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The evolution of quantum computers and quantum machine learning (QML) algorithms have started demonstrating 
exponential speed-ups. In machine learning problems, the efficient handling and manipulation of linear algebra subroutines 
defines the complexity of the task to be performed. Quantum computers handle big datasets in the form of vectors and matrix 
operations very efficiently. In this paper, quantum support vector machine (QSVM) algorithm is used to solve a classification 
problem using a benchmarking MNIST dataset of handwritten images of digits. Quantum SVM variational and kernel matrix 
algorithms are implemented to analyze quantum speedup on quantum simulator and physical quantum processor back-ends. The 
study compared classical and quantum SVM algorithms in terms of execution time and accuracy. The results explicitly prove 
quantum speed-up achieved by quantum classifiers on quantum back-ends for machine learning applications.  
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1 Introduction 
Continued developments in patternability of silicon 

transistors to nanoscale empowered modern computers 
to handle and manipulate large amounts of data. The 
contemporary complex applications require big data 
sets to be efficiently handled and manipulated by 
classical computers1. The growing size of data has 
started creating big challenges for classical computers 
in terms of performance and computing resources. The 
growing trend of big data has driven the need for a new 
computing architecture or approach to handle 
complicated big data problems2. The advancements in 
development of quantum computer and quantum 
inspired machine learning algorithms are promising to 
offer quantum speed-up over their classical 
counterparts3. In fact, even before the arrival of actual 
quantum computers researchers have started coming up 
with quantum machine learning algorithms that offer 
considerable time speed-up over the corresponding 
classical machine learning algorithms4-6. All these 
examples clearly bring out the fact that the quantum 
machine learning algorithms have the potential to offer 
considerable speedups over the corresponding classical 
algorithms. It is anticipated that quantum computing 
paradigm will facilitate handling of big datasets and 
offer solution for many intractable problems. It is also 

predicted that quantum computers are capable of 
searching unsorted big datasets7, factorizing integers8 
and rapidly extracting the desired patterns. They have 
capability of searching for multiple data items 
concurrently and discovering pattern of importance 
only. The machine learning, artificial intelligence, big 
data analytics, financial modelling, molecular 
modelling etc. applications would get immensely 
benefitted from quantum computing revolution much 
before fully quantum solutions came into reality9-10. 
Quantum inspired algorithms are enabling a boost to 
machine learning and data analytics11. It is anticipated 
that machine learning is going to benefit most from 
developments in quantum computing field12. The way 
to success hides behind mapping the real-world 
problems to quantum space. 

Artificial intelligence systems produce precise 
results provided machine learning algorithms employed 
for training supplied with bigger datasets. AI systems 
perform efficiently based upon how accurately the data 
is classified according to its particular attributes or 
features13. Quantum computers have capability to 
extract computationally complicated attributes of data 
which could reveal new conceptions hidden till now. 
The researchers have demonstrated that quantum 
supremacy is arriving faster than anticipated14. 
Machine learning is generally used in instances when 
there is no solution or formula for solving intricate 
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problems and big datasets with multiple variables are 
involved. Machine learning evolved as a key tool to 
handle larger datasets for solving problems in different 
areas such as computational finance, computational 
biology, computer vision and image processing, and 
natural language processing etc. The ML algorithms 
learn natural patterns from data to generate greater 
perception facilitating in improved decision making 
and predictions. The use of quantum computation in 
machine learning is just not limited to the academic 
community but also the industry is looking forward 
towards it with hopes and aspirations. The day is not 
far when the quantum machine learning applications 
will be used to provide more efficient solutions to the 
common machine learning problems.  

The paper is structured in following sections as: 
Section 2 presents preliminaries of quantum 
computing. Section 3 enumerates quantum machine 
learning and quantum support vector machine 
algorithm. Section 4 presents details of experiments 
conducted and a comparison of classical and quantum 
machine learning approaches. Section 5 concludes the 
paper. 
 

2 Preliminaries 
Quantum computers manipulate information 

encoded in form of quantum bits (Qubit). A qubit is 
most basic entity of quantum information or a 
quantum counterpart of a binary bit12. A qubit can be 
described as a two-state quantum-mechanical device 
which strictly follows rules of quantum mechanics 
with two-states labelled as |0⟩ and |1⟩ described by a 
two-dimensional (2D) vector space over the complex 
numbers C2.  

A qubit can be either in |0⟩ and |1⟩ state or in a 
random quantum state generally denoted as|𝛹⟩. The 
random quantum state |𝛹⟩ may be any superposition 
of |0⟩ and |1⟩ basis vectors computed using (1) as 
 
|𝛹⟩ ൌ 𝛼 |0⟩ ൅ 𝛽 |1⟩ (1) 
 

where, 𝛼 and 𝛽 are two complex numbers having 
probability of |𝛼|ଶ ൅ |𝛽|ଶ ൌ 1. On measuring a qubit 
always collapses to classical values of 0 or 1 with 
probabilities of |𝛼|ଶ or |𝛽|ଶ; respectively. A qubit 
with phase can be represented using (2) as 
 

|𝛹⟩ ൌ ඥ𝑝 |0⟩ ൅ 𝑒௜ఝඥ1 െ 𝑝 |1⟩   (2) 
 

where, 𝑝 is probability of a bit being in 0 state with 
limits 0 ൑ 𝑝 ൑ 1, and quantum phase is 0 ൑ 𝜑 ൏ 2𝜋. 

The unitary transformations cause a change in qubit 
or qubit-based systems. The unitary transformation of 
a qubit is equivalent to a quantum gate (𝑄-gate) 
operation12. The Hadamard (𝐻) gate is a fully 
quantum gate extensively used in all quantum 
computations. It performs superposition operation 
which is one of the most basic requirements of all 
quantum computations transforming finite quantum 
state of qubits to superposition state to leverage their 
full quantum capability. The controlled-NOT  
(C-NOT) gate is used to realize entanglement 
operation in quantum computing.  

Researchers are exploring various physical 
implementations of qubits. The photon polarization, 
an ion’s discrete energy levels, an electron’s spin, 
nuclear spin states of an atom, and superconducting 
Josephson junction etc. are being investigated for 
physical qubit realizations. The qubits in quantum 
computers need to be coupled amongst them-selves 
for a meaningful quantum operation. The stringent 
requirements are that qubits must be disengaged from 
outer environment with exception of only control, 
readout and writing accessibility. Most of existing 
qubit implementations are microscopic like nuclei or 
electron spin, atoms or ions etc. However, the 
superconducting qubits are macroscopic. The two 
most important parameters are coherence and 
quantum noise associated with any qubit 
implementation and present several new research 
areas for further exploration. 
 

3 Quantum Machine Leaning 
Quantum computers process the information using 

sub-atomic level particles based on quantum 
mechanical principles12. The intersection of machine 
learning and quantum computing gives birth to a field 
popularly known as quantum machine learning 
(QML). In QML, the data is processed on a quantum 
machine taking advantage of quantum mechanical 
properties. The quantum algorithms may offer great 
enhancement in computing speed for many intractable 
problems still remaining unrealistic for classical 
supercomputing machines till date. It is important to 
note that quantum advantage is not applicable in all 
cases. The quantum computing leverages from the 
immense data encoding capability of quantum bits 
due to physical properties of sub-atomic particles and 
their interactions i.e. superposition property. Quantum 
computations experiences slowdown as qubits are 
entangled and extracting their final state is a complex 
task. But, due to super-dense coding property, 
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quantum computers are excellent in handling and 
executing big data sets and significantly minimizing 
the space/time contemplations especially in case of 
machine learning.  
 

A quantum algorithm generally involves encoding 
of classical or quantum data in quantum space, 
applying unitary transformation operations on input 
qubit sets, and finally measuring the qubit(s) state to 
extract a classical output. Many researchers have 
demonstrated experimental and theoretical 
implementation of quantum support vector machine 
(QSVM) machines using qubits to find solution of 
machine learning problems. J. Biamonte et al.4 
exemplified relationship between quantum 
computation and machine learning. Machine learning 
can harness advantages offered by quantum algorithms 
using quantum principles to overcome computational 
complexity problems. They have highlighted quantum 
speedup that could be achieved using Bayesian 
inference, online perceptron, quantum PCA, and 
quantum SVM. Ciliberto et al.15, discussed that 
increase in computational complexity and data 
availability have transformed machine learning 
algorithm leading to remarkable results. They have also 
discussed about computational costs associated with 
use of linear algebra, neural networks, sampling and 
optimization. Dunjko et al.10 discussed different 
quantum algorithms such as quantum SVM and 
quantum PCA which have been mathematically proved 
to be providing quantum speed-up in machine learning 
and artificial intelligence applications. Schuld et al.16 
explained quantum machine learning algorithms for 
handling big data in machine learning. They have 
further discussed classical machine learning types, 
quantum gates, and various quantum machine learning 
algorithms. Havlicek et al.17 demonstrated 
implementation of two quantum machine learning 
algorithms for classification problems on real time 
noisy intermediate scale quantum (NISQ) 
superconducting processors. Kerenidis & Prakash18 
have proposed a quantum machine learning algorithm 
for the recommendation system and have achieved 
polylogarithmic speedup. Inspired by their work on 
recommendation systems E. Tang6 designed a QML 
based recommendation algorithm that can achieve an 
exponential improvement. 
 

Support vector machine is the most widely used 
algorithm in supervised machine learning due to its 
simplicity, high accuracy, and lesser computational 
resource requirements19. In this algorithm, the main 

aim is to identify a hyper plane in n-dimensional space 
which explicitly segregates feature vectors into two 
classes. This hyper plane acts as delineating line 
between two classes as depicted in Fig. 1. The finding 
of a plane with maximum margin (distance) among 
feature vectors of two classes is the main target. The 
reason behind choosing maximum margin is to keep 
some space for classifying future feature vectors with 
higher accuracy. The number of input feature vectors 
decides the dimensions of the hyperplane. For a  
2-dimensional feature space, a hyperplane is a line and 
for a 3-dimesional feature space, a hyperplane becomes 
a 2-dimensional plane. The feature vectors close to the 
hyperplane are called support vectors as shown in  
Fig. 1. The orientation and position of hyperplane is 
mainly decided by the support vectors. The maximum 
margin can be optimized using support vectors. The 
classes in SVM are labelled with output ‘1’ and ‘െ1’ 
in accordance with output of a linear function. The 
margin is determined by threshold values of ‘െ1’ and 
‘1’ in SVM.  

A SVM algorithm learns from a similarly scattered 
and independent training 
dataሼ ሺ𝑥ଵ, 𝑣ଵሻ. . . . . . . . . . . . . . ሺ 𝑥௡, 𝑣௡ሻ ሽ, here 𝑣 ∈
ሼെ1,  1ሽ are two classes with respective threshold values 
of ‘-1’ and ‘1’. A hyperplane is mathematically 
represented using (3) as 
 

𝑤 ்𝑥 െ 𝑏 ൌ 0   (3) 
 

where, 𝑤ሬሬ⃗  represents vector normal to hyperplane 
and 𝑏 is bias parameter which decides hyperplane 
offset from origin. It is assumed that data classes are 
linearly separable. The margin between two planes is 

given byቛ
ଶ

௪
ቛ. 

By minimizing 𝑤, maximum margin could be 
achieved. Mathematically, the output of linear SVM is 
determined using (4) as  

 
 

Fig. 1 ⸻ Concept of hyperplane and support vectors. 
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𝑣ො௜  ൌ   𝑠𝑔𝑛   ሺ𝑤 𝑥௜ ൅ 𝑏ሻ                                                 (4) 
 

where, 𝑥௜ is the 𝑖௧௛ instance of training data. The 
data items falling out of margin are 𝑤்𝑥௜ െ 𝑏 ൒ 1 for 
𝑣௜ ൌ 1 and 𝑤 ்𝑥 െ 𝑏  ൏ 1 for 𝑣௜ ൌ െ1. Both the 
above conditions can be written jointly as (5) 
 

𝑣௜ ሺ𝑤 ்𝑥௜ െ 𝑏ሻ ൒ 1 for1. . . . . .𝑁                                  (5) 
 

The hyperplane with maximum margin can be 

attained within these conditions is 𝑎𝑟𝑔𝑚𝑖𝑛
௪. ௕

ଵ

ଶ
‖𝑤ଶ‖. 

This is valid for linear formulation of linear time 
complexity solution. In dual formulation [20], the aim 
is to maximize the function using Kuhn-Tucker 
multipliers (𝛼௜), the expression modifies to (6) as 
 

𝐿ሺ�⃗�ሻ  ൌ  ෍𝑣௜ 𝛼௜  ൌ
1
2
෍ 𝛼௜ 𝛼௝ 𝐾௜ ௝

ே

௜,௝ୀଵ

ே

௜ୀଵ

                    ሺ6ሻ 

 

with conditions ∑ 𝛼௜  ൌ 0ே
௜ୀଵ  and 𝑣௜ 𝛼௜  ൒  0. The 

hyperplane parameters b and 𝑤ሬሬ⃗  can be computed as 
𝑏 ൌ 𝑣௜  െ 𝑤ሬሬ⃗  𝑥௜ and 𝑤ሬሬ⃗  ൌ ∑ 𝛼௜ 𝑥௜

ே
௜ୀଵ . Here, the 

𝐾௜ ௝ሺ�⃗�௜ , �⃗�௝ሻ ൌ �⃗�௜  ∗   �⃗�௝ introduces a concept of kernel 
matrix21 with kernel function𝑘 ሺ𝑥 , 𝑥ᇱሻ. The classical 
support vector machine algorithm produces binary 
classifier9 for new data vector �⃗�௕ as described in (7) 
as 
 

𝑣 ሺ�⃗�௕ሻ ൌ 𝑠𝑔𝑛   ൭෍𝛼௜ 𝑘 ሺ�⃗�௜ , �⃗�௕ሻ  ൅ 𝑏

௡

௜ୀଵ

൱               ሺ7ሻ 

 

where, the 𝑠𝑔𝑛   ሺሻ function is  
 

𝑠𝑔𝑛   ൜
1, 𝑓𝑜𝑟 �⃗�  ൒ 0
െ1 𝑓𝑜𝑟 �⃗�  ൏ 0

  
 

In quantum SVM with kernel matrix, it is assumed 
that oracles to train the data return quantum vectors 
|�⃗�௜⟩ ൌ 1

|�⃗�௜|
ൗ ∑ ሺ�⃗�௜ሻ௝|𝑘⟩ே

௝ୀଵ . The normalized kernel 

matrix is computed9-10 using (8) as 
 

K෡ ൌ
୏

୲୰ ୏
ൌ

ଵ

୒ಟ
∑ ൻxሬ⃗ ୨หxሬ⃗ ୧ൿ
୒
୧,୨ୀଵ |xሬ⃗ ୧|หxሬ⃗ ୨ห|i⟩⟨j|                      ሺ8ሻ 

 

where, 
 

𝑁ఞ ൌ ∑ |�⃗�ଶ|ே
௜ୀଵ and |𝜒⟩ ൌ 1

ඥ𝑁ఞ൘ ∑ |�⃗�௜|
ே
௜ୀଵ |𝑖⟩|�⃗�௜⟩ 

 

To compute matrix inverse (𝐾෡ିଵ) quantum 
mechanically, the operation 𝑒ି௜ ௄෡ ௱௧ must be 
computed very efficiently. It is observed that 

operation 𝑒ି௜ ௄෡ ௱௧ computationally correct with an 
error of 𝑂ሺ𝛥𝑡ଶሻ10, 21. With introducing slack variable 
𝑒௜ and replacing inequality constraint with equality 
constraints as described by (9) as 
 

𝑣௜ሺ𝑤ሬሬ⃗  �⃗�௜ ൅ 𝑏ሻ ൒ 1  → ሺ𝑤ሬሬ⃗  �⃗�௜ ൅ 𝑏ሻ ൌ 𝑣௜ െ 𝑣௜ 𝑒௜        ሺ9ሻ  
 

Further, the application of implied Lagrange 

function produces an additional term 
ఊ

ଶ
෌ 𝑒௜

ଶே
௡ୀଵ

. 
This term is defined by user and calculates training 

error relative weightage and responsible for overall 
aim of SVM. The least square approximation of 
problem could be solved using (10) as  
 

𝐹  ቀ𝑏
�⃗�
ቁ  ≡  ቆ0 𝐼்

𝐼 𝐾 ൅ 𝛾ିଵ𝐼
ቇ ቀ𝑏

�⃗�
ቁ  ൌ ቀ0

vሬ⃗
ቁ              (10) 

 

where, 𝐼 is unit matrix and �⃗� denotes training data 
labels. The parameters 𝑏 and �⃗� decides the value of 
SVM classifier. A new data point �⃗�௕ can be 
categorized with the help of (11) as  
 

𝑣 ሺ�⃗�௕ሻ ൌ   sgn   ሺ𝑤ሬሬ⃗  �⃗�௕ ൅ 𝑏ሻ ൌ sgn   

 ൭෍𝛼௜ 𝑘 ሺ�⃗�௜ �⃗�௕ሻ ൅ 𝑏

ே

௜ୀଵ

൱                                             ሺ11ሻ 

The classical SVM is generally framed as a 
quadratic programming problem solvable in time 
𝑂 ሺ𝑙𝑜𝑔 ሺ 𝜀ିଵሻ 𝑝𝑜𝑙𝑦 ሺ𝑁,𝑀ሻ. Here, 𝜀 is accuracy, 𝑁 is 
dimensionality of feature space, and 𝑀 is number of 
training vectors. The major difference between 
classical SVM and quantum SVM algorithm is time 
taken to solve the problem. The quantum SVM take 
time logarithmic while classical SVM take time 
polynomial in handling dimensionality of vector 
space and the number of vectors 3, 9. Thus, quantum 
SVM is capable of providing exponential speed 
advantage over its classical counterpart. The machine 
learning is basically about manipulation and 
classification of large datasets. Quantum computers 
are exceptionally better in handling and execution of 
large vectors and matrices of their inner products in 
high dimensionality vector spaces. In quantum SVM, 
firstly the classical data is transformed to quantum 
states over 𝑙𝑜𝑔ଶ 𝑁 quantum bits taking 𝑂 ሺ𝑙𝑜𝑔ଶ 𝑁ሻ 
mapping steps. Then, the data in quantum form is 
processed using various quantum operations such as 
matrix inversion and Quantum Fourier Transform 
(QFT) etc. The superiority of quantum operations lies 
in anticipating distances and inner products among the 
post-processed vectors in exponential lesser time as 
compared to classical operations. As compared to 
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classical SVM’s problem solving time of 
𝑂 ሺ𝑝𝑜𝑙𝑦 ሺ𝑁 𝑀ሻ, quantum SVM take a problem-
solving time of 𝑂ሺ𝑙𝑜𝑔ଶሺ𝑁𝑀ሻሻ only. The other major 
advantage of processing classification problems on 
quantum computers is that quantum states stored in 
quantum random access memory (QRAM) can be 
accessed in parallel3,9. The Table 1 lists computational 
complexity of classical and quantum SVM algorithms 
used for classification of MNIST dataset in this study.  
 

4 Experiments and Results 
The benchmarking MNIST dataset22-23 of 

handwritten digits comprising of 60000 images of 
training data and 10000 images of test data has been 
used in this experiment. There are two files named 
train.csv and test.csv which contain grey-scale images 
of handwritten digits, from 0 to 9. Each handwritten 
black and white image comprise of digits of 28 x 28 
pixels. The digits are centered and size-normalized in 
a fixed-size image. The training dataset file train.csv 
has 785 columns. It contains label in the 1st column 
and remaining columns contain pixel value of that 
image.  

The test dataset file test.csv contain same columns 
except label column. The accuracy of MNIST dataset 
is defined as percentage of correctly classified images 
in the test set. The whole process of applying 
quantum machine learning is divided into various 
steps such as dataset selection, data pre-processing & 
visualization24, exploratory data analysis (EDA)25, 
algorithm selection, principal component analysis 
(PCA), classification using quantum support vector 
machine algorithm (variational/kernel based 
approach)9,21,26, quantum circuit generation, and result 
readout and visualization. The selection of dataset is 
critical factor for finding an optimal solution to a 
classification problem. The selected dataset must have 
sufficient training and data vectors. Many data pre-
processing steps such as rescaling, normalization, 
formatting, binarizing, and cleaning along with 
different visualization plots are generally required for 
datasets to develop robust machine learning models. 
Data pre-processing is mainly performed to identify 
null and missing values which further help to identify 
corrupted images within the dataset. Before selecting 
a machine learning approach to solve a problem, one 

need to find answer to questions like suitability of 
algorithms for a dataset and feature variable selection 
of data. EDA can make sure that results are valid, 
correct, and applicable to the problem. It is performed 
after validation of raw data, anomaly checking, and 
ensuring error free dataset. The algorithm must be 
capable of providing very high accuracy and faster 
processing. The principal component analysis (PCA) 
is an expedient statistical way of discovering patterns 
in high dimensionality data27-28.  

It is usually used when the number of 
features/variables in datasets become very high or in 
simple words it is to scale down the dimensionality 
while preserving the variations in the dataset. The 
features are mapped to a new set called principal 
components (PCs). They are eigen vectors of the 
covariance matrix and are ordered and orthogonal. 
The Table 2 lists the steps taken to perform PCA in 
this experiment. 

For classical algorithms, PCA executes in 𝑂ሺ𝑑ଶሻ in 
terms of query and computational complexity. In case 

of quantum PCA28, the data vector 𝑎
→

 is mapped to a 
quantum state ห𝑎௝ൿ having 𝑙𝑜𝑔ሺ 𝑑ሻ qubits with QRAM 
requiring only 𝑂ሺ𝑑ሻ operations divided by 𝑙𝑜𝑔ሺ 𝑑ሻ 
steps which can be executed in parallel. The density 
matrix equivalent of co-variance matrix for the chosen 
quantum state ห𝑎௝ൿ described using (12) as  
 

𝜌 ൌ ൫1 𝑛ൗ ൯∑ ห𝑎௝ൿൻ𝑎௝ห௝  (12) 
 

where, n are data vectors. Then, quantum data is 
sampled repeatedly, followed by density matrix 
exponentiation and quantum phase estimation 
operations28 resulting in eigen vector and eigen values 
of matrices. These operations permits decomposing 
ห𝑎௝ൿ to its principal components |𝑐௞⟩, the eigen value 
of co-variance matrix is computed with help of (13) as 
 

Table 2 — Principal Component Analysis Steps 

a) Choosing data-points: Shape of sample data = (15000, 784) 
b) Data standardizing: (15000, 784) 

c) Computing the co-variance matrix (𝐶 ൌ ∑ 𝑎
→

௝ 𝑎
→்), where, 𝑎

→
is 

data vector and 𝑎
→்is it’s transpose The shape of co-variance 

matrix is (784, 784) 

d) Diagonalizing of co-variance matrix (𝐶 ൌ ∑ 𝑒௞𝑐௞
→

௞ 𝑐௞
→ ்

), 

where 𝑐
→
௞ is eigen vector and 𝑒௞its eigen value. The shape of eigen

vector is (2, 784) 
e) Projection of original data sample on the plane formed by
principal eigen vectors by vector-vector multiplication i.e. 
resultant new data point’s shape becomes (2, 784) x
(784, 15000) = (2, 15000) 

Table 1 — Computational complexity of the algorithms 

Algorithms  Time 

Classical SVM  O (poly (NM)) 
Quantum SVM  O (log (NM)) 
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ห𝑎௝ൿ → ∑ 𝑎௞|𝑐௞⟩ ቚ𝑒௞
→
඀௞  (13) 

 

As compared to its classical counterpart, the 
quantum PCA executes in 𝑂ሺሺ𝑙𝑜𝑔 𝑑ሻଶሻ in terms of 
query and computational complexity.  

In this experiment, the accuracy and execution time 
of classical and quantum support vector machine 
classifiers have been computed. To solve machine 
learning and problems in other application areas, IBM 
has developed IBM® Quantum Experience29 and 
IBM® application programming interfaces (APIs)30 to 
access its real time quantum devices and simulators. 
In this study, the real quantum processors 
(IBMQ_16_ Melbourne and IBMQX2) and 
IBMQ_QASM simulator have been deployed as back-
ends. The quantum SVM’s variational and kernel-
based approaches are used in our machine learning 
classification problem. 

In QSVM variational approach, hyperplane(s) are 
computed to classify new test data. It can handle 
classification problems having even more than two 
classes. But, this approach uses two quantum 
algorithms making it computationally more intensive. 
The first algorithm calculates hyperplane(s) from 
available training data whereas the second algorithm 
perform the classification of new test data. In QSVM 
kernel-based approach, only one algorithm is used 
and it is primarily used for binary classification 
problems.  

At the onset, a kernel matrix is computed from 
training data using a quantum machine, then a 
classical machine computes support vectors from it. 
Thereafter, the classification of the test data is 
performed.  

The Table 3 illustrates the list of the algorithms, 
computational back-ends, datasets, and performance 
metrics used in this study. 

The Table 4 describes the execution time results for 
accuracy achieved using different back-ends and 
MNIST dataset of handwritten digits.  

The results in Table 4 reveal that QSVM 
variational algorithm is too much time consuming as 
it uses two different quantum algorithms making it 
computationally more intensive. Compared to 
classical SVM run on local CPU environment, the 
QSVM variational algorithm run on QASM simulator 
is 81.37 % more time consuming. QSVM kernel 
matrix algorithm run on IBM QASM simulator back-
end is computationally least intensive as compared to 
both classical SVM and QSVM variational algorithms 
run on local CPU and QASM simulator, respectively. 
It took only 139 millisecond (ms) to produce the 
classification results. It is 99.44 and 99.98 % 
computationally more efficient than classical SVM 
and QSVM variational algorithms run on local CPU 
and QASM simulator, respectively. In this study, 
QSVM kernel matrix algorithm is also simulated on 
two real time quantum processor back-ends IBMQX2 
and IBMQ_16_Melbourne to obtain the classification 
results for MNIST dataset. The QSVM kernel matrix 
algorithm run on real quantum devices IBMQX2 and 
IBMQ_16_Melbourne is 39.64 and 81.62 % 
computationally more efficient than classical SVM run 
on local CPU machine.  

The results in Table 5 disclose that accuracy of 
classical SVM algorithm run on local CPU is 91.26 %. 
The QSVM algorithm executed on QASM simulator 
exhibits accuracy of 95 %. 

The highest accuracy of 97.5 % is exhibited by 
QSVM kernel matrix algorithm run on IBMQX2, 
IBMQ_16_Melbourne, and IBM QASM simulator. As 
compared to classical SVM, the quantum SVM 
variational algorithm display 3.9 % improvement in 

Table 3 — Experiment set-up details 

Algorithm used Computational  
Back-end 

Dataset Targeted 
Metrics 

Classical SVM Local CPU  
environment 

MNIST Accuracy, 
execution 
time 

QSVM Variational 
Approach 

Local CPU environment, 
IBMQX2, IBMQ_16_ 
Melbourne, 
IBMQ_QASM simulator 

MNIST Accuracy, 
execution 
time 

QSVM Kernel 
Approach 

Local CPU environment, 
IBMQX2, IBMQ_16_ 
Melbourne, 
IBMQ_QASM simulator 

MNIST Accuracy, 
execution 
time 

Table 4 — Execution time results 

Algorithm used Computational Back-end Execution Time (s) 

Classical SVM Local CPU environment 248.64 
QSVM Variational  QASM Simulator 1335 
QSVM Kernel 
Matrix  

IBMQX2 89.6 
IBMQ_16_Melbourne 45.7 
IBM QASM Simulator 0.139 

 

Table 5 — Accuracy results 

Algorithm used Computational Back-end Accuracy (%) 

Classical SVM Local CPU environment 91.26 
QSVM Variational  QASM Simulator 95 
QSVM Kernel Matrix  IBMQX2 97.5 

IBMQ_16_Melbourne 97.5 
IBM QASM Simulator 97.5 
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accuracy whereas quantum SVM kernel matrix 
algorithm exhibit 6.4 % improvement. In comparison to 
quantum SVM variational algorithm, the quantum SVM 
kernel matrix algorithm show 2.56 % improvement in 
accuracy.  

Labelling of data is a very crucial step in data 
pre-processing helping in identification of features and 
characteristics in the dataset. To develop an efficient 
machine learning model for regression, classification, 
and pattern recognition problems, it is foremost 
requirement to select only explanatory, unique, and 
astute features within the dataset. Precisely labelled data 
makes the basic foundation for validation of the model. 
Fig. 2 (a) enumerates the labelling of handwritten 
digits performed during data pre-processing steps. The 
Fig. 2(b) depicts the few handwritten images obtained 
after separating the training pictures of the numbers 
from their labels and after reshaping to have digit image 
of 28ൈ28 pixels. 

After pre-processing, visualization, PCA, classical 
and quantum SVM classifiers are applied to solve the 
classification problem on different back-ends to produce 
accuracy and execution time results. Fig. 3 (a), (b) & (c) 
enumerates visualization of handwritten image of digit 9 
with its pixel values after separating the training images 

from their labels and after reshaping to make it a 28ൈ28 
pixels, final readout image obtained after applying 
classical and quantum SVM algorithms.  

5 Conclusion 
This study demonstrated that machine learning 

problems with large datasets could be solved taking 
quantum advantage offered by quantum machine 
learning algorithms. A benchmarking MNIST dataset 
comprising of handwritten images has been used for 
pattern classification problem. The classical and 
quantum SVM classifiers are used to solve the 
classification problem. The quantum classifiers 
explicitly demonstrate speed advantage over their 
classical counterpart. The quantum simulator and 
superconducting quantum processors are used as back-
ends to run the quantum algorithms. The QSVM kernel 
matrix algorithm implemented on 5 and 14 qubit real 
quantum processors is 39.64 and 81.62 % 
computationally more efficient than classical SVM run 
on local CPU machine. Further, the quantum SVM 
kernel matrix algorithm exhibit 6.4 % better accuracy 
as compared to classical SVM. The results clearly 
indicate quantum algorithms can accelerate the 
execution time to solve many complex machine 
learning problems as compared the classical machines. 
Based on results, it can be concluded that very soon 
quantum computers capable of executing feature 
mapping or classification on big data sets would even 
surpass existing classical supercomputing machines. 
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Fig. 2 ⸻ (a) Labelling of handwritten digits, and (b) Images after
separating the training pictures of the numbers from their label
and after reshaping to have digit image of 28ൈ28 pixels. 

Fig. 3 ⸻ (a) Visualization of handwritten image of digit 9 with its
pixel values after separating the training images from their labels
and after reshaping to make it of 28ൈ28 pixels, (b) final readout 
image obtained after applying classical SVM algorithm, and (c)
final readout image obtained after applying quantum SVM
algorithm. 
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