Melting of Quarkonia in strong magnetic field
Abstract
In this paper, spectra of the quarkonium states has been studied using the conditions temperature, chemical potential and the magnetic field. Here our main focus is to study the effect of strong magnetic field on the quarkonium properties. The binding energies and the dissociation temperature for the ground and the first excited states of the charmonium and bottomonium in the presence of strong magnetic field at chemical potential μ = 500 MeV has been studied. Here we use quasiparticle(QP) Debye mass depending upon temperature, magnetic field and chemical potential obtained from the quasiparticle approach. The Debye mass strongly increases at different values of temperature and magnetic field. The binding energy decreases with increase in the temperature at different magnetic field eB=0.3, 0.5, and 0.7 GeV2 and also decreases with magnetic field at different at T=200,300 and 400 MeV for the J/ψ, Ψ’, ϒ, and ϒ’ states of the quarkonia. The dissociation temperature of the quarkonium states falls with the increasing values of the magnetic field at critical temperature Tc =197 MeV.
Keyword(s)
Strongly Interacting Plasma; Dissociation Temperature; Quasi Particle Debye Mass; Magnetic Field; Quark-gluon Plasma; Chemical Potential; Heavy Ion Collision
Full Text: PDF (downloaded 537 times)
Refbacks
- There are currently no refbacks.