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The internal structure of one-dimensional steady shock-front is investigated using the Navier-Stokes equations 
in a viscous and heat conducting gaseous medium. The analytical expression and calculations for the different flow variables 
i.e., the particle velocity, temperature, pressure, and change-in-entropy distribution have been derived using the method of
wave-front analysis. The abrupt changes in the flow variables have been observed within the shock transition region.
The thickness and inverse shock-front thickness are calculated and obtained results are compared with the reported
literatures. The effects on the shock structure due to the variation of different flow parameters have been discussed in each
case for all the flow variables. Obtained outcomes manifests that the flow parameters i.e., coefficient of viscosity, Mach
number, adiabatic index and Prandtl number exert dominant impact on the structure of shock-front, prominently.
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1 Introduction 
In the field of shock waves, much advancement has 

been made in both theoretically and experimental 
regimes due to its wide applications1-2 with respect to 
the structure of shock wave. The research is focused 
mainly on two problems. First one, its internal 
structure and other is the change in structure during its 
propagation. To better understand, it is important to 
know the internal structure of shock waves as well as 
their behavior during propagation in different media. 
Theoretical and experimental aspects have been 
studied on the internal structure of shock waves from 
time to time. In the theoretical point of view, finding 
solutions of the problems using the system of 
conservation laws have been broadly studied with 
lesser effort and it has attracted a lot of attention by 
the researcher. Theoretical models on the shock 
waves were first proposed by Rankine3 and 
Hugoniot4. The study on the internal structure of 
shock-front plays a prominent role in understanding 
the various physical phenomena such as molecular 
dissociation, vibration excitations, radiation, etc., in 
high-energy physics.  

To study the internal structure of the shock wave 
and the mechanism of the shock process, it is 
necessary to include the dissipation effect in the 
conservation laws. In many circumstances, it is 

appropriate to omit the heat conduction terms in the 
conservation laws. Since, the dissipative effects are 
produced by both viscosity and heat conduction. 
Therefore, both properties should be taken in the 
constitutive equations for a deeper analysis. Many 
works have been done on the structure of shock waves 
under different conditions and obtained analytical 
solution in viscous and thermal conductive mediums5-9. 
These works are a remarkable contribution to the 
preliminary study of shocks. A more generalized 
study was proliferated by Meyerhoff10 and Puckett 
et al11. In 1950, Meyerhoff studied the structure of 
shock waves for weak and strong shock-fronts 
propagating in an ideal gas. On the other hand, 
Puckett et al. have given their idea in the context of 
structure of shock waves in air, which is more 
realistic assumption for gases. In addition, the 
pioneering works have been done by several authors12-16 
on the structure of the shock-front in a viscous and 
heat conducting medium with the help of compressible 
Navier-Stokes (N-S) equations for obtaining the 
analytical solutions in presence of dissipative processes. 
The internal structure of the shock wave-front in an 
ideal gas has been studied by many authors17-20. 
Experimental observations on the thickness of the 
shock-front for different gases were obtained by 
Elizarova et al21. 

More specifically, Zel'dovich et al.22 studied the 
internal structure of a planar shock wave and gave an 
analytical model based on the Hugoniot curves for the 
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shock processes by taking into account the effect of 
viscosity and heat conduction. Thereafter, many 
authors23-26 have studied internal structure of shock-
front and explained the variation of flow variables 
within the shock transition region. Recently, a new 
scaling has been developed for the structure of shocks 
in an ideal gas27. Also, the researchers have developed 
a generalized method that can solve the non linear 
hydrodynamics equations for non linear compressible 
gas problems with high accuracy28-29. 

Initially, Morduc how and Libby obtained the 
thickness of shock-front with the help of N-S equations 
for a fixed Prandtl number in an ideal gas. Khidr et al.30 

explores the analytical solutions for arbitrary Prandtl 
numbers and high Mach numbers for a perfect gas. Later 
on, Johnson31 derived a general solution for both large 
and small Prandtl numbers under constant viscosity and 
thermal conductivity. They have found a new technique 
to solve the problem of one-dimensional steady-state 
and constant viscosity equation of state at fixed Prandtl 
number. Recently, Patel and Singh obtained the exact 
solution of the shock wave structure under constant and 
variable coefficient of viscosity and thermal 
conductivity in a non-ideal gas for fixed and variable 
Prandtl number by continuum model and obtained 
results have been compared with different 
techniques32,33. 

The objective of the present study is to explore the 
internal structure of the shock-front using conservation 
equations in a viscous medium with heat conductivity. 
We have computed the exact analytical expression for 
the different flow variables. Subsequently, the thickness 
and reciprocal shock thickness was obtained using 
different flow parameters viz., coefficient of viscosity, 
Mach number, adiabatic index, and Prandtl number 
within the shock transition region. Interestingly, our 
computations confirm that the effect on the flow 
variables such as particle velocity, temperature, pressure, 
and change-in-entropy distribution have reasonable 
impact on the structure of shock-front within the 
transition region. The effect of the flow parameters on 
the flow variables was shown graphically as well as the 
variations were tabulated in that region, and also results 
compared with previous study which was obtained from 
the different techniques. In our study, MATLAB code 
was used to make numerical computations in tables and 
graphs. 

It is assumed that the gas is thermally perfect 
which means it obeys the ideal gas law p R T , 

where p,  , R are the pressure, density, and gas 

constant respectively. T is the absolute temperature of 
the gas. The relation between the thermal conductivity 
K and the Prandtl number rP is correlated as16, 

( 1) rK R P     where  is the coefficient of 

viscosity, and   is adiabatic exponent, which gives 
the ratio of specific heats of the gas. In general, the 
thermal conductivity lies between 0 and 1 for an ideal 
gas. The viscosity coefficient , which is a function 
of temperature and pressure, is examine to quantify 
the effect of viscous dissipation on the shock wave 
structure in gases. The present study is based upon to 
observe the effects of the different flow parameters 
including with coefficient of viscosity, Prandtl 
number, Mach number, adiabatic index etc., which are 
investigated on the flow variables. From these 
observations, the thickness of the shock-front depends 
significantly on the flow parameters. 
 
2 The basic equations and boundary conditions 

The Navier-Stokes Eulerian formulation for the 
one-dimensional by the principle of conservation 
equations of mass, momentum, and energy are  
 

0
u

u
t r r
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    
...(1) 
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where, the parameters ( , )r t , ( , )u r t , ( , )p r t ,

( , )q r t , ( , )e r t and ( , )Q r t are the density, particle 
velocity, pressure, viscous stress tensor, internal 
energy per unit mass and heat-flux respectively.The 
space coordinate r is the position with respect to 
origin in the direction normal to the shock-front and t 
is the time coordinates with respect to the shock-front. 
The viscous stress tensor is given by 

 

4
3

duq
dr

  ...(4) 

 

From Fourier’s Law of thermal conduction using 
the Navier-Stokes equations for the heat flow, the 
heat-flux can be expressed as17 

dT
Q K

dr
   ...(5) 
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where, K and T are the thermal conductivity and 
temperature of the gas respectively.  

For further treatment to get exact solution of the 
flow variables in a gaseous phase flow medium, the 
equations of state are given as 

 

p RT  ...(6) 
 

( 1)e p C Tv     ...(7) 
 

where, v pC C R  .The specific heats pC , vC are 

the specific heat of the gas at constant pressure, 
volume and R denotes the gas constant. The used 
parameter ‘e’ defines the internal energy per unit 
mass. is ratio of specific heats of the gas. 

The isentropic speed of sound denoted by a is 
given as 

 

 1 2a p 
 ...(8) 

 

The thermal conductivity K is associated with 
the viscosity coefficient  in terms of Prandtl 
number rP  can be expressed as16, 17 
 

r pP C K
 ...

(9) 
 

The mean free path is given by34,37 

 

 0 0 0
0 0

2
2

p
a

   
 

   ...

 

(10) 

 

where the parameter, 0a is the speed of sound in the 

undisturbed medium. 
Here, we have considered a coordinate system in 

which the shock-front is at rest and practically the 
shock strength remains unchanged within the small 
time interval ( )t . It is notable that the time interval 
is of the order of the shock-front thickness. Thus, in 
the Navier-Stokes equations, the partial derivatives 

with respect to time  . t  are neglected and the 

partial derivative with respect to space coordinate

 . r   is replaced by the total derivative  .d dr . 

Now the Eq. (1-3) reduces to  
 

0d duu
dr dr
    ...(11)

 
 

2( ) 0d p u q
dr
    ...(12) 

2[ ( 2) ] 0d u e u pu qu Q
dr

       ...(13) 
 

To obtain the solutions of the set of differential Eq. 
(11-13) with the boundary condition  
 

0u U
 ...(14) 

 

where, u0 is the initial particle velocity. 
These solutions require that the gradients of the 

flow variables must vanish ahead of the shock-front 
( )r    as well as behind the shock-front ( )r   . 

The flow variables 0p , 0 , 0u and p,  and U. The 
notation ‘0’ stands for initial values i.e., just ahead of 
the shock-front and without suffix denotes as final 
values of the flow variables use as just behind the 
shock-front. 
 
2.1 Exact solutions for the flow variables 

To find the exact solutions with flow variables, we 
integrate Eq. (11-13) with boundary condition Eq. 
(14), and some elementary operations, in the 
equilibrium state and then using Eq. (7), the shock 
profile equations can be written as 
 

0U u   ...(15) 
 

2 2
0 0p p q U u      ...(16) 
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Solving Eq. (15) and Eq. (16) and putting them in 
Eq. (17), we get  

 

𝛾𝑝଴𝑢 ൅ 𝑞𝑢 ൅ 𝛾𝜌଴𝑢𝑈ଶ െ 𝜌𝛾𝑢ଷ ൅ ሺ𝛾 െ 1ሻ
𝜌𝑢ଷ

2
      

െ 𝐾ሺ𝛾 െ 1ሻ
𝑑𝑇
𝑑𝑟

ൌ 𝛾𝑝଴𝑈 ൅ ሺ𝛾 െ 1ሻ
𝜌଴𝑈ଷ

2
  

 ...(18) 
 

To find the exact solutions for the flow variables, it 
is convenient to use the dimensionless quantities 
called particle velocity  and shock strength M are 

given as 0u U    and 0M U a
 (19) 

where 0a  is the speed of sound in the unshocked 

medium, defined as  1 2
0 0 0a p  . 

Using Eq. (4, 5, 8, 9) and Eq. (19) substituting in 
Eq. (18) we get, 
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2
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From Eq. (20), quadratic with 𝜂 and since in an 
equilibrium state, the flow variables do not contain 
the gradients, i.e., the gradient of the flow variables 
must be vanishing ahead and behind of the shock-
front. Thus, at this condition, the profile of particle 
velocity at maximum in that state is given by

0d dr  with eq  .  

For, eq  the two solutions of Eq. (20) are 
 

 1 22
1 1 1 1 14 2eq b b a c a  

 
  

     ...(21) 

 

Here, we designate the first equilibrium state by 1  
with the positive sign and another second equilibrium 
state with flow variables by 2  with the negative sign 
as 
 

 1 22
1,2 1 1 1 14 21b b a c a       

 ...(22) 

 

Integrating Eq. (20) using with Eq. (21) gets an 
expression for Particle velocity with distance r from 
the origin as 

     1 1 1 2
'log logr g a A B C    

       
...

(23) 

where, 1 21( )A     , 2 2 1( )B      and 'C is 

constant of integration. 
To find the value of constant of integration  

'C  choose an arbitrary point at the origin at the point 
of inflection in the shock-front transition region 

defined by the condition, 2 2 0d dr  we get, 
2 2 2

1 1 0d dr a c     ...(24) 
 
The solutions of the Eq. (24) which gives the point 

of inflection is 
 

'
1 1eq c a   ...(25) 

 

Using Eq. (25), the constant of integration 'C  we get 
 

1 1 11
' ' 'log logeq eqC g a A B   

          

   
   
   

      ...(26) 

Substituting the value 'C  of from Eq. (26) into Eq. 
(23), ultimately we get the exact solution for the 
particle velocity with respect to the distance as  

 

           '
1 1 1 1 11

'log logeq eqr g a A B                 

 ...
 (27) 

where,   1 1 2A     ,   2 12B      

The exact solution for temperature and particle 
velocity of the gas, within the shock transition region, 
using the energy conservation Eq. (7) and Eq. (17) 
given as 

 

 2 2 2 2
0 1 ( 1)[ 2 (1 ) 1 2 ]T T M M M             

 ...(28) 
 
where,

   1/22 2
1 1 1 1 0 0M P a b c g pr        

 
Eq. (28) gives the relation between temperature and 

the particle velocity. The obtained analytical 
expression shows the dependency of temperature on 
the particle velocity. 

From Eq. (27) and Eq. (28), we can calculate 
temperature variations across the shock transition 
region with respect to the distance. In addition, on 
utilizing Eq. (4, 15, 20) into Eq. (16), we can easily 
determine the exact solution for the pressure 
variations across the shock transition region as 

 

    2
0 1 2 3 1 4 rp p M P    

  
      ...(29) 

 

Thus, Eq. (27) and Eq. (29) clearly show 
concurrently describe the dependence of the pressure 
across the shock-front on the distance. So, we can 
write a definite formula that illustrates the change-in-
entropy across the shock of arbitrary strength in 
viscous heat-conducting fluid as 

 

       1
0 01 log logS R T T p p      

 ...(30) 
 

The obtained expression for the change-in-entropy 
across the wave surface is obtained in terms of 
temperature and pressure gradient with adiabatic 
exponent respectively. Thus, ultimately the Eq. (30) 
demonstrates the entropy production across the shock-
front for the gas is simply found by substituting Eq. 
(28) and Eq. (29) into Eq. (30). 
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Graphs have been plotted for all the flow variables 
such as particle velocity , temperature 0T T , 

pressure 0p p , and change-in-entropy distribution

S R  in Figs. 1-4 within shock transition region. 

3 Results and Discussion 
This work put a forward discussion on a precise and 

exact solution for the internal structure of shock-front 
in a thermally heat-conducting viscous gaseous 
medium. The analytical expressions  are  obtained  for  

 
 

Fig. 1 ⸻ Variation of flow variables (a) particle velocity, (b) temperature, (c) pressure, and (d) change-in-entropy distribution within the 

shock transition region with distance r for various values of at M=3, 1.4  , Pr = 3/4 , 0 0.9p  bar, and 0 1.20  3.kg m  
 

 
 

Fig. 2 ⸻ Variation of flow variables (a) particle velocity, (b) temperature,(c) pressure, and (d) change-in-entropy distribution within the 

shock transition region with distance r for various values of M at 615.0 10   Pa sec, 1.4  , Pr = 3/4 , 
0 0.9p  bar, and 

0 1.20  3kg m . 
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the different flow variables such as the particle velocity
 , temperature

0T T , pressure 0p p , and change-in-

entropy S R  with the variations in the physical flow 

parameters ( ,M, , rP ) given by Eq. (27-30), and 

discuss shock wave-front within the shock transition 
region. It is worth mentioning that while obtaining the 

 
 

Fig. 3 ⸻ Variation of flow variables (a) particle velocity, (b) temperature, (c) pressure, and (d) change-in-entropy distribution within the 

shock transition region with distance r for various values of  at M=3, 
615.0 10   Pa sec, Pr = 3/4 , 0 0.9p   bar, and 

0 1.20  3.kg m  
 

 
 

Fig. 4 ⸻ Variation of flow variables (a) particle velocity, (b) temperature, (c) pressure, and (d) change-in-entropy distribution within the 

shock transition region with distance r for various values of Prandtl number at M=3, 615.0 10   Pa sec, 1.4  , 
0 0.9p  bar, 

and 0 1.20  3 .kg m
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analytical expressions of flow variables, other 
disturbances such as reflections, oblique waves, 
overlapping waves, distorted waves, and wave 
interactions etc., in it, but we go by neglecting the 
disturbance caused by it. The expressions for the 
particle velocity, temperature, pressure, and change-in-
entropy distribution are the functions of the wave-front 
distance r, the Prandtl number, the coefficient of 
viscosity , the strength of shock M, and the adiabatic 

index   of the gas. Therefore, we have taken the 
values of the constant parameters are 

{15, 17.5, 20}  (in units of 610 Pa sec), Pr = {2/3, 

3/4, 5/6}, M = {2.0, 2.5, 3.0}, {1.33, 1.4, 1.66}  , 

initial pressure 0 0.9p  bar and initial density

0 1.20  3kg m . MATLAB code are used to make 

numerical computations and for graphs. 
We have made the following observations from the 

Table 1 as: 

(i). On increasing the value of shock strength M, 
keeping  constant, the thickness of shock-front 
increases. Similar observations are obtained for 
each value of . 

(ii). The thickness of the shock-front increases 
with increasing , keeping fixed value of M. 
we also notice that it follows the similar 
observation obtains for each value of M. 

(iii). The thickness of the shock wave-front 
decreases with increasing Prandtl number,  
at a constant value of M and .In addition,  
we also observe from the table that it  
gives the same observations for each value of M 
and . 

Thus, from the obtained interpretations, it can be 
concluded that in a heat conducting medium with 
viscosity have a dominant effect on the thickness of 
the shock-fronts. 

The expressions for the variation of the flow 
variables given in Eq. (27-30) within the shock 

Table 1 ⸻ The thickness of shock-front in an ideal gas for 1.4  , 0 0.9p  bar and 0 1.20  3kg m  for various values of 

different parameters. 
Mach Number 

M 
Coefficient of 
viscosity  

[Pa sec] 

Prandtl Number 
Pr 

r1(meter) r2(meter) Thickness 
(r2-r1) (meter) 

2.0 
615.0 10  

2/3 
3/4 
5/6 

-0.0004764 
-0.0004716 
-0.0004673 

0.0001855 
0.0001837 
0.000182 

0.0006619 
0.0006553 
0.0006493 

617.5 10  

2/3 
3/4 
5/6 

-0.0005558 
-0.0005502 
-0.0005452 

0.0002165 
0.0002143 
0.0002123 

0.0007723 
0.0007645 
0.0007575 

620.0 10  

2/3 
3/4 
5/6 

-0.0006353 
-0.0006288 
-0.000 6231 

0.0002474 
0.0002449 
0.0002426 

0.0008827 
0.0008737 
0.0008657 

2.5 
615.0 10  

2/3 
3/4 
5/6 

-0.0005511 
-0.0005476 
-0.0005445 

0.0001735 
0.0001724 
0.0001714 

0.0007246 
0.0007200 
0.0007159 

617.5 10  

2/3 
3/4 
5/6 

-0.000643 
-0.0006389 
-0.0006353 

0.0002024 
0.0002011 

0.0002 

0.0008454 
0.0008400 
0.0008353 

620.0 10  

2/3 
3/4 
5/6 

-0.0007348 
-0.0007302 
-0.000 7261 

0.0002313 
0.0002298 
0.0002285 

0.0009661 
0.0009600 
0.0009546 

3.0 
615.0 10  

2/3 
3/4 
5/6 

-0.0007864 
-0.000783 
-0.0007799 

0.0001745 
0.0001737 
0.0001731 

0.0009602 
0.0009567 
0.0009530 

617.5 10  

2/3 
3/4 
5/6 

-0.0009174 
-0.0009135 
-0.0009099 

0.0002036 
0.0002027 
0.0002019 

0.001121 
0.0011162 
0.0011118 

620.0 10  

2/3 
3/4 
5/6 

-0.00 1049 
-0.001044 
-0.00104 

0.0002327 
0.0002317 
0.0002308 

0.0012817 
0.0012757 
0.0012708 
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transition region with distance r for different values of
 at a fixed value of M=3, 1.4 ,  0 0.9p  bar, 

0 1.20  3kg m , Pr = 3/4 are shown in Fig. 1. It is 

observed from the Fig. 1, the spreading of the flow 
variables around the point of inflection increases with 
increasing the value of , in both the regions of  
stream. We also notice that analogous distribution of 
pattern are observed for all the flow variables  
( 0 0, , , iT T p p s R  ) for each values of .Thus, the 

thickness of shock-front increases with increasing . 

The expression for the variations in the flow 
variables within shock transition region with distance 
r for different values of M=2.0, 2.5, 3.0 at a fixed 

value of 615.0 10   Pa sec, 1.4  , 0 0.9p 
bar, 0 1.20  3kg m and Pr = 3/4 are shown in Fig. 2.  

It is observed that the spreading of the flow variables 
such as the particle velocity, temperature, and  
the change-in-entropy distribution are more 
distinguishable towards the upstream side, whereas, 
these plots are indistinguishable towards the 
downstream side. The pressure variation in both sides 
i.e., ahead and behind at the point of inflection are 
distinguishable. This figure shows that the spreading 
for all the flow variables such as the particle  
velocity, temperature, pressure, and change-in-entropy 
distribution increases with increasing M. Thus, the 
shock-front thickness increases with increasing shock 
strength. Here, from the above results it can be seen 
that, for a small value of M, the observation is similar 
to that obtained in the absence of heat conduction35. 

Figure 3 depicts the variation of the particle 
velocity, temperature, pressure, and change-in-entropy 
distribution within the shock transition region with 
distance r for various values of adiabatic exponent  

at fixed values of M = 3, 615.0 10   Pa sec, 

0 0.9p  bar, 0 1.20  3kg m and Pr = 3/4.  

From Fig. 3 apparent that the plots for all the flow 
variables are distinguishable towards the upstream 
side but not so much distinguishable towards the 
downstream side. We also notice that for 1.33  , 
the spreading of the particle velocity, temperature, 
and pressure is small, and it increases with increasing 
value of  . In the case of the change-in-entropy 

distribution, the spreading is large at 1.33  , and it 

decreases with increasing . Fig. 3 shows that under 

consideration of the viscosity with heat conducting 
medium, the thickness of shock-front is increases with 
increasing adiabatic index. Noticeably, the behavior 
and nature of graphs of shock-front thickness is 
similar to variation obtained by Anand & Yadav35 for 
lower shock strength. 

Figure 4 shows the variation of the particle 
velocity, temperature, pressure, and change-in-
entropy distribution within the shock transition region 
with distance r for various values of Prandtl number 
for the values of physical flow parameters, M=3, 

1.4  , 615.0 10   Pa sec, 0 0.9p  bar and 

0 1.20  3.kg m  
In Fig. 4, it can be observed that the variations of 

the flow variables are indistinguishable in upstream 
and downstream sides around the point of inflection 
except in the case of pressure distribution show 
distinguishable towards ahead and behind of the point 
of inflection.  

It is noticeable that the spreading of the flow 
variable is large at Pr=2/3 and decreases with 
increasing Pr. Thus, the thickness of flow variables 
decreases with increasing Prandtl number. It is 
momentous to mention that Hamad17, 18 also solved a 
similar problem using different technique and our 
results, confirm their findings. 
 
3.1 Comparative study for the structure of shock-front 

The shock-front thickness ( )r of the shock wave is 
defined9, 13, 24by 
 

 0 max
( )r U u du dr    ...(31) 

 

where, 2 1  r r r  is the shock-front thickness of 

the shock-front between two bounded states. It is also 
known as Prandtl front thickness. Since, for a 
stationary shock-front, geometrically the flow 
gradients are large when considering viscous and heat 
conducting terms. For measurement of thickness due 
to large gradients, the effective shock-front 
thickness22 is defined as 

 

0

max

u U du
r dr
 

 ...(32) 

 

Thus, to obtain the non-dimensional terms of the 
effective shock-front thickness in terms of the mean-

free path 0  is given by 
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0r   ...(33) 
 

where, 0 0 02 p   
  

In terms of scaled distance34, the Inverse shock-
front thickness ( ) is defined in terms of mean free 
path of the shock-front thickness is given by 

 

0 r  ...(34) 
 

From Table 2, the effect of variation in the 
structure of inverse shock-front thickness for various 
value of Prandtl number and adiabatic index of the 
gas at a constant value of physical flow parameters 
can be summarized in the following ways: 

(a). For a fixed value of adiabatic index, the inverse 
shock-front thickness increases with increasing 
Prandtl number. Our results is similar to that the 
results obtained by Khapra et al33. 

(b). The inverse shock-front thickness increases 
with increase in the adiabatic index but at the lower 
(Pr 0)  and higher (Pr )  value of Prandtl 
number, the inverse shock thickness decreases, and 
gets closer observations as presented in the 
literature33. 

From the Table 3, it can be summarized that: 
On increasing adiabatic index  , while keeping M 

fixed, the inverse shock thickness increases, and 
analogous results are obtained for different values of 
M. On the other hand, as  increases, the inverse 
shock thickness decreases, which is in contrast to 
Khapra’s results. This may be attributed to the fact 
that, at lower shock strength, the heat conduction36 
terms become negligible. Therefore, we are getting 
different order of thickness and trends of flow 
variables with flow parameters. In the case of at 
higher range of shock strength 2M  , the inverse 
shock-front thickness decreases with increasing  , 
similar to the result of Khapra et al33. Thus, from, 
above observations, it is found that the results 
obtained by different methods give almost the same 
outcome in qualitatively. 
 

4 Conclusions 
In this work, we have made an attempt to 

understand the formation and structure of a steady 
shock-front in a viscous and heat conductive gaseous 
phase medium. The exact solutions for the different 
flow variables 0 0( , , , )iT T p p s R  are derived 

Table 2 ⸻ Inverse shock-front thickness ( ) for various values of Pr=3/4, M=1.2, 0 0.9p  bar, 615.0 10    Pa sec, 

0 1.20  3kg m . 

Prandtl 
Number 

(Pr) 

Adiabatic index 
  Inverse shock-front thickness ( )  

Present Study Khapra’s Study 

 
0 
 
 

2/3 
 
 

3/4 
 
  

1.33 
1.4 
1.66 
1.33 
1.4 
1.66 
1.33 
1.4 
1.66 
1.33 
1.4 
1.66 

0.014805 
0.014774 
0.014230 
0.016995 
0.018339 
0.022965 
0.017386 
0.018909 
0.024876 
0.000006 
0.000005 
0.000002 

- 
0.0016975 
0.0005179 

- 
0.052828 
0.041522 

- 
0.054014 
0.042437 

- 
0.065741 
0.054009 

 

Table 3 ⸻ Inverse shock-front thickness ( )  at various values of Mach number and adiabatic index at constant values of Pr=3/4, 

0 0.9p  bar, 615.0 10   Pa sec, 0 1.20  3.kg m  

Adiabatic index 
  

M = 1.1  M = 1.5  M = 2.0 

Present 
Study 

Khapra’s 
Study 

 
Present 
Study 

Khapra’s 
Study 

 
 

Present 
Study 

Khapra’s 
Study 

1.33 
1.4 

1.66 

0.010501 
0.012221 
0.018383 

- 
0.803340 
0.792484 

 
0.022979 
0.025101 
0.029789 

- 
0.40689 
0.39071 

 
 

0.026044 
0.027598 
0.031589 

- 
0.22231 
0.21086 
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within the shock transition region. In addition, the 
thickness and inverse shock-front thickness with 
various flow parameters have been explored, and 
analysing the effects on the flow variables such as 
pressure, temperature, entropy, etc. within the 
transition region between the shock-front. On 
comparison of obtained results with the results present 
in the literature, we see that the present finding show 
good agreement in both the aspects qualitatively and 
quantitatively. Such a problem is of great attention not 
only in space science but also highly relevant to the 
problem of the origin and understanding of the shock 
waves. Our results show that the structure of shock 
waves in a medium is greatly affected by both the 
viscosity and heat conduction properties of the 
medium.  

Based on the non-dimensional analysis of a 
continuous, viscous, and heat-conducting fluid 
medium, the following conclusions can be stated as 
follows: 
1 On increasing the value of the coefficient of 

viscosity and Mach number, the shock wave-front 
thickness increases. (Table 1, Figs.1, 2) 

2 The thickness of the shock-front decreases with 
increasing the adiabatic index.(Table1, Fig. 3) 

3 The thickness of the shock-front decreases with 
increasing the Prandtl number.(Table 1, Fig. 4) 

4 On increasing the value of Prandtl number, the 
inverse shock-front thickness increases. (Table 2) 

5 On increasing adiabatic index, the inverse shock-
front thickness increases, and similar results are 
obtained for different Mach number. (see Table 3) 

It is proposed to extend the scope of this  
work to non-ideal fluids, such as water, air, blood,  
etc. This will help to better understanding the  
internal structure of shockwaves and distribution of 
the flow variables such as pressure, temperature, 
entropy production, etc., within the shock transition 
region. 
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