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In this paper, the unsteady flow of Newtonian fluid through a curved pipe due to a pulsatile pressure gradient has been 
considered. The flow is three dimensional and the partial differential equations governing the flow are highly coupled and 
non-linear. Approximate analytical solutions of the governing partial differential equations have been obtained without 
neglecting any term containing the curvature ratio. Perturbation series in terms of curvature ratio has been used for obtaining 
the solutions. It is interesting to note that the solutions are valid for large as well as small values of Womersley number. The 
effect of different parameters such as, Reynolds number, Womersley number and curvature ratio on the flow through curved 
pipe is discussed in this paper. It is found that the axial velocity is qualitatively periodic in nature, as expected. The 
Reynolds number and curvature ratio are found to shift the axial velocity towards the outer boundary of the curved pipe. 
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1 Introduction 
The study of the flow through curved pipes is 

interesting and challenging because of its flow 
geometry and the complicated nature of the 
underlying governing partial differential equations. 
The maximum velocity shifts towards outer boundary 
of pipe due to arising secondary flow. In this case, 
centrifugal force sets-up due to the curvature of pipe 
and it is balanced by a pressure gradient directing 
towards the centre of curvature. Thomson1, for the 
first time, gave the experimental explanation of the 
flow in curved systems. Grindley & Gibson2, 
Eustice3,4, White5 and Taylor6 had also undertaken the 
experimental investigation on the streamline motion 
in curved pipe. Dean7,8 was the first to work on the 
study of Newtonian fluid flow through curved pipes, 

mathematically, using a parameter 
2 32 0 ,
3

W a
K

R
  which 

was later termed as Dean Number. Barua9, 
McConalogue & Srivastava10 and Greenspan11 have 
extended Dean's work for large Dean number, 
although the expressions they had used for Dean 
number in their study were not unique.  

Lyne12 studied the unsteady flow through curved 
pipes for small values of Womersley number. 
However, this work did not account all the effects of 
curvature as it has neglected few terms involving 

curvature ratio. Zalosh & Nelson13 analyzed fully 
developed laminar flow in a curved tube of circular 
cross-section under the influence of a pressure 
gradient that is oscillating sinusoidally in time. Later, 
Hamakiotes & Berger14, Sudo et al.15 studied pulsalite 
flow in curved pipes for large range of Dean number, 
using different numerical methods. Chang & Tarbell16, 
Swanson et al.17 did the experimental investigation on 
the pulsatile flow in a curved pipe. 

Before 2008, a majority of studies on the pulsatile 
flow through curved pipes were considered only for 
weakly curved pipes of circular cross section, by 
neglecting curvature ratio terms. Siggers & Waters18 
worked on the unsteady fluid flow in a curved pipe 
without ignoring terms containing curvature ratio. They 
have obtained analytical solutions only for smaller 
values of Dean and Womersley numbers, and the 
solutions for higher values of Dean and Womersley 
numbers were obtained numerically. In this paper, we 
have studied the flow of Newtonian fluid through a 
curved pipe due to a pulsatile pressure gradient. 
Governing partial differential equations are considered 
without neglecting any term containing the curvature 
ratio for the sake of simplicity, and the analytical 
solutions are obtained. The solutions are valid for any 
value of curvature ratio and Womersley number. 

2 Mathematical Formulation 
 Consider an unsteady Newtonian fluid flow through 

a curve pipe due to a pulsatile pressure gradient, 

—————— 
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, where, 

G is the steady part of the pressure gradient, 
and p pcn sn represent the cosine and sine amplitudes 

of a harmonic forcing function, respectively. Curvature 
of the pipe is k, where, k=1/R and R is the distance 
between the center line of the pipe to the center of the 
axis, say Y-axis, and a is the radius of circular cross 
section of the pipe, s' is the center-line. We use the 
coordinates, (r', ɵ, s') to locate any point in the pipe at 
time t’. The flow geometry is as shown in Fig. 1.
Assuming that the flow is symmetric, it is independent 
of s' and taking the fluid velocity  ', ', 'u vu w , the 

equations governing the flow are given by Pedley19,  

Continuity equation: 
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Momentum equations:
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where, 1 cosh kr   .  

As the characteristic velocity is not a priori and the 
flow is due to the pulsatile pressure gradient, the 

steady part of the pressure gradient (G) is used for 
non-dimensionalising the equations governing the 
flow. Using the non-dimensional variables, 

' ' 1, , ', ', ', ', '
2

r s a ar s u u v v w w p p t t
a a aGGa

          

in equations (1)-(4), we obtain non-dimensional 
equations as,  

Continuity equation: 

1 ( cos sin ) 0,u u v u v
r r r H

  
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  … (5) 

Momentum equations: 
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in which, 
22 a    is Womersley number,

3 3
Re

2
a G


  is the Reynolds number and a
R

   is the

curvature ratio and 1 cosH r   . 
It is to note here that, from the geometry of the 

problem, the curvature ratio δ approaches to zero 
corresponds to the flow through straight pipe. It 
follows immediately that, theoretically, supposing 

( / )a R   very small in the motion of curved pipe 
approximates the motion of straight pipe.  

We have to solve the non-dimensional equations 
(5)-(8) together with the following non-dimensional 
boundary conditions: 
No-slip conditions: (u,v,w)= (0,0,0) on 1,r   
Natural conditions: u,v,w are finite at 0 ,r   
Symmetry conditions:  

0 ( , , )u w v r t
 
   
 

 at 0, .    

Now, eliminating pressure gradient terms from 
Fig. 1 ⸻ Geometry of the flow. 
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equations (6) and (7), we get,  
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To avoid the complexity in solving equations (5), 
(8) and (9), in view of the axi-symmetric nature of the
flow, we introduce the stream function ψ through
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. This stream function ψ 

satisfies the continuity equation (5), and equations (8) 
and (9) become, 
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where, 

( ) ( )1 1 12 ,
2

F( , ) ,

cosT( ) sin

Hf Hfrf
r r H r Hr

f g f gf g
r r

f ff
r r

 

 




   
   
   

    
   
    
   
  
 

for any scalar functions f and g. 
It is to be mentioned here that, equations (10)-(11) 

have been derived without any assumption on the 
curvature of the pipe and without neglecting any 
term containing the curvature ratio for the sake of 
simplification. As a result, there present an additional 
(third) term on the left-hand side of equation (11); this 
was neglected by many researchers. The described 
term of equation (11), which is due to the centrifugal 
force arising from the curvature, superimpose the 
effect of secondary motion into the primary flow. 
Therefore, the authors are of the opinion that, the 
aforementioned equations (10)-(11) governing the 
flow are comparatively more general. 
The boundary conditions turn out to be, 

No-slip conditions: 

(1 cos ) sin , (1 cos ) cos ,

( , ) 0 on 1, 0,
r

w r r t

        


     
 

  
 

Natural conditions: 

, ( , )w r    finite as 0, 0,r t    

Symmetry conditions: 
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The only non-dimensional parameters present in 
the boundary value problem (10)-(12) concerning the 
flow through curved pipe under consideration are, ,
Re and .  As it has been mentioned by Berger et. 
al.20, the parameter δ is more detailed measure of the 
effect of geometry and affects the balance of inertia, 
viscous, and centrifugal forces; it plays a major role in 
curved-pipe flows. 

It is challenging to solve the system (10)-(11), with 
the conditions given in equation (12). As the problem 
is not amenable for the exact solutions, an attempt is 
made to find approximate analytical solutions using 
perturbation series. 

3 Method of solution 
We seek the solution of equations (10)-(12) in the 

form of perturbation series,  
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After substituting (13) in equations (10)-(11) and 
comparing the like powers of δ, the zeroth order and 
first order systems are obtained as, 
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First order system: 
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As the limiting case 0  corresponds to the flow 
through straight pipe, we take the solution of equation 
(14) to be 0

0
  and equation (15) becomes,
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Since the flow under consideration is pulsatile in 
nature, following the technique adapted by Majdalani 
& Chibli21, we take,  
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Comparing the coefficients of 0e from equation (20), 
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Using Eq. (21) and Eq. (22) in Eq. (19), we get, 
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Now, we find the solution of equations (16)-(17) 
by seeking, 

 cos( ) sin( ) ,1 10 1 11
nt ntcn snn

   


  


 and 

 cos( ) sin( ) .1 10 1 11
w w w nt w ntcn snn


  



Proceeding as in the case of zeroth order, taking 
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1 10 11
  


  


intenn

and ,1 10 11


  


intw w w enn

 

 

where, 1 1 1in cn sn     and 1 1 1w w iwn cn sn  in 

equations (16) and (17), respectively, the comparison 

of coefficients of 0e  and ite  gives, 
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  … (26) 
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 …(27) 

 

The solutions of equations (24)-(27) are obtained as, 
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where,  
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As the radius of curvature is large when compare to 
the radius of cross section of the pipe, the curvature 
ratio (δ) is less than 1 and hence its higher powers 
will be much lesser than 1. In view of this, we have 
solved the associated boundary value problems up  
to order 1. Here, only real part of the solution is 
considered while plotting the contours as it represent 
the solution of the underlying problem. 

One can observe that the solution contains terms 

involving powers of 2Re  as well and hence it may 
not be convergent for arbitrary values of Re. 
Therefore, to guarantee the convergence of solution, 

we take 2Re 4608  . 
 
4 Results and discussion 

In this section, the authors present the effect  
of Reynolds number (Re), curvature ratio (δ), 
Womersley number ( ) and time (t) on the axial 
velocity of the fluid. 

In Fig. 2, when the curvature ratio is very very 
small, i.e., pipe is nearly straight, the flow is same as 

that of the normal Poiseuille flow; see Fig. 2(a). As 
bend of the pipe increases, i.e., as δ increases, which 
means the curvature of the pipe increase, the 
secondary flow sets-in and it superimpose on the main 
stream flow; as a result, there is a shift of axial 
velocity towards the outer boundary of the pipe to 
balance the centrifugal force arising due to the 
curvature of pipe; see Fig. 2(b-c). However, due to the 
nature of centrifugal forces, the maximum axial 
velocity occurs near to the outer boundary of the pipe 
(not towards inner boundary of pipe). If the curvature 
ratio increases further, secondary flow significantly 
affects the flow pattern and another vortex starts 
forming in opposite direction; see Fig. 2 (d). 

Figure 3 presents the effect of Reynolds number  
on the axial velocity contours. The intensity of 
centrifugal force which was set-in increase with the 
increase in Reynolds number Re; hence axial velocity 
contours affected accordingly and shifts towards the 
outer boundary of pipe; see Fig. 3(a-c). Generally, 
increase of Reynolds number corresponds to high 
velocity or lesser viscosity. In both cases, even if the 
curvature is fixed, there is a rise in the centrifugal 
force, due to which the axial velocity contours are 
affected accordingly. After certain value of Reynolds 
number, a second contour starts to form in the inner 
region, in the opposite direction; see Fig. 3(d). This is 
an indication of the secondary flow. As Re increases, 
the axial velocity of the flow also increases. 

Figure 4 shows the effect of Womersley number on 
fluid flow. As Womersley number is a dimensionless 
expression of the of pulsatile flow frequency in 
relation to viscous effects, we observe shift in the 
velocity profile when Womersley number increases 
(see Fig. 4(a-c)) to balance the centrifugal force. One 

 
 

Fig. 2 ⸻ Effect of δ on axial velocity when Re=200, t=0 and α=1. 

 
 
Fig. 3 ⸻ Effect of Re on axial velocity when δ=0.01, t=0 
and α=1 
 

 
 
Fig. 4 ⸻ Effect of α on axial velocity when Re=200, δ=0.01 and
t=0 
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can note from Fig. 4(d) that there is a drastic change 
in the axial velocity contour when α=10. This 
behavior is qualitatively similar to that of earlier 
studies (Sigger and Waters18). 

From Fig. 5, it is observed that the velocity  
pattern is qualitatively periodic in nature, which is 
expected as the flow is due to the pulsatile pressure 
gradient. 

 
5 Conclusions 

The research reported in this paper is considering 
the pulsatile Newtonian fluid flow through a curved 
pipe of circular cross section. Coupled partial 
differential equations governing the flow are solved 
analytically using perturbation series. Following are 
the outcomes of the current study: 
 It has been observed that, for very small curvature 

ratio, the axial velocity is qualitatively same as 
that of unsteady pulsatile flow through straight 
pipe. As curvature ratio increases, to balance the 
centrifugal force, axial velocity shifts towards the 
outer boundary. If curvature is further increased, 
the secondary flow starts to set-in and hence, we 
observe another vortex in velocity contour in 
opposite direction.  

 Increase in Reynolds number highly affects the axial 
velocity similar to that of highly curved pipes.  

 Womersley number, if small, has lesser impact on 
the velocity profile, as lesser Womersley number 
corresponds to the lesser pulsatile pressure. But 
higher Womersley number (α>10) highly affects 
the axial velocity; in this case, axial velocity in 
the middle region is high compared to the axial 
velocity near the boundary of pipe.  

 The flow is qualitatively periodic with respect to 
time. 

 

NOMENCLATURE 
a  Radius of pipe 
R  Radius of curvature of pipe 
Re      Reynolds number 
t        Time 
u,v,w  Components of fluid velocity 
α   Womersley number 
δ   Curvature Ratio 
k   Curvature of pipe 
μ   Viscosity of fluid 
ϱ    Density of fluid 
ψ   Stream function 
ω            Angular frequency 
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