Indian Journal of Pure & Applied Physics Vol. 53, July 2015, pp. 429-435

Elastic properties of elemental, binary and ternary semiconductor materials

V Kumar¹*, J K Singh² & G M Prasad³

¹Department of Electronics Engineering, Indian School of Mines, Dhanbad 826 004, India

²Flame & Explosion Laboratory, ³Instrumentation Division & Testing Cell,

CSIR-Central Institute of Mining and Fuel Research, Brawa Road, Dhanbad 826 015, India

*E-mail: vkumar52@hotmail.com

Received 8 January 2015; revised 9 April 2015; accepted 7 May 2015

Elastic properties of elemental (C, Si, Ge), binary (II-VI, III-V) and ternary (I-III-VI₂, II-IV-V₂) semiconductors have been studied. New relations, based on plasma oscillation theory of solids, have been proposed for the calculation of bulk modulus (*B*), microhardness (*H*) and shear modulus (*G*) of these materials. The values of *B*, *H*, *G* and *G/B* ratio have been calculated for 13 new compounds of II-IV-V₂ family. The calculated values are compared with the available experimental and reported values. Reasonably good agreement has been obtained between them. The average percentage deviation of proposed relations has also been estimated and found to be better than earlier correlations.

Keywords: Bulk modulus, Microhardness, Shear modulus, Elastic properties, Plasma energy, Elemental, Binary and ternary semiconductors

1 Introduction

In the recent past, the elastic properties of elemental (C, Si, Ge), binary (II-VI, III-V) and ternary (I-III-VI₂, II-IV-V₂) semiconductor materials, have been studied. Elemental semiconductors are the back bone for modern electronic industries and having potential applications in fabricating diodes, bi-polar junction transistors (BJTs), field effect transistors (FETs), logic gates, integrated circuits (ICs), nanoelectronics and lasing devices¹. The semiconductors of group II-VI are important for nuclear, industrial and medicinal applications. They are widely used in optoelectronic devices², quantum wells³, quantum wires⁴, quantum dots⁵, lasing devices⁶ and detectors for nuclear power plants⁷. Group III-V semiconductors are the most promising materials for cutting-edge classes of electronic and optoelectronic devices^{8,9}. The nitrides of III-V group are used in designing short wavelength laser diodes (LDs), high efficient blue and white light emitting diodes (LEDs) and optical data storage systems¹⁰. The ternary chalcopyrites of I-III- VI_2 (I = Cu, Ag; III = Al, Ga, In, Tl, Fe; VI = S, Se, Te) and II-IV-V₂ (II = Zn, Cd; IV = Si, Ge, Sn; V = P, As) families are widely used in photovoltaic solar cells, LEDs, LDs, photo-detectors (PDs), frequency conversion applications, optical parametric oscillators (OPO) and nonlinear optical (NLO) devices $^{11-13}$. Recently, new chalcopyrites of II-IV-V₂ family have been developed by replacing group II atom with Be,

Mn and Mg atoms, which are also having potential applications in spintronics and magnetically controlled NLO devices¹⁴⁻¹⁶. In spite of their potential applications, elastic properties of group IV, II-VI, III-V, I-III-VI₂, II-IV-V₂ semiconductors are still not sufficiently studied. A large variation in the experimental values has been obtained in some of these semiconductors, e.g., experimental values of *H* of ZnS (1.7-3.5) vary more than 100%, CdSe (0.7 to 1.2) varies approximately 72%, C ranges from 57 to 104 and BN from 34.3 to 73. In the case of B, it varies from 35.7 to 76.6 for AgGaTe₂ semiconductor. Therefore, it has been thought of interest to further study the elastic properties of these materials.

The elastic properties such as bulk modulus (*B*), microhardness (*H*) and shear modulus (*G*) of these semiconductors have been studied experimentally and theoretically. A state of the art review¹⁷ of earlier models for the calculation of *B* and *H* has been presented. Gilman¹⁸ has proposed an expression for the calculation of *G* of metals based on quantum mechanical description. Kamran *et al*¹⁹. have correlated *G* with f_i and *d* for II-VI and III-V diamond like and zinc-blende binary crystals and shown that the product of *G* and $d^{5.5}$ is linearly related to f_i . Abdellaoui *et al*²⁰. have calculated the values of *G* for CuAlX₂ (X = S, Se, Te) compounds using elastic constant data C_{ij} . Other researchers^{21, 22} have proposed empirical relations for the calculation of *B*, *H* and *G* of I-III-VI₂ and II-IV-V₂ groups of chalcopyrites. Recently, Kumar *et al*¹³. have calculated the values of *B*, *G* and *G/B* ratio of various compounds of II-IV-V₂ family using first-principle calculations.

The models proposed by earlier researchers require experimental data of number of parameters such as bond ionicity f_i , bond length d, melting temperature $T_{\rm m}$ and atomic volume Ω in their calculation. The values of these parameters are not known for some of these compounds specially the new magnetic materials of II-VI-V₂ family. Their calculations are also complex in nature and limited for particular group of materials. Therefore, simple models have been developed, which can be applicable for all groups of compounds and do not require any experimental data or less number of experimental data. Recently, simple models based on plasmon energy $(\hbar \omega_p)$ data for the calculation of various elastic and thermal properties of these semiconductors^{17,23} have been developed. In the present paper, the applicability of $\hbar \omega_p$ for the calculation of B, H and G have been explored, which give better results than the earlier models.

2 Calculation of Bulk Modulus, Microhardness and Shear Modulus

The bulk modulus *B* is a measure of resistance to volume change by applied pressure. Based on empirical relations, a number of theoretical models have been proposed for the calculation of bulk modulus (*B*). In almost all earlier models, it has been found that *B* is related to the bond length¹⁷ (*d*). Kumar *et al.*²³ have shown that the bond length *d* is related to the plasmon energy ($\hbar\omega_p$). This is because of the fact that *d* and $\hbar\omega_p$ both are related to the effective number of valence electrons in a semiconductor. This shows that there must be a relation between *B* and $\hbar\omega_p$. For tetrahedrally coordinated semiconductor materials, the bond length *d* can be written as^{17,23}:

$$d = 15.30 \left(\hbar\omega_{p}\right)^{-2/3} \qquad \dots (1)$$

where bond length d and plasma energy $\hbar \omega_{p}$ are in Å and eV, respectively.

Further, Plendl *et al*²⁴. have shown that *B* is directly proportional to *H*, i.e., *B* α *H*, which shows that *H* is also related to the $\hbar \omega_p$. This shows that the elastic properties of material have fundamental relation among *B*, *H* and $\hbar \omega_p$. Based on this, we have simulated the data taking the experimental values of *B*

and the calculated values of plasmon energy $\hbar \omega_p$ as well as the experimental data of *H* and $\hbar \omega_p$ and proposed the following polynomial relation for the calculation of *B* and *H* for Gr. IV, II-VI, III-V, I-III-VI₂ and II-IV-V₂ semiconductors materials:

B and
$$H = K_1(\hbar\omega_n)^2 + K_2(\hbar\omega_n) + K_3$$
 ...(2)

where K_1 , K_2 and K_3 are the constants and having different values for *B* and *H* (in GPa) for different groups of semiconductors. The simulated values of K_1 , K_2 and K_3 are listed in Table 1 and the calculated values of *B* and *H* from Eq. (2) are listed in Tables 2 and 3 along with the available experimental and reported values.

Shear modulus *G* is another quantity for measuring the stiffness of materials, which measures the resistance of reversible deformations upon the shear stress. It is related to the Poison's ratio and bulk modulus²⁵. Kamran *et al.*¹⁹ have derived the following relation for the calculation of *G* of diamond like and zincblende binary crystal:

$$G = \frac{C_1 - C_2 f_1}{d^{5.5}} \qquad \dots (3)$$

where f_i is the ionocity, d is the bond length and C_1 and C_2 are the constants. The numerical values of C_1 and C_2 are, respectively, 5954.02 and 4538.40 for diamond like and 9058.22 and 6905.86 for zincblende crystals. Recently, Kumar *et al*^{26,27}. have correlated f_i with the plasmon energy $\hbar \omega_p$ by the relation:

$$f_1 = \kappa_1 + \kappa_2(\hbar\omega_p) \qquad \dots (4)$$

where κ_1 and κ_2 are the constants and their numerical values are given elsewhere^{26,27}. Eqs. (1), (3) and (4) show that *G* is related to $\hbar \omega_p$. Based on this, we have

Table 1 — Numerical values of the constants K_1 to K_5 used in
proposed relations

Constants	Elastic		Co	mpound	l family	
	Moduli	IV	II-VI	III-V	I-III-VI ₂	II-IV- V_2
V	В	0.172	0.718	-0.171	1.365	-0.021
K_1	H	-0.047	0.016	0.189	0.161	0.549
V	В	15.44	-12.56	15.2	-25.38	8.865
K_2	H	5.579	-0.094	-3.852	-4.107	-14.32
K_3	В	-205.6	84.71	-117.9	127.5	-65.86
K ₃	H	-67.35	-1.139	20.46	27.22	96.71
K_4	G	6.426	0.236	1.532	0.7589	0.640
K_5	G	0.142	0.300	0.220	0.244	0.267

	Expt. ⁺ 7] [Ref.17] 8 3 98 98 98 98 98 98 98 98 98 98	_	5	Reported [Ref. 30] [Re			P4	Ē	-		7 11				
IV [Ref.] (eV)		_		[Ref. 30]	l		Expt.	I his	Kepc	Reported	Expt ^{#.†}	This	Reported	This	Expt: ⁵
1 2 (C) C 31.1, 2 Si 16.5; Ge 15.5; Ge 15.5; Average % deviat A ¹¹ B ^{v1} & deviat A ¹¹ B ^{v1} & 28.2 BeS 19.5; BeSe 18.3 BeTe 16.1		44.199 441.99 97.68 76.91 0.13 303.17 113.11	5 430		[Ref. 31]	[Ref. 31]	•	1	[Ref.17] [Ref.34]	[Ref.34]	[Ref.19]	work Ea(5)	[Ref.19]	work	
C 31.14 Si 16.57 Ge 15.57 Average % deviat A ¹ B ^{v1} A ¹ B ^{v1} BeO 28.2 BeS 19.55 BeSe 18.3.3 BeFe 16.1		441.99 97.68 76.91 0.13 303.17 113.11 96.55 68.81 146.19 75.31	430	9	7	8	6	10	II	12	13	14	15	16	17
Si 16.55 Ge 15.55 Average % deviat A ^{IIB} vi BeO 28.21 BeS 19.55 BeSe 18.3.3 BeTe 16.1		97.68 76.91 0.13 303.17 113.11 96.55 68.81 146.19 75.31		435			10(M) ^a (57-104) ^b ⁺		96.92	80.0	535.7	534.98	534.5	1.2093	1.2119
Ge 15.55 Average % deviat A ^{II} B ^{VI} A ^{II} BVI 28.2 BeO 28.2 BeS 19.5 BeSe 18.3 BeTe 16.1		76.91 0.13 303.17 113.11 96.55 68.81 146.19 75.31	98.82	98	92		11.27 ^b , 11.50 ^b 12.35 ^c ⁺	12.23	12.33	13.3	70.8	67.67	82.4	0.8435	0.7224
Average % deviat A ¹¹ B ^{V1} 28.2 BeO 28.2 BeSe 19.5 BeSe 18.3 BeTe 16.1		0.13 303.17 113.11 96.55 68.81 146.19 75.31	85.60	76	79	1.9.1	$7.644^{a}, 8^{b, +}$		8.96	9.85	56.6	58.79	65.5	0.8516	0.7331
A ¹¹ B ^{V1} BcO 28.2(BcS 19.5 BcSe 18.3 BcTe 16.1		303.17 113.11 96.55 68.81 146.19 75.31	4.78	1.01	4.22				4.05	10.27		2.81	10.77		
		303.17 113.11 96.55 68.81 146.19 75.31					[Ref.35]			[Ref.35]					
		113.11 96.55 68.81 146.19 75.31	265.12				9.1 ⁺ -12.7	8.98	8.21	11.6		1134.64		3.7425	
		96.55 68.81 146.19 75.31	111.81					3.12	3.01			92.44	76.7	0.8172	
		68.81 146.19 75.31	97.29					2.54	2.52			58.73	60.1	0.6082	
		146.19 75.31	71.54					1.50.	1.64			29.72	42	0.4319	
ZnO 21.48		75.31	139.78	90	61	75.21	$3.9, 4.8, 4^{+}(M)$	4.22	3.96	4.6		148.42		1.0152	
ZnS 16.71			77.80	75	58	65.7	$1.7^{+}, 2.8, 3.5$	1.75	1.86	3.3	31.9	35.48	29.1	0.4711	0.4142
ZnSe 15.78		65.30	68.07	59	54	61.46	1.3 - 1.8	1.36	1.52	1.7	32.9	26.84	31.7	0.4110	0.5306
		55.74	58.24	. 69	66	61.6	0.8 - 1.1	0.96	1.19	1.0	24.8	19.76	25.4	0.3545	0.4862
		56.79	59.35	60	60	58.9	1.2 ⁺ , 1.22 ^b	1.00	1.23	1.1	16.9	20.49	17.6	0.3608	0.2725
CdSe 14.01		49.67	51.57	47	56	41.6	0.7 ⁺ - 1.2	0.68	0.96	0.8	13.6	15.78	13.9	0.3176	0.2566
CdTe 13.09		43.32	44.01				0.4 ⁺ -0.64	0.37	0.71	0.5	10.5	11.97	9.8	0.2763	0.2500
	-	42.58	43.07					0.33	0.68			11.55		0.2712	
HgS 14.85	5	56.52	59.07					0.99	1.22			20.30	15	0.3591	
	•	49.52	51.39					0.68	0.96		16.5	15.69	15.4	0.3168	
HgTe 12.85	1	41.87	42.15					0.29	0.65		12.9	11.14	12.2	0.2660	
Average % deviation	ion	5.77	6.0	14.98	14.38	16.9		4.58	5.01	2.35		12.75	3.86		
AB													0.000		
		152.06	218.52				34.3 - 73.0	39.70	29.57	45.8	414	338.04	400.9	2012.2	
		151.49	CC.401				51.4 - 40	16.07	10.02	0.70	661	191.//	C.74I	C70C.1	
		118.70	137.61				19.0	19.46	16.50	10.9		128.12	165.4	1.0793	
		87.77	88.47	18	6/	86.7		8.71	6C.8	6.30		17.65	01.7	0.6803	
	11	80.67	11.11	62	66 2	75.3	+ 34 •	6.67	6.81	0000		48.98	2.42	0.6195	
		08.45	26.00	10	19	4.00	4.0	5.18	05.6	06.01	51.1	-96.16 100.001	7.02	1055.0	2066.0
		00.001	109.14	t	č	00 00		01.12	00.12		60	06.761	+	0 2200	21220
	26	80.34 75 13	80.05 77 70	× 1	4/	67.78	+ 9102 2	20.5	00.9		0 01	11.10	0.70	0.400.0	0100.0
		21.07	07.67		6	0.07	1.2.1, 0.0.1	00.0	0.00		40.0	00.44	1.00	1/60.0	000000
15.51 Uabb		107 50	21.60	80	60	c.cc	4.48	00 11	2.84 13.78		4.00	06.75	73.3	0055.0	0120.0
	14	60.101	C/ 111	13	63	56 75	A 10ª A 20b. +	A 78	5 05	5 30	36.5	30.40	36.5	05694	0 5140
		0.00	50.72	6	619	58 10	2 2 0a 2 2 A b. +	3,68	2 01	2	314	33.85	33.7	0 5450	0 5233
•.		47.88	47.30	47	5	45.05	7 20 ⁺	2.05	1.90		24.2	25.20	23.3	0.5263	0.5148
oe % d		2.37	2.84	2.15	10.13	3.02		10.08	22.18	30.30	1	5.21	3.65		
These values have !	teen used for n	pression of	f Eas (2) and	d (5) and cale	sulating ave	srage % devi	These values have been used for repression of Eas (7) and (5) and calculating average % deviation, where more than one exterimental values are available	me exnerin	nental valu	es are avail	ahle				
"References of individual experimental values of G are given	idual experime	ntal values	of G are giv	ven in [Ref. 19]	6	0		-							
⁵ G/B Ratio have been calculated from the experimental values of B and G listed in column 3 and 13	n calculated fr	om the expe	erimental va	lues of B and	1 G listed in	1 column 3 a	nd 13								
alRef 321 brRef 331 crRef 341	CIRef 341	•													

KUMAR et al.: ELASTIC PROPERTIES OF SEMICONDUCTOR MATERIALS

431

Comnds	ĥ			Lable 3 — Bulk modu	1 adie 3 — Buik modulu: Bulk modulus (B)(GPa)	(GPa)				buik modulus, inicronardness and snear modulus of group 1-111- V 12 and 11-1 V - V 2 semiconductors Ins (8) (GPa)	(H) (GP	(a)	SID		Shear m	Shear modulus (G) (GPa)) (GPa)	
	(eV)	This				Reported			This	Expt*.		Reported		This	Reported	orted	G/B Ratio	atio
	[Ref.17]		Expt*.	[Ref.36]		Ref.17] [Ref.37]	[Ref.38]	[Ref.39]	Work	[Ref.17]	[Ref.40]	[Ref.40] [Ref.17] [Ref.41]	[Ref.41]	Work E. (s)		İ	This n	reported
-	2	54.(2) 3	[vei.i/] 4	5	9	7	8	6	10 10	II	12	13	14	15 15	16	17		61 61
A ^I B ^{III} C ₂ ^{VI}																		
CuAIS ₂	17.25	95.86	$94^{+}, 99$		84.02	96.8	96	85.3	4.28	4.33^{+}	2.45	3.84	2.56	51.06	51.56 ^a 4	40.443 ^b 0	0.5326	
CuAlSe ₂	15.86	68.32	84^{+}		69.06	77.3	80	72.9	2.58	$3.19^+, 2.06$	2.21	2.95	2.23	36.37	35.89 ^a 3		0.5323	
CuAITe ₂	14.35	44.38			54.68	57.2	64	53.5	1.44	$1.78^+, 1.82$	2.50	2.09	2.06	25.16	26.81 ^a 2	28.964 ^b 0	0.5669	
CuGaS ₂	17.10	92.64	94 ⁺, 96, 97		82.32	95.8	94	98.0	4.07	4.22 ⁺ , 4.81-7.10	2.25	3.74	2.40	49.23	50.06 ^a	0	0.5314	
CuGaSe ₂	15.92	69.40	71 ⁺ , 94		69.67	76.6	62	69.3	2.64	3.23 ⁺ ,1.93 , 4.2	1.93	2.98	2.06	36.91	37.29ª	0	0.5318	
CuGaTe ₂	14.30	43.69	44 +		54.24	55.4	38	48.5	1.41	1.77 ⁺ , 2.11, 3.14, 3.5	2.35	2.07	1.8.1	24.86	25.78 ^a	0	0.5690	
CuInS ₂	16.12	73.07	75*		71.73	84.4	81	72.9	2.85	2.84 ⁺ , 4.9-6.2, 2,26, 2.55	1.37	3.10	1.37	38.76	37.29 ^a	0	0.5304	
CuInSe ₂	15.09	55.33	53 ⁺ , 48, 62, 72		61.49	68.4	69	64.0	1.91	1.81^{+} , 2.05	1.57	2.49	1.38	30.14	31.71 ^a	0	0.5447	
CuInTe ₂	13.66	35.51	36 ⁺ , 45.4		48.74	50.6	51	45.0	1.60	$1.49^{+}, 1.87, 0.4$	1.63	1.74	1.37	21.26	21.89 ^a	0	0.5987	
CuTIS ₂	15.89	68.86		71	69.36				2.61	2.96^{+}		2.96		36.64		0	0.5320	
CuTISe ₂	14.88	52.07		53	59.51				1.76			2.37		28.64		0	0.5500	
CuFeS ₂	17.19	94.57		105	83.33				4.20			3.79		50.32		0	0.5320	
AgAIS ₂	16.26	75.71			73.19	79.9	82	75.2	3.01	3.19^{+}		3.19		40.10		0	0.5296	
AgAISe ₂	15.16	56.45			62.15	65	70	62.8	1.96	$1.60^+, 1.57$	1.68	2.53		30.66	30.97^{a}		0.5431	
AgAITe ₂	14.50	46.48			56.02	48.8	54	40.4	1.52	$1.49^+, 1.46$	1.64	2.17		26.10	20.64 ^a	0	0.5615	
AgGaS ₂	16.10	72.70	72 ⁺ , 60, 67, 90		71.52	77.6	76	67.2	2.83		1.71	3.09		38.57	37.46ª	0	0.5305	
AgGaSe ₂	14.76	50.26	59.8 ⁺ , 65		58.39	63.8	63	59.9	1.67	$1.43^{+}, 1.40, 4.4$	1.55	2.32		27.81	27.94^{a}	0	0.5533	
AgGaTe ₂	13.63	35.15	35.7 ⁺ , 71.5, 76.6		48.49	48.6	21	38.9	1.15	1.32 ⁺ , 1.76, 1.8	1.63	1.73	-	21.11	20.49 ^a	0	0.6005	
AgInS ₂	15.21	57.25			62.63	71.6	99	55.0	2.00	2.2		2.56		31.04	29.26 ^a	0	0.5421	
AgInSe ₂	14.23	42.74	42 +		53.62	58.3	50	48.7	1.38	$1.24^{+}, 1.85$	1.00	2.02		24.44	23.50^{a}	0	0.5718	
$AgInTe_2$	13.04	28.65			43.73	44.1	29	24.5	1.04	1.15 ⁺ , 1.18	1.14	1.44		18.28	18.06^{a}	J	0.6380	
AgFeS ₂	16.24	75.33			72.98				2.98			3.18		39.91		C	0.5298	
Average %	Devi.	05.35				13.14	10.42	5.69	11.72		17.27	18.28	20.62					
A ^{II} B ^{IV} C ₂ ^V			[Ref.13]	[Ref.42]	[Ref.17]	[Ref.43]	[Ref.44]	[Ref.45]			[Ref.40]	[Ref.17]	[Ref.41]				<u> </u>	[Ref.13]
$ZnSiP_2$	17.02	78.93	⁺ 62	73.2	93.13	120.3	79.0	6.99	12.01	12.20 ⁺ , 10.79, 11	8.83	11.43	10.45	60.22	48.59 ^a	59.31°0 55.45 ^d	0.7629	0.77
	10.01	10.25	+ 70	0.70	36 00	2 201	2		10.47		202	10.05	160	11 12	20 10 ³		21175	0 00
Znuer ₂	16.04		80 281+	0.08	CC.00	0./01	3 63	7.11	C+:01	2.60, 9.01, 0.1 2.5 ⁺ 7.00 2.37	C7.0	10.00	00.1	14.40			0.6078	70.77
21110112	CC.C1	16.00	+ .00		1 .07	7.40	C-10	1.10	0.10	10.0,00.1, 0.0	07.0		00.4	0.01			0.00.	
CdSiP ₂	16.19	72.15	+ 26	71.9	82.88	97.0	48.0	60.9	8.77	$9.30^{+}, 10.5$	7.16	8.50	7.49	48.25	40.24ª	45.28° 0	0.6687	0.60
CdGeP ₂	15.52	66.66	68.1 +	67.4	75.10	86.4	47.0	60.4	6.70	$6.70^{+}, 5.54, 4.02, 5.65$	4.61	6.26	5.10	40.34	29.35 ^a	42.30° 0	0.6051	0.65
																	č	Contd —

INDIAN J PURE & APPL PHYS, VOL 53, JULY 2015

432

Compds	ħω₽			Bulk mo	Bulk modulus (B) (GPa)	(GPa)				Microhardness (H) (GPa)	; (H) (GP	a)			Shear m	Shear modulus (G) (GPa)	G) (GPa)	
	(cV)	This				Reported			This	Expt*.		Reported		This	Reported	orted	G/B	G/B Ratio
		Work	Expt*.						- Work					Work			This Work	reported [Ref 13]
	2	14.(4) 7	4	\$	9	7	~	6	10	11	12	13	14	15	16	17	18	61
CdSnP ₂	14.82	60.90		55.9	67.43	67.2	52.5	50.2	5.06	5 ⁺ , 5.29	2.50	4.10	2.69	33.47	20.42 ^a	34.02°	0.5495	0.57
1SiAs2	16.05	71.01	69.6^{+}	9.69	81.22	93.4	68.0	53.2	8.29	$9.02^+, 8.80, 9.2$	8.04	8.02	8.07	46.48	37.16 ^ª	48.85°	0.6545	0.76
ZnGeAs ₂	15.66	67.81	67 ⁺	53.8	76.68	85.7	67.0		7.09	6.8 ⁺ , 6.60 , 6.67	6.18	6.714	6.70	41.88	31.08ª	44.20°	0.6176	0.78
ZnSnAs ₂	14.82	60.90	56.6 ⁺	56.6	67.43	67.0	55.8		5.06	5.40 ⁺ , 4.46, 4.55	4.22	4.10	4.39	33.47	25.40ª	31.98°	0.5495	0.62
CdSiAs ₂	15.35	65.26			73.19	77.0	54.0		6.25	$6.10^{+}, 6.85$	6.03	5.71	6.29	38.55	28.88ª	36.60°	0.5907	0.59
CdGeAs ₂	14.90	61.56	69.7 +	47.7	68.28	69.7	41.3		5.22	5.20 ⁺ , 4.61, 4.70	4.61	4.30	4.79	34.19	23.00ª	30.12°	0.5553	0.54
																30.54 ^f		
																27.95 ^f		
CdSnAs ₂	14.12	55.12	54.8 +	49.9	60.23	54.8	37.1		3.96	4.00 ⁺ , 3.43, 3.28, 3.45	3.04	2.00	3.09	27.76	19.11 ^ª	29.52°	0.5036	0.57
Average %	Dev.	06.48		10.49	11.79	20.78	17.39	18.49	2.68		14.81	9.13	10.72					
BeSiP ₂	18.13	87.95							17.54					80.99			0.9208	
BeSiAs ₂	16.91	78.04							11.54					58.47			0.7492	
BeGeP ₂	17.61	83.74							14.78					70.49			0.8417	
BeGeAs ₂	16.46	74.36							9.74					51.85			0.6972	
BeSnp ₂	16.45	74.28							9.70					51.72			0.6962	
BeSnAs ₂	15.48	66.33				•			6.59					39.91			0.6016	
MgSiP ₂	16.04	70.93							8.26					46.35			0.6534	
MgSiAs ₂	15.08	63.04							5.61					35.87			0.5690	
MgGeP ₂	15.67	67.89							7.12					41.99			0.6185	
MgGeA ₂	14.68	59.75							4.80					32.24			0.5395	
MgSnP ₂	14.73	60.16							4.89					32.67			0.5430	
MgSnA ₂	13.93	53.55							3.76					26.39			0.4928	
MnGeP ₂	15.64	67.65	,						7.03					41.66			0.6158	
References of individual experimental data of B are given	of individ	lual experir	References of individual experimental data of B are given in [Ref. 17]	B are given	in [Ref. 1]	[2	•			in [Ref. 17]								

KUMAR et al.: ELASTIC PROPERTIES OF SEMICONDUCTOR MATERIALS

433

simulated the known values of *G* and $\hbar\omega_p$ and proposed a simple relation for the calculation of *G* (in GPa) for IV, II-VI, III-V, I-III-VI₂ and II-IV-V₂ semiconductor materials:

$$G = K_4 \exp|K_5 \hbar \omega_p| \qquad \dots (5)$$

where K_4 and K_5 are the constants and their numerical values are given in Table 1. The calculated values of shear modulus *G* from Eq. (5) are listed in Tables 2 and 3 along with the available experimental and reported values. The ratio of *G/B* gives the information about covalent and ionic behaviour of materials on the basis of their brittle and ductile character in solids^{28,29}, are also calculated and presented in Tables 2 and 3. The upper limits of *G/B* are 1.1 for brittle and 0.6 for ductile character, i.e., if *G/B* \leq 0.60, the materials are ductile (ionic), otherwise brittle (covalent) in nature.

3 Results and Discussion

Using Eqs (2) and (5), the values of B, H and G of group IV, II-VI and III-V semiconductor materials have been calculated and listed in Table 2 and I-III- VI_2 and II-IV-V₂ materials in Table 3 along with the available experimental and reported values. The values of these parameters for 13 new compounds of II-IV-V₂ family have been calculated for the first time and listed in bottom rows of Table 3. The calculated values are in good agreement with the available experimental and reported values. We have also calculated the average percentage deviation of proposed Eqs. (2) and (5) using the relation: Percentage deviation = [Experimental value- Calculated Valuel/Experimental value] \times 100. In the case of Eq. (2), the average percentage deviation of B for IV, II-VI and III-V materials has been estimated between 0.13% to 5.77% against the earlier estimations between 1.01 to 14.98%. However, in the case of I-III-VI₂ and II-IV-V₂ chalcopyrites, it has been estimated between 5.35 to 6.48% against the earlier estimations between 5.69-20.78%. The average percentage deviation of Eq. (2) for H has been found between 1.13 to 10.08% against the earlier estimations between 2.35 to 30.30% for group IV, II-VI and III-V, and 2.68 to 11.72% against the earlier estimations between 9.13 and 20.62% for I-III-VI₂ and II-IV-V₂ semiconductors. In the case of Eq. (5), the average percentage deviation of G for group IV, II-VI and III-V semiconductors has been found in the range

2.81-12.75% against earlier values between 3.65-10.77%. The average percentage deviation of G for ternary chalcopyrite has not been calculated due to unavailability of experimental values. However, these data have been compared with the reported values. The calculated values of G/B ratio, which show the ionic and covalent nature of the materials, are also listed in Table 2 for group IV, II-VI and III-V, and Table 3 for I-III-VI₂ and II-IV-V₂ materials along with available experimental values in few cases where the experiments have been performed and the reported values. A fairly good agreement has obtained between them. The calculated average percentage deviations of all groups of semiconductor materials are also listed in Tables 2 and 3. In almost all cases, the average percentage deviation of proposed relations is lower than the earlier correlations. The main advantage of the present models is the simplicity of the formulae, which do not require any experimental data except the plasmon energy of the materials while the earlier models require the experimental values of bond length, ionicity, melting temperature and atomic volume in their calculation.

4 Conclusions

Hence, it is possible to calculate the values of B, H and G of group IV, II-VI, III-V, I-III-VI₂ and II-IV-V₂ semiconductor materials from their plasmon energy data. The predictive nature of the proposed relations is of great importance in predicting the values of B, H, G and G/B ratio of new compounds of these group having the same crystal structure. The lower percentage deviation shows the significant improvement over the earlier models.

Acknowledgement

The authors are thankful to Prof D C Panigrahi, Director, Indian School of Mines, Dhanbad and Dr Amalendu Sinha, Director, Central Institute of Mining and Fuel Research, Dhanbad for their continuous encouragement and inspiration in conducting this work.

References

- 1 Boyraz O & Jalali B, Optical Express, 12 (2004) 5269.
- 2 Rappl P H O & Mccann P J, *IEEE Photonics Technol Lett*, 15 (2003) 374.
- 3 Komirenka S M, Kim K W, Kochelp V A & Zavada J M, App Phys Lett, 81 (2002) 4616.
- 4 Wang X Y, Wang Z M, Yazdanpanah V R et al., J Appl Phys, 95 (2004) 1609.
- 5 Ma S B, Wang X D, Su F H *et al.*, Fang Z L, Ding K, Niu Z C & Li G H, *J Appl Phys*, 95 (2004) 933.

- 6 Nawaz M, Permthamassin K, Zaring C & Willander M, *Solid State Electron*, 47 (2003) 291.
- 7 Azhazha V A, Kutnii V E, Rayka A V et al., At Energy, 92 (2002) 508.
- 8 Vurgaftman, Meyer J R & Ram-Mohan L R, J Appl Phys, 89 (2001) 5815.
- 9 Reshak A H, Eur Phys J, B47 (2005) 503; J Chem Phys, 125 (2006) 034710.
- 10 Fritsch D, Schmidt H & Grundmann M, Phys *Rev* B, 67 (2003) 235205; *Phys Rev*, B 69 (2004) 165204.
- 11 Shay J L & Wernick J H, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Pergamon Press, New York), 1975.
- 12 Kumar V, Tripathi S K & Jha Vijeta, *Appl Phys Lett*, 101 (2012) 192105.
- 13 Kumar V, Singh B P & Pandey B P, Comput Mater Sci, 87 (2014) 227.
- 14 Shaposhnikov V L, Krivosheeva A V, Borisenko V E et al., Phys Rev B, 85 (2012) 205201.
- 15 Krivosheeva A V, Shaposhnikov V L, Borisenko V E et al., J Phys Condens Matter, 21 (2009) 045507.
- 16 Medvedkin G A & Voevodin V G, *J Opt Soc Am*, B 22 (2005)1884.
- 17 Kumar V, Shrivastava A K & Jha Vijeta, J Phys Chem Solids, 71 (2010) 1513.
- 18 Gilman J J, Chemistry and Physics of Mechanical hardness (A John Wiley & Sons Inc., Publication), 2009.
- 19 Kamran S, Chen K & Chen L, Phys Rev, B 77 (2008) 094109.
- 20 Abdellaoui A, Ghaffour M, Bouslama M et al., J Alloys Compd, 487 (2009) 206.
- 21 Verma A S, Sharma S, Bhandari R *et al.*, *Mater Chem Phys*, 132 (2012) 416.
- 22 Verma A S, Mater Chem Phys, 139 (2013) 256.
- 23 Kumar V, Shrivastava A K, Banerji R & Dhirhe D, *Solid State Commun*, 149 (2009) 1008.

- 24 Plendl J N, Mitra S S & Gielisse P J, Phys Status Solidi, B12 (1965) 367.
- 25 Sahin S, Ciftici Y O, Colakoglu A & Korozlu N, J Alloys Compd, 529 (2012) 1.
- 26 Kumar V, Shrivastava A K, Sinha A & Jha Vijeta, Indian J Pure & Appl Phys, 51 (2013) 49.
- 27 Kumar V, Jha Vijeta & Sinha A, Indian J Phys, 89 (2015) 233.
- 28 Young A F, Sanloup C, Gregoryanz E et al., Phys Rev Lett, 96 (2006) 155501.
- 29 Pugh S F, Philos Mag, 45 (1954) 833.
- 30 Cohen M L, Phys Rev, B 32 (1985) 7988.
- 31 Al-Douri Y, Abid H & Aourag H, *Physica B*, 305 (2001) 186; 322 (2002) 179.
- 32 Lide D R (Ed.), *Hand book of Chemistry and Physics* (CRC Publication), 80th Edn, 1999-2000.
- 33 Weber M (Ed.), *Handbook of Optical Materials* (CRC Publication), 2003.
- 34 Garbato L & Rucci A, Philos Mag, 35 (1977) 1681.
- 35 Neumann H, Cryst Res Technol, 22 (1987) 271.
- 36 Caceres J B & Rincon C, Phys Status Solidi, B 234 (2002) 541.
- 37 Neumann H, Cryst Res Technol, 18 (1983) 665.
- 38 Gallardo P G, Phys Stat Sol (b), 182 (1994) K 67.
- 39 Wei S H, Zunger A, Choi I H & Yu PY, *Phys Rev*, B 58 (1998) R1710.
- 40 Garbato L & Rucci A, Philos Mag, 35 (1977) 1685.
- 41 Samanta L K, Ghosh D K & Bhar G C, *Chem Phys*, 79 (1983) 361.
- 42 Deus P & Schneider H A, Cryst Res Technol, 20 (1985) 867.
- 43 Neumann H, Cryst Res Technol, 23 (1988) 97.
- 44 Oshcherin B N, Phys Status Solidi, A 51 (1979) K175.
- 45 Poplavnoi A S, Vyssh Izv & Zab Ucheb, Fizika, 29 (1986) 5.
- 46 Arab F, Sahraoui F Ali, Haddadi K & Louail L, *Comput l Mater Sci*, 65 (2012) 520.
- 47 Chongqiang Z, Chunhui Y, Tianhui M et al., Journal of the Chinese Ceramic Society, 39 (2011) 349.