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Unsteady two-dimensional stagnation-point flow of a viscous and incompressible fluid filled by a nanofluid over a 

permeable flat plate with suction has been investigated numerically. The mathematical model used for the nanofluid 

incorporates the effect of Brownian motion and thermophoresis. The velocity of the ambient (inviscisd) fluid has been assumed 

to vary linearly with the distance from the stagnation-point. The resulting non-linear governing equations with associated 

boundary conditions have been solved numerically using finite element method (FEM). The effect of the unsteadiness 

parameter A, mass suction parameter s, Lewis number Le, the Brownian motion parameter Nb and the thermophoresis 

parameter Nt on the flow, temperature and nanoparticle concentration in the boundary layer region have been analyzed 

graphically. The impact of the unsteadiness parameter and mass suction/injection parameter on the skin friction, rate of heat 

transfer and mass transfer have been examined and discussed. Interesting observation is that dual solutions exist for a certain 

range of the suction/injection parameter, and this range decreases with increasing values of the unsteadiness parameter. 

Keywords: Nanofluid, Stagnation-point flow, Heat transfer, Dual solutions, FEM 

1 Introduction 
A stagnation-point flow develops, when an external 

flow impinges on a surface of a submerged body in a 

fluid flow, the streamline of the flow being 

perpendicular to the surface of the body. Great 

attention has been done in fluid dynamics to the study 

of stagnation-point flows because of their importance 

in many engineering applications, such as, for 

example, cooling of electronic devices by fans, 

cooling of nuclear reactors, and many hydrodynamics 

processes. Hiemenz
1
 was the first to study the steady 

two- dimensional stagnation-point flow on a flat plate 

using a similarity transformation to reduce the Navier-

Stokes equations to a nonlinear ordinary differential 

equation. It was later extended to axisymmetric case 

by Homann
2
. Further, the effects of suction/injection 

on the Hiemenz flow problem have been 

introduced
3,4

. On the other hand, the study of heat 

transfer in stagnation-point flow has also been 

considered by many authors
5–8

 in the hydrodynamic 

case. An excellent description of this problem can be 

found in the books by Bejan
9
, Schlichting and 

Gersten
10

, Leal
11

, Pop and Ingham
12

, etc.  

Ma and Hui
13

 obtained the similarity solution of the 

unsteady two-dimensional stagnation-point flow of an 

incompressible viscous fluid over a flat plate using 

Lie group transformation method. They observed that 

the solution of Hiemenz flow problem is not unique. 

This problem has two solutions, one representing an 

attached flow and the other a reverse flow. It is 

pointed out in the excellent book by Telionis
14

 that 

unsteady flows are those whose properties depend on 

time if references with respect to an Eulerian frame. 

The peculiar distinction between steady and unsteady 

motion in fluid mechanics has no counterpart in solid-

mechanics problems. Examples of unsteady flows are 

many. In fact, there is no actual flow situation, natural 

or artificial, that does not involve unsteadiness.  

The helicopter rotor, the cascades of blades of 

turbomachinery, and the ship propeller normally 

operate in an unsteady aerodynamic environment
14

. 

In many industries such as power, manufacturing 

and transportation etc, fluids such as water, ethylene 

glycol, engine oil etc are commonly used as for 

cooling any sort of high energy device. But, these 

fluids have limited heat transfer capabilities due to 

their low heat transfer properties. So, effective 

cooling techniques are greatly needed. The term 
———————— 
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“nanofluid” was first proposed by Choi
15

 describes a 

liquid composed of metals nanoparticles (diameter 

less than 50 nm) dispersed in a base fluid. The 

nanofluid has thermal conductivity up to three times 

higher than the base fluid. Nanofluid is envisioned to 

describe a fluid in which nanometer-sized particles 

are suspended in conventional heat transfer basic 

fluids. Conventional heat transfer fluids, including oil, 

water, and ethylene glycol mixture are poor heat 

transfer fluids, since the thermal conductivity of these 

fluids play important role on the heat transfer 

coefficient between the heat transfer medium and the 

heat transfer surface. Therefore numerous methods 

have been taken to improve the thermal conductivity 

of these fluids by suspending nano/micro or  

larger-sized particle materials in liquids
16

. The 

comprehensive survey on nanofluids has been 

reported elsewhere
17-23

. It is worth mentioning that 

Buongiorno
24

, and Tiwari and Das
25

 have proposed 

two different models to study the flows of nanofluid, 

which was recently used by many researchers
26-43

. In 

this paper, we extend the work by Ma and Hui
13

 to the 

heat transfer analyses in a nanofluid using  

the mathematical nanofluid model proposed by 

Buongiorno
24

. It is worth mentioning that some 

researchers
26-31 

have assumed that nanoparticles are 

suspended in the nanofluid using either surfactant  

or surface charge technology. This prevents  

particles from agglomeration and deposition on the 

porous matrix. 

The objective of this paper is to investigate the heat 

transfer characteristics caused by the stagnation-point 

flow of a nanofluid over a permeable flat plate using 

finite element method. The dual solutions are 

obtained and the results for the skin friction 

coefficient, local Nusselt number, local Sherwood 

number, velocity and temperature profiles as well as 

the nanoparticle concentration profiles are discussed 

for different values of the governing parameters.  

A review of the literature shows that no attempt has 

been taken to solve the problem that we are 

considering in this paper. Thus, we are confident that 

this problem is original and the results are new and 

very important for the fluid mechanics and heat 

transfer researchers. 
 

2 Problem Formulations 

Consider the unsteady two-dimensional stagnation-

point flow of a viscous and incompressible nanofluid 

over a permeable flat plate. Following Ma and Hui
13

 it 

is assumed that the free stream velocity 

is )/(),( txAtxue = , where, A  is a positive constant, 

t  is the time and x  is the axis measured along the 

plate. It is also assumed that the temperature and the 

nanoparticle fraction at the plate take constant values 

Tw and wC , respectively, while the ambient values are 

denoted by ∞T and ∞C , respectively. Under these 

assumptions, it can be shown that the unsteady 

boundary layer equations of mass, momentum, 

thermal energy, and nanoparticles for nanofluids can 

be written in Cartesian coordinates x  and y  as, see 

Ma and Hui
13

, and Kuznetsov and Nield
30

: 

 0
u v

x y

∂ ∂
+ =

∂ ∂
  … (1) 

 
2

2

e e
e

u uu u u u
u v u

t x y t x y
ν

∂ ∂∂ ∂ ∂ ∂
+ + = + +

∂ ∂ ∂ ∂ ∂ ∂
  … (2) 

 
2

2

2

T
B

DT T T T C T T
u v D

t x y y y y T y
α τ

∞

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
 + + = + +   

∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

 … (3) 
 

 
2 2

2 2

T
B

DC C C C T
u v D

t x y y T y∞

 ∂ ∂ ∂ ∂ ∂
+ + = +  

∂ ∂ ∂ ∂ ∂ 
  … (4) 

where y  is the coordinate measured in the direction 

normal to the plate, u  and v  are the velocity 

components along the −x and −y  axes, T  is the 

nanofluid temperature, C  is the nanoparticle fraction, 

α  is the thermal diffusivity, ν  is the kinematic 

viscosity, BD  is the Brownian diffusion coefficient, 

TD  is the thermophoretic diffusion coefficient and 

fp cc )/()( ρρτ =  with ρ  being the density, c  is 

volumetric volume expansion coefficient and pρ  is 

the density of the particles. The initial and boundary 

conditions of these equations are:  
 

0 : 0, , for any ,

0 : ( , ), 0, , at 0

( , ) ( / ), , as

w w w

e

t u v T T C C x y

t v v x t u T T C C y

u u x t A x t T T C C y

∞ ∞

∞ ∞

≤ = = = =

> = = = = =

= = = = → ∞

 

 … (5)  

where stAtxvw

2/1)/(),( ν−=  is the mass flux velocity 

with 0),( <txvw
 corresponding to suction and 

0),( >txvw
 corresponding to injection or blowing.  
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Following Ma and Hui
13

, we introduce the 

following similarity transformation: 

 
1/2( / ) ( ) , ( / ) ( ), ( ) ( )/ ( )

( ) ( )/ ( ), 1/

w

w

u A x t f v A t f T T T T

C C C C y t

η ν η θ η

φ η η ν

∞ ∞

∞ ∞

′= =− = − −

= − − =
  

 … (6) 

where primes denote differentiation with respect to 

η . Using transformation Eq. (6), Eq. (1) is 

automatically satisfied, while Eqs (2), (3) and (4), 

respectively, reduce to the following nonlinear 

ordinary differential equations: 
 

 (1 ) 1 0
2

f A f f A f f A
η 

′′′ ′′ ′ ′+ + + − + − = 
 

 … (7) 

 

 21
0

Pr 2
A f Nb Nt

η
θ θ θ φ θ θ′′ ′ ′ ′ ′ ′+ + + + =   … (8) 

 

 0
2

Nt
A Le f Le

Nb

η
φ φ θ φ′′ ′ ′′+ + + =   … (9) 

 

Subject to the boundary conditions:  
 

 
(0) , (0) 0, (0) 1, (0) 1

( ) 1, ( ) 0, ( ) 0 as

f s f

f

θ φ

η θ η φ η η

′= = = =

′ → → → → ∞
 

  … (10) 
 

In Eq. (10), s  is the suction/injection parameter with 

0>s  for suction and 0<s  for injection. The 

remaining four parameters NbPr ,Le,  and Nt  are the 

Prandtl number, Lewis number, the Brownian motion 

parameter and the thermophoresis parameter, 

respectively, and are defined by:  

 

B

( ) ( ) ( ) ( )
Pr ,  Le , ,

D ( ) ( )

p B w p T w

f f

c D C C c D T T
Nb Nt

c c T

ρ ρν ν

α ρ ν ρ ν
∞ ∞

∞

− −
= = = =

  

 … (11) 

It is important to note that this boundary value 

problem reduces to the classical problem of unsteady 

boundary layer flow and heat transfer near the 

stagnation-point of a viscous and incompressible fluid 

(regular fluid) when Nb  and Nt  are all zero in Eqs 

(8) and (9).  

Physical quantities of interest are the skin friction 

coefficient 
f

C , the local Nusselt number (Nux) and the 

local Sherwood number (Shx) , , which are defined as: 

2
, ,

( ) ( )

w w w
f x x

e w B w

x q x j
C Nu Sh

u k T T D C C

τ

ρ ∞ ∞

= = =
− −

  

 … (12) 

where 
w

τ  is the surface shear stress, 
w

q  is the surface 

heat flux and 
w

j  is the concentration flux at the plate, 

and are given by:  

 

0 0 0

, ,w w w B

y y y

u T C
q k j D

y y y
τ µ

= = =

     ∂ ∂ ∂
= = − = −     

∂ ∂ ∂     

  

 … (13) 

Using the similarity variables Eq. (6) , we obtain:  
  

)0('2/1),0('),0("
2/12/1

φxShxReθxNuxReffCxRe −=−−==
−

  

 … (14) 

where Rex = ue x / v is the local Reynolds number. 

For this flow, the streamlinesψ , isotherms 

( ) / ( )wT T T T∞ ∞− − and iso-concentration ( ) / ( )wC C C C∞ ∞− −  

can be defined as: 

 

1/2
( 1/ ), ( ) / ( ) ( 1/ )

( ) / ( ) ( 1/ )

w

w

A
x f y t T T T T y t

t

C C C C y t

ψ ν θ ν

φ ν

∞ ∞

∞ ∞

= − − =

− − =

  

 … (15) 

where ψ  is defined in the usual way as /u yψ= ∂ ∂  

and /v xψ= − ∂ ∂ . 

The set of ordinary differential Eqs (7-10) are 
highly non-linear, and cannot be solved analytically. 
Therefore, the finite element method

44-47 
is 

implemented to solve this system numerically. 
However, in order that we compare the present 
results with ones from the open literature, we 
consider the steady-state flow and heat transfer of a 
viscous and incompressible (regular) fluid near the 
stagnation-point of an impermeable semi-infinite  
flat plate, which are given by the following 
equations

9
: 

 

 2 1 0f f f f′′′ ′′ ′+ − + =   … (16) 
 

0'"
1

=+θ θf
Pr

 … (17) 

 

Subject to the boundary conditions 

 (0) 0, (0) 0, (0) 1

( ) 1, ( ) 0 as

f f

f

θ

η θ η η

′= = =

′ → → → ∞
 

  … (18) 
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3 Method of Solution 
 

3.1 Finite element method 

 The finite element method is a powerful technique 

for solving ordinary or partial differential equations as 

well as integral equations. The basic concept is that 

the whole domain is divided into smaller elements of 

finite dimensions called “finite elements”. It is the 

most versatile numerical technique in modern 

engineering analysis and has been employed to study 

diverse problems in heat transfer, fluid mechanics, 

chemical processing, rigid body dynamics, solid 

mechanics, electrical systems, acoustics and many 

other fields.  

For the solution of the system of simultaneous 

ordinary differential equations given by Eqs (7-9), 

with the boundary conditions Eq. (10) , we first 

assume: 
 

 f g′ =   … (19) 
 

The system of Eqs (7-9) then reduces to: 

 (1 ) 1 0
2

g A f g A g g A
η 

′′ ′+ + + − + − = 
 

  … (20)  

0'
2

2)'('''" =η++φ++ θPrθNtPrNbθPrθAfPrθ  … (21) 

 0
2

Nt
ALef Le

Nb

η
φ φ θ φ′′ ′ ′′ ′+ + + =   … (22) 

and the corresponding boundary conditions now 

become: 
 

 
0 : , 0, 1, 1

: 1, 0, 0

f s g

g

η θ φ

η θ φ

= = = = =

→ ∞ = = =
   … (23) 

 

3.2 Variational formulation 

The variational form associated with Eqs (19-22) 

over a typical linear element 1( , )
e e

η η + , is given by  

 { }
1

1 0
e

e

w f g d

η

η

η
+

′ − =∫   … (24) 

 

 
1
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2

e

e
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η

η
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η

+   
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 … (25)  
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1

2
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2

e

e
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η

η

η
θ θ θ φ θ θ η

+  
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 
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  … (26) 

 
1

4
0

2

e

e

Nt
w ALef Le d
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η

η

η
φ φ θ φ η

+  
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 
∫  

 … (27)
 

where 1w , 2w , 3w  and 4w  are arbitrary test functions 

and may be viewed as the variation in , , and f g θ φ  

respectively. 
 

3.3 Finite element formulation 

The finite element model may be obtained from the 

above equations by substituting finite element 

approximations of the form: 
2 2 2 2

1 1 1 1

, , ,j j j j j j j j

j j j j

f f g gψ ψ θ θ ψ φ φ ψ
= = = =

= = = =∑ ∑ ∑ ∑   

 … (28) 
 

with  

 1 2 3 4 ,
i

w w w w ψ= = = =  ( )1,2i =   … (29) 
 

In our computations, the shape functions for a typical 

element ( 1,
e e

η η + ) are taken as: linear element 
 

1
1 2 1

1 1

( ) ( )
, ,

( ) ( )

e ee e
e e

e e e e

η η η η
ψ ψ η η η

η η η η
+

+

+ +

− −
= = ≤ ≤
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  … (30) 
 

The finite element model of the equations thus formed 

is given by; 
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Each element matrix is of the order 8 8× . The 

entire flow domain is divided into a set of finite 

uniform two nodes line elements and following the 

assembly of all the elements equations, a global 

system is generated. The resulting global system of 

equations is non-linear, therefore an iterative scheme 

is used for solving it. The system is linearized by 

incorporating the functions , ,  and f g θ φ , which are 

assumed to be known. After imposing the boundary 

conditions, remaining transformed linear equations 

are solved by using Gauss elimination method by 

maintaining an accuracy of 0.0001. A convergence 

criterion based on the relative difference between the 

current and previous iterations is employed. When 

these differences reach to the desired accuracy, the 

solution is assumed to have converged and iterative 

process is terminated. The Gaussian quadrature is 

used for solving the integrations. 
 

4 Results and Discussion 

Numerical solutions to the governing ordinary 

differential Eqs (7-9) with the corresponding 

boundary conditions Eq. (10) were obtained using 

finite element method (FEM). For solving this 

problem with FEM, we have to choose a suitable 

value of η∞
 (where η∞

 correspond to η → ∞ ) and 

step size ( h ) which satisfy all boundary conditions 

and to give a better approximation for the solution. 

Care has been taken in choosing η∞
 for a given set of 

parameters because for a fixed value of η∞
 for all 

calculations may produce inaccurate results. In this 

problem, we observe that dual solutions exist, one 

representing attached flow, the other for reversed 

flow, which is identical to the solution obtained by 

Ma and Hui
13

 for a classical viscous fluid, and thus 

gives confidence that the numerical results in our case 

are accurate.  

To determine the suitable step size (h), computations 

have been performed with different values of step size 

( = 0.5, 0.1, 0.01, 0.005, 0.004)h  as shown in 

Table 1. We observe that very slight change occurs 

after = 0.005h , but the computational time increases 

too much. Thus, for the computational purpose 

= 0.005h  is taken for presentation of the results. 

Table 2 shows the comparison of the present 

numerical results with those of Bejan
9
 for the 

solutions of Eqs (16-18), which shows a favorable 

agreement. Therefore, we are confident that the 

present results are correct and accurate. 

Variations of the reduced skin friction coefficient 

(0)f ′′ , the reduced local Nusselt number (0)θ ′−  

and the reduced local Sherwood number (0)ϕ′− as a 

function of the suction/injection parameter s  under 

different values of the unsteadiness parameter ( A ) 

are shown in Figs 1-3. It is interesting that there are 

two solution branches, which are labeled in the plots 

by first (upper branch) and second (lower branch) 

solutions for each value of s  under the same value of 

unsteadiness parameter ( A ) for 
c

s s> , where 0<cs  

is the critical value of s  at which the two solution 

branches meet with each other. Based on our 

computation, the critical value 0<cs  increases as we 

increase the value of unsteadiness parameter ( A ). It 

means that the range of the suction/injection 

Table 1—Calculation of skin friction coefficient, Nusselt number and Sherwood number when  

0.5, 0.5, Pr 1,Nb Nt= = = Pr = 1, 0.1,1,0.2 === sALe  

Step size (0)f ′′−   (0)θ ′−   (0)φ ′−   

h 1  Solst  
nd2  Sol  1  Sol

st  nd2  Sol  1  Solst  nd2  Sol  

0.5 1.5608 2.3344 0.9605 0.4454 1.7128 1.0212 

0.1 1.6438 2.5794 0.8929 0.4819 2.0343 1.2604 

      

0.01 1.6587 2.6306 0.8975 0.4897 2.0780 1.2943 

      

0.005  1.6597 2.6334 0.8980 0.4902 2.0797 1.2957 

       

0.004 1.6599 2.6339 0.8981 0.4903 2.0799 1.2959 

Table 2 – Comparison of the present results with those of Bejan9 

 Pr Bejan9 Present results 

 (0)f ′′    1.233 1.2326 

(0)θ ′−   0.7 0.496 0.4963 

 0.8 0.523 0.5229 

 1 0.570 0.5705 

 5 1.043 1.0434 

 10 1.344 1.3388 
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parameter s for which the solution exists decreases 

with increasing A . For the first solution 

branch, (0)f ′′ , (0)θ ′−  and (0)φ ′−  monotonically 

decrease with decreasing s. Thus, the surface shear 

stress, heat transfer and mass transfer rate at the 

surface is higher for suction ( 0)s >  compared  

to injection ( 0).s <   

The second solution branch, however, shows more 

complicated and quite different behaviors compared 

with the first solution branch. The values of (0)f ′′ , 

(0)θ ′−  and (0)φ ′−  for the first solution branch are 

always higher than the second solution branch. For 

the second solution, with the increase in A , (0)f ′′  

decreases, while for 0.5s <  the pattern is reversed. 

There exist crossovers among different solution 

curves of (0)θ ′−  and (0)φ ′−  for different values 

of A . Mathematically, we postulate that both solution 

branches are valid solutions, but physically the second 

solution branch may not be feasible (realizable) in 

practice. Merkin
48

, Weidman et al.
49 

and very recently 

Postelnicu and Pop
50

 have shown that the first 

solution branch is linearly stable and physically 

realizable.  

Figures 4-12 present the velocity, temperature and 

nanoparticle volume fraction profiles for various 

values of parameters. It is seen that all of these figures 

satisfy the boundary conditions Eq. (20), thus support 

the validity of the present results, besides supporting 

the dual nature of the solutions shown in Figs 1-3. 

Figure 4 shows that the velocity gradient at the 

surface is positive for the first solution and negative 

for the second solution, which is in agreement with 

the result presented in Fig. 1. For the first solution, 

which we expect to be the physically feasible 

solution, the velocity increases as A  increases, as a 

result velocity gradient at the surface increases, and in 

consequent increase the skin friction coefficient. We 

also observed that the boundary layer become thinner 

for a value of A  with large magnitude. Figure 5 

shows that temperature (temperature gradient) 

decreases (increases) with increasing A . The same 

behavior is observed in the nanoparticle volume 

fraction profiles shown in Fig. 6. Further, the solution 

on the lower branch for both suction parameter ( s ) 

and unsteadiness parameter ( A ) has a region of 

reversed flow (i.e., ( ) 0f η′ < ), which is physically 

inappropriate and is also consider as an indication that 

the flow is unstable (Ridha
51

). Figure 8 exhibits that 

the temperature in the boundary layer decreases with 

an increase in s . Thus, suction plays an important role 

in enhancing the heat transfer rate.  

Figures 9 and 10 depict the effect of Lewis number 

on   the   variation   of  temperature   and  nanoparticle 

 
 

Fig. 1 – Variation of (0)f ′′  with s  for various values of A  

when Nb = 0.5, Nt = 0.5, Pr = 1.0, Le = 2.0 
 

 

 

Fig. 2 – Variation of (0)θ ′−  with s  for various values of A  

when Nb = 0.5, Nt = 0.5, Pr = 1.0, Le = 2.0 

 

 

 

Fig. 3 – Variation of (0)φ′− with s  for various values of A  

when Nb = 0.5, Nt = 0.5, Pr = 1.0, Le = 2.0 
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concentration in the boundary layer. These figures 

show that the Lewis number significantly  affects  the 

concentration distribution (Fig. 10), but has little 

influence on the temperature distribution (Fig. 9). 

Lewis number defines the ratio of thermal diffusivity 

to mass diffusivity. Therefore, for a base fluid of 

certain kinematic viscosity, a higher Lewis number 

implies a lower Brownian diffusion coefficient  

which result in a shorten penetration depth for  

the concentration boundary layer, which we can  

see in Fig. 10.  

 
 

Fig. 4 – Velocity profile for various values of A  when Nb = 0.5, 

Nt = 0.5, Pr = 1.0, Le = 2.0, S=0.5 

 

 
 

Fig. 5 – Temperature profile for various values of A  when 

Nb = 0.5, Nt = 0.5, Pr = 1.0, Le = 2.0, S=0.5 

 

 
 

Fig. 6 – Concentration profile for various values of A  when 

Nb = 0.5, Nt = 0.5, Pr = 1.0, Le = 2.0, S=0.5 

 
 

Fig. 7 – Velocity profile for various values of s  when Nb = 0.5, 

Nt = 0.5, Pr = 1.0, Le = 2.0, A=1.0 
 

 
 

Fig. 8 – Temperature profile for various values of s  when 

Nb = 0.5, Nt = 0.5, Pr = 1.0, Le = 2.0, A=1.0 
 

 
 

Fig. 9 – Temperature profile for various values of Le  when 

Nb = 0.5, Nt = 0.5, Pr = 1.0, S = 1.0, A=1.0 
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Finally, Figs 11 and 12 show the temperature 

distribution in the thermal boundary layer for different 

values of Brownian motion and thermophoretic 

parameters. Brownian motion and thermophoretic 

effects serve to warm the boundary layer, which is 

clearly visible from these figures.  
 

5 Conclusions 

In this paper, the problem of two-dimensional 

stagnation point flow of a viscous and incompressible 

nanofluid over a permeable flat plate is studied. The 

governing partial differential equations for mass, 

momentum, energy and nanoparticles conservation 

are transformed into ordinary differential equations 

using a similarity transformation. These equations 

were solved numerically using finite element method. 

We found that there are two solution branches for 

different boundary layer thickness. The results also 

indicate that unsteadiness parameter reduce the range 

of the suction/injection parameter for which the 

solution exists. Brownian motion and thermophoretic 

effects serve to warm the boundary layer, while 

suction effect reduces the temperature inside the 

boundary layer.  
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Nomenclature 
A constant 

c volumetric volume expansion 

C nanoparticle fraction 

f
C   skin friction coefficient 

wC  nanoparticle volume fraction at the plate 

∞C   ambient nanoparticle volume fraction 

BD   Brownian diffusion coefficient 

TD   thermophoretic diffusion coefficient 

f   dimensionless stream function 

wj   concentration flux at the plate 

k   thermal conductivity 

Le   Lewis number 

Nb   Brownian motion parameter 

Nt   thermophoresis parameter 

xNu   local Nusselt number 

Pr   Prandtl number 

wq   heat flux at the plate 

xRe   local Reynolds number 

xSh   local Sherwood number 

t   time 

T   temperature 

wT   temperature at the plate 

 
 

Fig. 10 – Concentration profile for various values of Le  when 

Nb = 0.5, Nt = 0.5, Pr = 1.0, S = 1.0, A=1.0 
 

 
 

Fig. 11 – Temperature profile for various values of Nb when 

Nb = 0.5, Nt = 0.5, Pr = 1.0, S = 1.0, A=1.0 
 

 
 

Fig. 12 – Temperature profile for various values of Nt  when 

Le = 2.0, Nb = 0.5, Pr = 1.0, S=1.0, A=1.0 
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∞T   ambient temperature 

vu,   velocity components along −x  and −y  axes 

eu   velocity of the free stream 

w
v    mass flux velocity 

yx,   cartesian coordinate measured along the surface and 

normal to it, respectively 
 

Greek symbols 

α   thermal diffusivity 

φ   dimensionless nanoparticle fraction 

η   similarity variable 

µ   dynamic viscosity 

θ   dimensionless temperature 

fρ   fluid density 

pρ   nanoparticle mass density 

fc)(ρ   heat capacity of the fluid 

pc)(ρ   effective heat capacity of the nanoparticle material 

τ   heat capacity ratio  

ν   kinematic viscosity 

ψ   free stream function 
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