault detection. Thus, it would be 

interesting to investigate the impact of the EMD-

DWT domain for polymer gear fault classification. 

Keeping in this mind, the main aim of this study is to 

(i) Increase the scope of non-stationary vibration 

analysis for polymer gear fault detection. (ii) A 

comparison of the accuracy of various classifiers 

utilizing various feature sets for fault classification. 

A categorization methodology for polymer gear 

signals is provided in this paper, based on features 

collected from the EMD, DWT, and EMD-DWT 

approaches. Three sets of features such as (i) Entropy 

feature (EF), (ii) Hjorth parameters (HP), and (iii) 

combination of EF and HP are used to train three 

different classifiers like SVM, fine Tree and bagged 

tree for classification of multi-class polymer gear 

signals. The optimal scenario for recognizing healthy 

and faulty polymer gear signals is produced using 

EMD-DWT techniques with EF and HP 

characteristics set for the bagged tree classifier. The 

results show that the best accuracy of 99.2 % is 

achieved.  

The remaining section of this manuscript is as 

follows: The materials and methods are described in 

Section 2. Section 3 discussion about the result of this 

study. The final section discussed the conclusion of 

the study. 
 

2 Materials and methods 

2.1. Experimental setup 

Figure 1 depicts the experimental setup, including 

an AC motor (0.75 hp) with a top speed of 2850 rpm, 

a variable frequency drive (VFD), a shaft, coupling, 

and bearings. The shaft has a diameter of 30 mm and 

is connected to the motor shaft via a flexible coupling. 

The two-roller bearing, which is located at the shaft's 

end, provides support for this shaft. The shaft's 

 
Fig 1 ⸻ (a) Machinery fault simulator, (b) Newly designed gear assembly. 
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motion is transmitted to the newly designed  

gear setup Fig.1(b) through the belt pulley 

arrangement. The newly designed setup consists  

of a base plate (180 152 15 mm mm mm  ), side 

plate (180 20 90 mm mm mm  ), bearings, shafts, 

and magnetic brake. The load is applied to the gear 

pair using a magnetic brake. The level of 3 Nm torque 

is applied for test conditions. A number of faults are 

artificially created in pinion polymer gear, and the 

mating polymer gear is defect-free. The vibration 

signal from these gears is recorded by an 

accelerometer positioned on the top of the side plate. 

 
2.2. Experimental procedure 

In this study, MC901 (Nylatron) polymer gear has 

been selected for the experiment. It is a modified group 

of nylon6 grade, which exhibits more stable properties 

than unmodified nylons. MC901 has good mechanical 

strength, higher flexibility, and damping properties. It 

is blue in color and used in bearings, gears, wheels, and 

custom parts. The specification of the polymer gear 

pair is shown in Table 1. A total of six pinion polymer 

gear are used in this study. One is healthy (H), and the 

other five are faulty with different simulated gear 

pitting fault classes, namely L1, L2, L3, L4, and L5. A 

micro milling machine is used to create the simulated 

pits on the pinion gear tooth surface. It is done to keep 

the size within the acceptable range. The pit has a 

circular cross-sectional area with a diameter of 2 mm 

and a cylindrical depth of 0.1 mm. In fault L1, pits are 

one, whereas in faults L2, L3, L4, and L5, pits with the 

same dimension are two, three, four, and five, 

respectively. The vibration signals are taken using an 

accelerometer mounted on a side plate. The sampling 

rate is 12.8 kHz, and the sample length is 10000 used 

for signal acquisition at all operating conditions. The 

raw vibration signals are recorded at four rotational 

frequencies, i.e., 10 Hz, 20 Hz, 30 Hz and 40 Hz. At 

each frequency, gears are operated with a load of  

3 Nm torque. In this investigation, the raw  

vibration signals are acquired from healthy and varying 

levels of polymer gear defect under various testing 

situations. 

 
2.3  Features 

2.3.1 Entropy features (EF) 
Entropy is described as a degree of disorder of the 

system.
28,29

 In this study, a variety of entropy 

parameters are used to measure the pitting fault in 

polymer gear, which is described as follows: 
 

(i) Log energy entropy (HLE) 

2H log( )LE
1

N
yi

i

 


  …(1)  

 

(ii) Threshold entropy (HTh) 

1, f ,and
H

Th 0,elsewhere

i y vi 
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(iii) Sure entropy (HSuE) 

   2 2- £ min ,
1
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(iv) Norm entropy (HNE) 

H
NE

v
yi   ...(4) 

 

(v) Shannon entropy (HSE) 

2 2 log  (y )
1

N
H yi iSE

i
 


  ...(5) 

 

Where, N is the number of samples, y
i is the 

coefficient of signal y, and v is the threshold. 
 
2.3.2 Hjorth parameters (HP) 

B. Hjorth
30

 introduced HP, which are Activity (A), 

Mobility (M), and Complexity (C). HP are statistical 

features used in time domain signal processing as 

indicators. They are commonly used for feature 

extraction of a biomedical signal. More features 

necessitate more training samples, increasing 

computational complexity and the risk of over-fitting. 

To overcome this problem, HP is selected for this 

study. If y(t) is the vibration signal, these parameters 

are as follows: 
 

(i)   A Var y t   ...(6) 
 

(ii) 

 

  
M
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 
 
    ...(7) 

 

(iii) 

 

  
C

dy t
M
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M y t

 
 
 

   ...(8) 

Table 1 ⸻ Specifications of the polymer spur gear. 

 Gear Pinion 

Material MC901 MC901 

Module (mm) 2 2 

Pitch diameter (mm) 60 40 

Tooth numbers 30 20 

Pressure angle 20° 20° 

Tooth depth 4.5 4.5 

Tooth hardness 115-120 HRR 115-120 HRR 
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2.4  Feature extraction 

This section discusses the extraction of the features 

described in Section 2.3 in various time-frequency 

domains such as EMD, DWT, and EMD-DWT. 
 

2.4.1. Vibration signal analysis by EMD 

Huang et al.
31

 proposed the EMD based signal 

processing technique in 1998. It doesn't require any 

information about the stationary behavior of the signal 

or its linearity. It decomposes a signal ( )y t
 
into a 

finite number of signals, known as its IMFs. The 

EMD technique and algorithm are briefly 

described.
32,33

 According to the definition of EMD, a 

signal ( )y t is decomposed into the sum of IMFs and 

their residual components. It is mathematically 

expressed as an equation (9). 

( ) ( ) ( )

1

n
y t c t r ti n

i

 


                                        ...(9)  

where ( )c t
i symbolizes the IMFs and ( )r t

n  is the 
residual component. 1

c contains high-frequency 
components, and the lowest frequency components lie 
in the last IMF. After decomposition of the signal and 
obtaining all the IMFs, the most dominant IMF 
selection is a crucial task that contains the gear 
information. A correlation coefficient is used to select 
the dominant IMF in this study. For each IMFs 
generated through EMD, the correlation coefficient is 
calculated between the raw and decomposed signal 
from equation (10): 
 

 

( ) (c )

1

2 2( )  (c )

1 1

N
y y ci i

i
CC

N N
y y ci i

i i
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

  
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  ...(10) 

In the present work, The EMD algorithm is 

implemented to estimate IMFs of raw vibration 

signals. The raw signal is decomposed into different 

IMF and residual. Fig. 2 & 3 illustrated IMFs after 

decomposition of healthy and faulty gear with L5, 

respectively. After decomposition, it is important to 

select the dominant IMF, which includes the sensitive 

fault information. There are several methods 

developed by the researcher to choose the dominant 

IMF. We adopted the correlation coefficient method 

by equation (10) for this task.
34

 Therefore, the IMF 

with maximum correlation coefficient value is 

selected as a dominant IMF. Fig. 4 depict the 

correlation coefficient of various IMF at 40 Hz and 3 

Nm loading condition, Fig. 4 (a & b) show the 

correlation coefficient of Healthy and faulty gear (L5), 

respectively. We have extracted entropy features and 

Hjorth parameters from IMF1. Thus, we have a total 

of 8 features extracted in the EMD domain. 
 
2.4.2 Vibration signal analysis by DWT 

In the wavelet process, the time domain signal is 

converted into a wavelet domain with the help of the 

mother wavelet. A wavelet function explain as:
35  

 

 1 *( )  , m IR
,

t n
t n IR

m n m m
 

 
    

 
  ...(11) 

 

Where m denotes the scale and n indicates the shift 

factor. The signal is decomposed into an 

approximation and detailed coefficients using a 

DWT-based method in this study. DWT has a wide 

range of mathematics, science, and engineering 

applications. DWT method works on sub-band coding 

and requires less computation time for the wavelet 

 
 

Fig. 2 ⸻ Healthy gear signal and IMFs at 40 Hz, 3 Nm. 
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transform. The mathematical equation for defining the 

DWT is as: 
 

   /2
 2 2

,

j jW x k n k
j k

j k


     ...(12) 

 

The accuracy of wavelet analysis can be analyzed 

by using the appropriate filter for a specific case. 

Daubechies wavelets are used in this study because of 

their orthogonality, low computational effort, and 

compact time-domain support.
36

 To extract features 

by the DWT method, a 6 level decomposition of the 

raw vibration signal is carried out using Daubechies-4 

(db4) as the mother wavelet. The details coefficient 

level 1 is used for feature extraction because it holds 

the most sensitive information, i.e., maximum energy 

ratio. Thus, we have a total of 8 features extracted in 

the DWT domain. 

2.4.3 Vibration signal analysis by EMD-DWT methods 

This section decomposes raw vibration signal using 

EMD and dominant IMF, i.e., IMF 1 is then 

decomposed into DWT. Debaucheries 4 mother 

wavelet is used to decompose the 1
st
 IMF (dominant 

IMF) into details and approximation coefficient up to 

six decomposition levels. After that, the authors select 

a decomposed signal that holds the sensitive fault 

information and reduces the computational time for 

further analysis of the decomposed signal. It observed 

that level 1 of decomposed signal belongs to higher 

frequency categories. It holds sensitive fault data of 

polymer gear system, which is investigated and 

supported by calculating the energy ratio of all 

decomposed levels.
37

. Decomposition level 1 has 

found a maximum energy ratio; therefore, level 1 is 

used for fault feature extraction. Thus, we have eight 

 
 

Fig. 3 ⸻ L5 fault gear signal and IMFs at 40 Hz, 3Nm. 

 

 
 

Fig. 4 ⸻ Correlation coefficient comparison of IMFs. (a) Healthy gear at 40 Hz, (b) L5 gear at 40 Hz. 
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features extracted in the EMD-DWT domain, and 

these features are fed into the various classifier. 
 

2.5. Classification  

In this study, three sets of features, such as EF, HP, 

and EF+HP, are used separately to detect the polymer 

gear classification using three different machine 

learning techniques, i.e., bagged tree, decision tree, 

and support vector machine (SVM). 
 

2.5.1. Ensemble learning method (Bagged Tree) 

In the bagging technique, the main aim is to create 

several subsets of data chosen randomly from the 

training sample. Each collection of the subset data is 

fed to train the respective decision tree. The decision 

trees are derived by constructing the base classifiers 

B1, B2, B3,…., Bn with the bootstrap samples J1, J2, J3, 

…., Jn, respectively, by replacement from the defined 

data set J. The resulting bagged tree model consists of 

a grouping of all the constructed base classifiers and 

the majority's votes. Thus, the ensemble model results 

in the mean of predictions from different decision 

trees and is noticeably more vigorous than a single 

decision tree. When tuning the parameters of a 

Bagged tree in this study, the maximum number of 

splits and number of learners were set to 239 and 30, 

respectively. 
 

2.5.2. Decision trees classifier 

It is a family of supervised machine learning 

algorithms. The decision tree is a tree-shaped 

classifier used to determine a course of action. In this 

classifier, the decision node and leaf node are two 

significant parts. The decision node has multiple 

branches, and it is used to form a possible decision. 

Leaf nodes do not have any components and give an 

output of decision. In this algorithm, the selection of 

splits is the most crucial element.
38

 In this study, the 

fine tree method is used with a maximum number of 

the split is 100 and Gini’s diversity index is used for 

the split criterion. 
 
2.5.3. Support vector machine (SVM) 

SVM belongs to the supervised learning 

classification. Its main aim is to obtain an optimal 

hyperplane in a space (number of features) such that 

separation between two classes is maximum. The 

SVM technique is details described.
39

 A quadratic 

linear-based SVM with a box constraint level 1, 

kernel scale mode "auto," and multiple class method 

"one-vs-one" is considered in this study. Quadratic 

SVM takes roughly 60 seconds to train. 

3 Results and discussion  

This section contains the findings of feature analysis 

and classification are presented. The classification 

methods such as SVM, fine tree and bagged tree are 

trained using the 10-fold cross-validation method. For 

ten-fold cross-validation, the processes will be repeated 

ten times, with one subset out of ten being used for 

training each time. This approach is preferred because 

it avoids any possibility of statistical biases for dividing 

data.
29

 Table 2- 4 shows the accuracy of different 

features set with different classifiers for EMD-DWT, 

EMD and DWT method, respectively. Table 2 shows 

the performance of the different combination features 

extracted from the EMD-DWT approach with different 

classifiers. Three sets of features are used, known as 

EF, HP and a combination of EF and HP as a feature 

vector for different classifiers. Observing the 

performance from Table 2, the combination of EF and 

HP feature vector with bagged tree produces the 

highest accuracy of 99.2%. However, the classification 

accuracy performance of fine tree and SVM is 90% 

and 84.6%, respectively. 

Table 3 shows the performance of the different 

combination features extracted from the EMD 

approach with different classifiers. The outcomes 

from Table 2, the combination of EF and HP feature 

vector with bagged tree produces the accuracy of  

97.5%. However, the classification accuracy 

performance of fine tree and SVM is 88.3 and 75%, 

respectively. Table 4 shows the performance of the 

different combination features extracted from the 

DWT approach with different classifiers. The 

classification accuracy of the bagged tree, fine tree 

and SVM for DWT using combined features EF+HP 

is 97.9%, 88.8% and 71.7 %, respectively, as shown 

in Table 4. Here, it is also observed that the achieved 

Table 2 ⸻ Comparison of the accuracy of three different machine 

learning techniques with EMD-DWT. 

Machine learning 

technique 

Accuracy (%) 

EF HP EF and HP 

Bagged Tree 89.6 93.3 99.2 

Fine Tree 90 85.8 90 

SVM 35.8 65 84.6 
 

 

Table 3 ⸻ Comparison of the accuracy of three different machine 

learning techniques with EMD. 

Machine learning 

technique 

Accuracy (%) 

EF HP EF and HP 

Bagged Tree 90 92.5 97.5 

Fine Tree 85.4 88.8 88.3 

SVM 26.2 62.5 75 
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classification accuracy is higher when using the 

combination of EF and HP feature sets compared to 

EF and HP separately. Table 5 shows the confusion 

matrix of the bagged tree classifier, considering the 

combined EF and HP feature set extracted from 

EMD-DWT. The high accuracy of the proposed 

method indicates that it may be helpful in the fault 

detection of polymer gear. Hence, the proposed 

methodology may be able to classify polymer gear 

faults. The method adopted in this study for extraction 

features and classification of polymer gear faults is 

summarized in Fig. 5. 
 

4 Conclusion 

This research aims to develop the EMD-DWT 

based double decomposition technique for polymer 

gear fault detection. The proposed method identifies 

the different levels of pitting fault in polymer gear. 

For this purpose, three sets of features, i.e., EF, HP 

and combined EF and HP feature set, are extracted in 

EMD, DWT and EMD-DWT approach. Three 

classifiers are used to classify the fault and compare 

the accuracy with different features set. The combined 

features set, i.e., EF and HP extracted from the EMD-

DWT approach combined with a bagged tree, show 

the highest classification accuracy. The proposed 

method's performance is also compared to EMD and 

 
 

Fig. 5 ⸻ The Flowchart of the developed model for the fault classification of polymer gear. EF stands for entropy feature, and HP stands 

for Hjorth parameters. 

Table 4 ⸻ Comparison of the accuracy of three different machine 

learning techniques with DWT. 

Machine learning 

technique 

Accuracy (%) 

EF HP EF and HP 

Bagged Tree 92.9 92.5 97.9 

Fine Tree 87.9 92.1 88.8 

SVM 35.4 56.7 71.7 
 

 

Table 5 ⸻ Confusion matrix of bagged tree classifier using 

combined EF and HP by EMD-DWT. 

H L1 L2 L3 L4 L5 Classified as 

40 0 0 0 0 0 H 

0 40 0 0 0 0 L1 

0 0 40 0 0 0 L2 

0 0 0 40 0 0 L3 

0 0 0 0 40 0 L4 

1 0 0 0 0 39 L5 
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DWT separately. The results indicate that the 

proposed feature extraction methodology can identify 

polymer gear faults with a minimum number of 

features. 
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