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Changes in solar magnetic field are responsible for initialisation and maintenance of different solar processes. Sunspots 
are clear manifestations of field variations and are good indicators of solar activity. Nature of activity can be well 
understood by analyzing the underlying sunspot dynamics. Techniques of potential analysis are used in this paper to 
investigate sunspot numbers and sunspot area, during the period 1875-2012, for finding out their stochastic behaviour. The 
presence of instabilities in the time series of sunspot numbers and sunspot area are examined in detail. The level of 
instability in sunspot numbers was observed to be maximum in the years 1953-1955, while that in sunspot area was 
maximum during 1887-1889. This study also concludes that random noise has a greater effect on dynamics of sunspot area 
than that on dynamics of sunspot numbers. Presence of high level of noise is noticed in both parameters during 1923-1925. 
Effect of random noise on the dynamics of sunspot number and area was shown to be very high during the years close to 
sunspot minima. Results reported can be helpful in predicting evolution of solar activity, which would be crucial in 
understanding solar-terrestrial phenomena. 
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1 Introduction 
Sunspots are manifestations of solar magnetic 

activity. They are relatively cooler areas on the 
photosphere, formed by the suppression of convective 
heat transport by intense magnetic field generated in 
the solar convection zone1. And as such they are 
essentially magnetic phenomena by origin and 
thermal phenomena by appearance. The number of 
spots visible on the Sun and area they cover on the 
photosphere are the two most recognizable features of 
solar variability. Sunspot number (SN) shows good 
correlation with other indicators of solar activity like 
solar radio flux at 10.7 cm, solar total irradiance etc.2 
Origin of the magnetic field inside the Sun and its 
emergence to its surface are a long-standing mystery. 

According to Babcock3 and Parker4, sunspots are 
formed from a magnetic loop emerging from the 
convective zone to the solar surface due to buoyancy. 
Magnetic loops were assumed to be caused by 
instabilities of large scale mean magnetic field 
generated by joint action of differential rotation and 
mean helicity of convection. The idea of mean field 
generation and its evolution has been supported by 
other studies5-7 also. One model of sunspot formation 
suggests that a toroidal flux tube stored at the 

core/convective zone overshoot layer becomes 
unstable and erupts to the surface of the Sun when its 
field exceeds 105 G8,9. 

The importance of fluctuating fields in the 
generation of mean field was addressed in different 
studies7,10. Ruzmaikin11 developed a model which 
demonstrates how sunspots could result from stochastic 
fluctuations superposed on a weaker mean field. This 
model shows that mean field plays a vital role in 
producing observed features of sunspot magnetic field. 
The fluctuating field is responsible for allowing the 
mean field to be observed and for producing cycle to 
cycle variations. Randomness in sunspots shows the 
importance of fluctuating fields and random processes 
(chaotic or stochastic) play an essential role in sunspot 
formation. While regular component of magnetic field 
dominates during normal times, the randomness or the 
fluctuating fields dominates during active times of Sun. 
Mutual relationship between regularity and randomness 
in sunspot series is not clear. However, Kakad et al.12 
have predicted descending time of forthcoming solar 
cycle by estimating Shannon entropy, a measure of 
randomness in solar cycle. There exist dynamo models 
developed to explain the randomness in SN which 
include stochastic processes13-16. 

SN is an indication of how frequently the solar 
dynamo produces solar activities in terms of sunspots. 
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Although there are regularities in sunspot behaviour, 
there are many irregularities too. Sunspot may appear 
at random time and random place. The number of 
sunspots observed in a given cycle varies from cycle 
to cycle. Presence of random noise in SNs is clear 
from the fact that its short-term (days-months) 
variability exceeds observational uncertainties. 
Ruzmaikin11,17 suggests that a sunspot is formed when 
a combination of the regular dynamo and random 
fields exceeds a buoyancy threshold. A model based 
on the above concept qualitatively reproduces some 
features of the sunspot cycle. Moss et al.18 and  
Käpylä et al.19 studied the role of random processes in 
the formation of sunspot cycle.  

Sunspot area (SA) is a measure of how strongly the 
solar dynamo produces magnetic flux. It gives extra 
information about solar variability. Changes in SA 
cause irradiance variations and hence irradiance 
studies help in computing SA20. Chang21 studied 
stochastic properties of north-south asymmetry in SA 
and found that it is characterized by random noise 
superimposed on a slowly varying sinusoidal 
background. A cepstrum analysis reveals that ~1.4 
years, ~3.8 years and ~43 years are the periodicities in 
north-south asymmetry of SA due to stochastic 
random noise22. 
 

2 Potential Analysis 
Potential analysis is a statistical method developed 

for noisy time series to investigate the critical 
behaviour of a system. Noise acts as a driving force in 
non-linear systems and drastically modifies its 
deterministic dynamics. In addition it is a function of 
a very large number of unknown variables. According 
to Thom23, non-linear systems can be modelled by 
means of potential functions. These functions help to 
describe the system without knowing the internal 
parameters linked to its behaviour. When one of the 
parameters of non-linear system exceeds a critical 
value, potential function shows qualitative changes. 
These qualitative changes are named as bifurcations24. 

Potential analysis detects the number of states of a 
geophysical system from its recorded time series. A 
polynomial approximation further enables the 
detection of the number of states from the degree of 
polynomial. The number of states indicates the 
structural changes encountered by the underlying 
system potential. Changes in the number of states 
represent bifurcations of system. Alternatively,  
a bifurcation occurs when there is a loss of stability in 
the dynamical condition of a system.  

Even though potential analysis cannot reveal the 
mechanisms causing structural changes, in spite of its 
ability to detect such changes, the method is a widely 
used in a variety of time series investigations. For 
example, application of potential analysis on ice-core 
proxy records of paleo-temperature identified the loss 
of warm interstadial state in Greenland climate25. Also 
the signs of appearance of alternative climate states in 
a particular region at particular times during the 
Holocene was detected using the method of potential 
analysis26. Hirota et al.27 detected the presence of 
alternative stable states in tropical forest and savanna 
using this technique. Even though the technique of 
potential analysis was applied to several climatic 
studies, no significant application of the method to the 
solar activity parameters has been found in the 
literature. 

The present study detects the number of states, and 
bifurcations caused by stochastic forcing in SN and 
SA. The following assumptions are made in the 
theory (i) multiple states can be approximated by a 
non-oscillatory potential, though it changes through 
time and (ii) transitions between states are triggered 
purely by stochastic noise.  

Random noise acting on the normal sunspot 
dynamics is considered as stochastic forcing. 
According to the assumptions inherent in the potential 
analysis theory, random noise is therefore responsible 
for the non-linear behaviour of sunspot dynamics. 
Randomness in sunspots is obvious. But its nature and 
relationship with regular dynamics of sunspots are 
still unknown. By applying potential analysis on SN 
and SA data, an estimate of time variation of 
amplitude of random noise is obtained. 
 
3 Data and Method of Analysis 

Relative sunspot numbers and sunspot area 
required for the study were collected from 
http://www.ngdc.noaa.gov and http://www.solarscience. 
msfc.nasa.gov respectively. 

The given time series is treated as a non-linear 
dynamical system which can possess multiple states, 
with shifts between different states induced by 
stochastic forcing. To describe a stochastic dynamical 
system, a noisy differential equation was first used by 
Brown28. In general, a noisy differential equation is a 
combination of slowly varying regular and rapidly 
varying random parts. In this study the time series is 
modelled using a stochastic differential equation 
given by Langevin26. 
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where  zU  is the potential function,   the noise 
level , W denotes the standard Weiner process and 
 t  represents random noise29. The state variable z  

represents the magnetic field produced by the solar 
dynamo and is here identified with solar activity 
proxies (SN and SA). 

The shape of the potential can be approximated by 
a polynomial 
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where the order L is even and the leading coefficient 
La is positive for a stationary solution. The number of 

states associated with the system scales with the value 
of L.  

Since Eq. (1) is a stochastic differential equation, it 
can be solved using statistical methods. The statistical 
analogue of Eq. (1) is the Fokker-Planck equation26, a 
partial differential equation for the evolution of a 
probability density function. The Fokker-Planck 
equation corresponding to Eq. (1) is  
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where  t,zp  represents a probability density 
function. A stationary solution30 of Eq. (4) is given by  
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The relation between the potential and the 
stationary probability density allows to reconstruct the 
potential as  
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where pd  is the empirical probability density of the 
data. A standard Gaussian kernel estimator is used to 
determine pd  and is given by 
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where K denotes the Gaussian kernel, iz  are the data 
points, n is the length of the data set and h is the 
bandwidth controlling smoothness of the estimator. 
By following the methods used by Livina et al.25, 

bandwidth is estimated as 5/1n/s06.1h  , where 
s  is the standard deviation of the data set. The best 
suitable polynomial representing the potential is 
obtained from least-square fits of dplog  . This 
preferred polynomial is characterised by the highest 
degree just before a sign change occurs in the leading 
co-efficient. Then the number of states S  in the 
system is determined as  
 

2
I1S    ... (8) 

 

where I  is the number of inflection points of the fitted 
polynomial potential of degree L . Inflection points 
are the points at which the polynomial changes 
concavity. Limiting behavior of even-order 
polynomials with positive leading co-efficient implies 
that their inflection points can only occur in pairs. The 
polynomial determines the shape of the potential 
representing the given non-linear system and a 
polynomial showing zero inflection point is identified 
as a system having one state. An addition of each pair 
of inflection points adds another state to the system25.  
 
4 Results and Discussion 
4.1 Sunspot numbers 

A potential analysis has been done on daily SN 
time series (Fig. 1) for the years 1875- 

2012. The whole set of SN values is divided into 
46 equal intervals, with data for 3 years in each 
interval. This represents approximately 1000 daily SN 
values in one interval. According to Livina et al.25, 
accuracy of detection of number of states in a time 

 

Fig. 1 — Daily SN data (1875-2012) 
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series using potential analysis depends on window 
size. If the window contains 400-500 data points, 
success rate is above 90%. As the window size 
increases, success rate also becomes high. 98% 
accuracy is obtained for a data length of 1000 points. 
Our analysis ensures 98% accuracy in the detection of 
number of states by taking a window size of 3 years 
(~1096 points). 

A stochastic state is defined as the value of the 
dynamical variable for which the stationary 
probability distribution (SPD) is maximum. Number 
of states is a scalar parameter derived from 
probability density function in order to find out 
number of wells in the potential of an unknown 
dynamical system indirectly. Number of states can be 
considered as a measure of amplitude of random 
noise. Hence, potential analysis can find out time 
intervals of data having high amplitude random noise. 
Varying number of states with time gives an 
understanding of temporal variation of amplitude of 
random noise existed in sunspot dynamics during the 
past. Hence, the results obtained from this study may 
help in developing sunspot cycle model, with 
temporal random noise information. By incorporating 
a random field to a regular 11 year oscillatory dynamo 
Usoskin et al.31 constructed a model that reproduces 
most of the fundamental properties of sunspot cycle 
during normal as well as active periods. 

 In the present study, SPD is used to track changes 
in the potential representing sunspot dynamics. 
Distributions of many natural phenomena are at least 
approximately normally distributed32 and hence a 
Gaussian function was used for the detection of SPD. 
Potential analysis carried out on the complete SN data 
set reveals that there are 1-5 states for any 3 year 
interval. These states may be the same as in a 
noiseless case. But in a stochastic dynamical system, 
noise alters positions and even the number of 
stochastic states. Noise changes the shape of the 
potential function and noise-induced states are a 
nontrivial effect of noise. As assumed in the theory of 
potential analysis, the years with only one state are 
the intervals in which sunspot dynamics is not under 
the influence of noise. Higher numbers of states  
(2 to 5) are assumed to be induced by noise. In a 
particular interval, the number of wells in the 
potential is one less than the number of states. 
Changes in number of wells in the potential can be 
interpreted as bifurcation.  

Numbers of states obtained in different 3 years 
intervals are shown in Table 1. Fig.2 is  the  histogram  

Table 1 — Number of states in daily SN (1875-2012) during 46 
intervals 

Interval Years Number of states  
1 (1875-1877) 2 
2 (1878-1880) 3 
3 (1881-1883) 1 
4 (1884-1886) 3 
5 (1887-1889) 4 
6 (1890-1892) 2 
7 (1893-1895) 3 
8 (1896-1898) 2 
9 (1899-1901) 1 
10 (1902-1904) 3 
11 (1905-1907) 2 
12 (1908-1910) 2 
13 (1911-1913) 1 
14 (1914-1916) 2 
15 (1917-1919) 2 
16 (1920-1922) 3 
17 (1923-1925) 4 
18 (1926-1928) 1 
19 (1929-1931) 2 
20 (1932-1934) 3 
21 (1935-1937) 2 
22 (1938-1940) 2 
23 (1941-1943) 2 
24 (1944-1946) 2 
25 (1947-1949) 2 
26 (1950-1952) 2 
27 (1953-1955) 5 
28 (1956-1958) 2 
29 (1959-1961) 1 
30 (1962-1964) 3 
31 (1965-1967) 2 
32 (1968-1970) 2 
33 (1971-1973) 2 
34 (1974-1976) 2 
35 (1977-1979) 1 
36 (1980-1982) 1 
37 (1983-1985) 2 
38 (1986-1988) 3 
39 (1989-1991) 1 
40 (1992-1994) 2 
41 (1995-1997) 3 
42 (1998-2000) 1 
43 (2001-2003) 2 
44 (2004-2006) 2 
45 (2007-2009) 1 
46 (2010-2012) 1 
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showing number of occurrences of intervals with 
different number of states. Intervals with two states 
are predominant in number compared to intervals with 
one, three, four and five states. While there are 26, 
two-state intervals, there are only 10, one-state 
intervals, 7 three-state intervals, 2 four-state intervals 
and 1 five-state interval. Also, there are longer 
episodes of group of two state intervals like 21-26, 
31-34, and 42-44 (Table 1).  

The theory of potential analysis suggests that the 
presence of noise leads to an increase in the number 
of wells in potential curves. The number of states in 
any interval is one greater than the number of 
potential wells in that particular interval. In the 
present potential analysis on SN, the largest  
number of states (S=5) was obtained for the interval 
27 (1953-1955). The corresponding potential profile 
with 4 wells is shown in Fig. 3. This interval is, 
therefore considered to be the most affected by noise. 
Interestingly, this interval coincides with year 1954, 
the sunspot minimum and one among the lowest 

minimum since 1913. Dominant periodicity of 9.8 
years has been found in SN during the above years33. 
Similarly intervals 5 (1887-1889) and 17 (1923-1925) 
are having 4 states and correspondingly 3 potential 
wells each (Fig. 4). These intervals are also affected 
by considerable noise, and they coincide with various 
sunspot minima. It shall be noted that years 1887-
1889 and 1923-1925 are close to the sunspot 
minimum of solar cycle 13 and 16 respectively. 
Therefore, the largest noise and highest number of 
states coincides with sunspot minimum periods. Also 
anomalously long oscillations in SN and sudden hike 
in solar and geomagnetic activities were obtained 
after the year 192334. These are interpreted as non-
linear nature of solar dynamo after 1923.  

Bifurcations represent changes in the number of 
states between adjacent intervals. Bifurcations 
occurred in SN time series data are shown in Table 2. 
There are 6 transitions from 2 states to 1 state,  
 

 
 

Fig. 2 — Histogram of number of states in SN (1875-2012) 
 

 
 

Fig. 3 — Potential variations in SN in the interval 27 (1953-1955) 
showing 4 wells 

 
 

Fig. 4 — Potential variations in SN in the intervals 5 and 
17 showing the three wells each 
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Table 2 — Bifurcations occurred in daily SN (1875-2012) 

Between two 
intervals 

Years concerned Transition 
of states 

1 and 2 (1875-1877) and (1878-1880) 2→3 
2 and 3 (1878-1880) and (1881-1883) 2→1 
3 and 4 (1881-1883) and (1884-1886) 1→2 
4 and 5 (1884-1886) and (1887-1889) 3→4 
5 and 6 (1887-1889) and (1890-1892) 4→2 
6 and 7 (1890-1892) and (1893-1895) 2→3 
7 and 8 (1893-1895) and (1896-1898) 3→2 
8 and 9 (1896-1898) and (1899-1901) 2→1 
9 and 10 (1899-1901) and (1902-1904) 1→3 

10 and 11 (1902-1904) and (1905-1907) 3→2 
12 and 13 (1908-1910) and (1911-1913) 2→1 
13 and 14 (1911-1913) and (1914-1916) 1→2 
15 and 16 (1917-1919) and (1920-1922) 2→3 
16 and 17 (1920-1922) and (1923-1925) 3→4 
17 and 18 (1923-1925) and (1926-1928) 4→1 
18 and 19 (1926-1928) and (1929-1931) 1→2 
19 and 20 (1929-1931) and (1932-1934) 2→3 
20 and 21 (1932-1934) and (1935-1937) 3→2 
26 and 27 (1950-1952) and (1953-1955) 2→5 
27 and 28 (1953-1955) and (1956-1958) 5→2 
28 and 29 (1956-1958) and (1959-1961) 2→1 
29 and 30 (1959-1961) and (1962-1964) 1→3 
30 and 31 (1962-1964) and (1965-1967) 3→2 
34 and 35 (1974-1976) and (1977-1979) 2→1 
36 and 37 (1980-1982) and (1983-1985) 1→2 
37 and 38 (1983-1985) and (1986-1988) 2→3 
38 and 39 (1986-1988) and (1989-1991) 3→1 
39 and 40 (1989-1991) and (1992-1994) 1→2 
40 and 41 (1992-1994) and (1995-1997) 2→3 
41 and 42 (1995-1997) and (1998-2000) 3→1 
44 and 45 (2004-2006) and (2007-2009) 2→1 

 

5 transitions each from 1 state to 2 states, 2 states to  
3 states and 3 to 2 states. Bifurcations with magnitude 
of differences of states greater than 2 (like 2→5, 
4→1, etc.) are also present. Such higher magnitude 
bifurcations, even though less in number are more 
significant. A 2→1 transition corresponds to a change 
of potential from single well to zero well. In the daily 
SNs from 1875 to 2012, bifurcations showing 
maximum change in the number of states are those 
with a change of states equal to three. There are 3 
such bifurcations observed in our analysis. These 
bifurcations cause major deformations in the 
potential. Change of three states causes addition or 
removal of two wells in the potentials corresponding 
to the intervals (Fig. 5). In 2→5 bifurcation, two wells 
are added to the potential. But in 4→1 and 5→2 
bifurcations,   two   wells   are    removed    from   the  

 
 

Fig. 5 — Changes in the potential representing SN during 4→1, 
2→5 and 5→2 bifurcations 
 
potential. High deformation of potential taking place 
between adjacent intervals means a sudden addition or 
removal of large amplitude noise. Intervals involved 
in the consecutive bifurcations 2→5 and 5→2 are 26, 
27 and 28. This means large amplitude noise is added 
to the system when it undergoes a transition from 
interval 26 to 27. But, during transition from interval 
27 to 28 noise is removed from the system. A 4→1 
bifurcation occurs between intervals 17 and 18 and 
this corresponds to removal of noise from the system. 
In the years (1923-1925) corresponding to interval 17, 
Duhau and Chen34 have noticed vanishing of 
amplitude of cyclical oscillations of poloidal and 
toroidal field. A combined action of these fields 
determines sunspot evolution. The stochastic nature of 
dynamo α effect and fluctuations in the meridional 
flow are capable of producing variations in the 
amplitudes of solar cycles14,35.  

Intervals with a single state are treated as noiseless 
intervals and Table 3 lists bifurcations present 
between two noiseless intervals. There are seven 
episodes lying between noiseless intervals. In between 
two noiseless intervals, the noise is observed to 
increase and decrease, indicating that the noise 
affecting sunspot dynamics was not persistent 
throughout the period of study. It affects the dynamics 
occasionally (seven times in our analysis) and causes 
corresponding effects in sunspot formation. The level 
of noise reaches a maximum in a particular interval 
which is characterized by the highest number of 
states. In seven episodes considered, the noise 
becomes highest at intervals 5, 10, 17, 27, 30, 38 and 
41 respectively. Interestingly these intervals fall 
nearer to solar minima of different solar cycles. 
Previous investigations concluded that poloidal field 
starts to accumulate at the poles by the Babcock-
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Leighton process during solar minima. Choudhary36 
identified random noise in the process as one of the 
causes of irregularities in the solar cycle.  

In SN dynamics, 2, 5, 7, 10, 16, 17, 20, 27, 30, 38 
and 41 are intervals having higher number of states 
(three to five). All of them except interval 7 (1893-
1895) coincide with years of sunspot minima such as 
1878, 1889, 1901, 1923, 1933, 1954, 1964, 1986 and 
1996. Number of states detected in SN and their 
temporal evolution are shown in Fig. 6. Years 
corresponding to higher number of states (3, 4 and 5) 
are marked in the figure. It is clear from this figure 
that the longest episode over which the system never 
returned to the noiseless states (number of states=1) is 
episode 5. In this episode, the system remained 
affected by the noise for 30 years from 1929 to 1958. 
This is also the interval with the largerest number of 
bifurcations present. The maximum number of states 

(5 in interval 27) also belongs to this episode. 
Therefore this episode can be considered as the one in 
which strong and very dynamic noise perturbations 
were prevailing. 
 
4.2 Sunspot area 

Daily SA time series during the years from 1875 to 
2012 is shown in Fig. 7. Potential analysis is done on 
SA by dividing it into 46 equal intervals similar to 
SN. Various states obtained in SA for different three 
years intervals and their corresponding years of 
existence are shown in Table 4. 

Like SN, SA also exhibits states from 1 to 5. 
Highest number of states in SA is 5 corresponding to 
the interval 5 (1887-1889). Comparatively higher 
number of states such as 4 states also occurs in 
intervals   9   (1899-1901),  17  (1923-1925)  and  20  

Table 3 — Characteristics of bifurcations occurred in daily SN in 
between noiseless states 

Episodes 
between 
noiseless 
intervals 

Bifurcations in SN Highest 
number of 

states 

Interval 
corresponding to 

highest  
number of states 

Between 
intervals 

Change of 
states 

 
1 

3 and 4 
4 and 5 
5 and 6 
6 and 7 
7 and 8 
8 and 9 

1→2 
2→4 
4→2 
2→3 
3→2 
2→1 

 
4 

 
5 

 
2 

9 and 10 
10 and 11 
12 and 13 

1→3 
3→2 
2→1 

 
3 

 
10 

 
3 

13 and 14 
15 and 16 
16 and 17 
17 and 18 

1→2 
2→3 
3→4 
4→1 

 
4 

 
17 

 
4 

18 and 19 
19 and 20 
20 and 21 
26 and 27 
27 and 28 
28 and 29 

1→2 
2→3 
3→2 
2→5 
5→2 
2→1 

 
5 

 
27 

 
5 

29 and 30 
30 and 31 
34 and 35 

1→3 
3→2 
2→1 

 
3 

 
30 

 
6 

36 and 37 
37 and 38 
38 and 39 

1→2 
2→3 
3→1 

 
3 

 
38 

 
7 

39 and 40 
40 and 41 
41 and 42 
44 and 45 

1→2 
2→3 
3→2 
2→1 

 
3 

 
41 

 

Fig. 6 — Number of states in SN and their evolution during 
1875-2012  
 

 
 

Fig. 7 — Daily SA data (1875-2012) 
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Table 4 — Number of states in daily SA during 46 intervals 

Interval Years Number of states  
1 (1875-1877) 3 
2 (1878-1880) 1 
3 (1881-1883) 2 
4 (1884-1886) 1 
5 (1887-1889) 5 
6 (1890-1892) 2 
7 (1893-1895) 2 
8 (1896-1898) 2 
9 (1899-1901) 4 
10 (1902-1904) 3 
11 (1905-1907) 2 
12 (1908-1910) 2 
13 (1911-1913) 1 
14 (1914-1916) 2 
15 (1917-1919) 1 
16 (1920-1922) 2 
17 (1923-1925) 4 
18 (1926-1928) 1 
19 (1929-1931) 2 
20 (1932-1934) 4 
21 (1935-1937) 1 
22 (1938-1940) 1 
23 (1941-1943) 2 
24 (1944-1946) 1 
25 (1947-1949) 1 
26 (1950-1952) 1 
27 (1953-1955) 3 
28 (1956-1958) 1 
29 (1959-1961) 1 
30 (1962-1964) 3 
31 (1965-1967) 1 
32 (1968-1970) 2 
33 (1971-1973) 2 
34 (1974-1976) 1 
35 (1977-1979) 1 
36 (1980-1982) 1 
37 (1983-1985) 2 
38 (1986-1988) 2 
39 (1989-1991) 1 
40 (1992-1994) 2 
41 (1995-1997) 3 
42 (1998-2000) 2 
43 (2001-2003) 1 
44 (2004-2006) 2 
45 (2007-2009) 1 
46 (2010-2012) 3 

(1932-1934). From Fig. 8, intervals with 1 and 2 
states are more regular compared to other intervals 
having states 3, 4 and 5. 

Table 5 shows bifurcations detected in SA. 
Bifurcations involving a change of states greater than 
two are from 1 state to 5 states, 4 states to 1 state and 
5 states to 2 states.  

Episodes between consecutive noiseless levels and 
corresponding bifurcations in SA are shown in  
Table 6. Of the 12 episodes, the longer one between 
two noiseless periods is episode 2, which lasts for 23 
years (1887-1910). The maximum number of states 
(5) corresponding to the maximum noise perturbation, 
in the whole period of analysis also falls in this 
episode. The highest number of states in the 12 
episodes is occurring in intervals 3, 5, 11, 14, 17, 20, 
23, 27, 30, 32, 37, 41 and 44 with intervals 5, 17, 20, 
23, 27, 30, 37 and 41 close to solar minima. The 
correlation between solar minima and the intense 
noise (represented by the number of states) in SA is 
quite interesting. A similar relationship was obtained 
for SN noise as well. 

Figure 9 shows the number of states detected in SA 
and their temporal evolution. In SA, intervals 1, 5, 9, 
10, 17, 20, 27, 30, 41 and 46 shows relatively higher 
number of states (3-5 states). Among these, eight out 
of ten intervals are close to the years of various 
sunspot minima such as 1889, 1901, 1923, 1933, 
1954, 1964 and 1996. 

Results obtained reveal that intervals with 2 states 
are most often occurring in the potential analysis of 
SN and SA indicating that intervals with a single well 
potential are more frequently occurring. This suggests 
that the noise in sunspot dynamics is best represented 
by a single well potential. It is also observed that the 
SN was affected by maximum noise in the interval 27  

 
Fig. 8 — Histogram of number of states in SA (1875-2012) 
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Table 5 — Bifurcations occurred in daily SA (1875-2012)  
Intervals 

between two 
intervals 

Years concerned Transition of 
states 

1 and 2 (18751877) and (1878-1880) 3→1 
2 and 3 (1878-1880) and (1881-1883) 1→2 
3 and 4 (1881-1883) and (1884-1886) 2→1 
4 and 5 (1884-1886) and (1887-1889) 1→5 
5 and 6 (1887-1889) and (1890-1892) 5→2 
8 and 9 (1896-1898) and (1899-1901) 2→4 

9 and 10 (1899-1901) and (1902-1904) 4→3 
10 and 11 (1902-1904) and (1905-1907) 3→2 
12 and 13 (1908-1910) and (1911-1913) 2→1 
13 and 14 (1911-1913) and (1914-1916) 1→2 
14 and 15 (1914-1916) and (1917-1919) 2→1 
15 and 16 (1917-1919) and (1920-1922) 1→2 
16 and 17 (1920-1922) and (1923-1925) 2→4 
17 and 18 (1923-1925) and (1926-1928) 4→1 
18 and 19 (1926-1928) and (1929-1931) 1→2 
19 and 20 (1929-1931) and (1932-1934) 2→4 
20 and 21 (1932-1934) and (1935-1937) 4→1 
22 and 23 (1938-1940) and (1941-1943) 1→2 
23 and 24 (1941-1943) and (1944-1946) 2→1 
26 and 27 (1950-1952) and (1953-1955) 1→3 
27 and 28 (1953-1955) and (1956-1958) 3→1 
29 and 30 (1959-1961) and (1962-1964) 1→3 
30 and 31 (1962-1964) and (1965-1967) 3→1 
31 and 32 (1965-1967) and (1968-1970) 1→2 
33 and 34 (1971-1973) and 1974-1976) 2→1 
36 and 37 (1980-1982) and (1983-1985) 1→2 
38 and 39 (1986-1988) and (1989-1991) 2→1 
39 and 40 (1989-1991) and (1992-1994) 1→2 
40 and 41 (1992-1994) and (1995-1997) 2→3 
41 and 42 (1995-1997) and (1998-2000) 3→2 
42 and 43 (1998-2000) and (2001-2003) 2→1 
43 and 44 (2001-2003) and (2004-2006) 1→2 
44 and 45 (2004-2006) and (2007-2009) 2→1 
45 and 46 (2007-2009) and ( 2010-2012) 1→3 

 
(1953-1955), where as the SA was affected by 
maximum noise in the interval 5 (1887-1889). In both 
SN and SA, this peak noise occurred at episodes of 
longest noise persistence. Also, in this analysis most 
of the years close to sunspot minima since 1875 are 
associated with higher number of states and  
hence affected by high amplitude random noise. 
Years 1913 and 2008 are sunspot minima having 
relatively high number of spotless days. True that 
during these years of extreme minima, random  
noise is found absent in both SN and SA. The reason 
for this exceptional behaviour in the  two  periods  is  

Table 6 — Characteristics of bifurcations occurred in daily SA in 
between noiseless states 

Episodes 
between 
noiseless 
intervals 

Bifurcations SA Highest 
number of 

states 

Intervals corresponding 
to highest number 

 of states 
Between 
intervals 

Change 
of states 

1 2 and 3 
3 and 4 

1→2 
2→1 

2 3 

2 4 and 5 
5 and 6 
8 and 9 

9 and 10 
10 and 11
12 and 13

1→5 
5→2 
2→4 
4→3 
3→2 
2→1 

 
5 

 
5 

3 13 and 14
14 and 15

1→2 
2→1 

2 14 

4 15 and 16
16 and 17
17 and 18

1→2 
2→4 
4→1 

 
4 

 
17 

5 18 and 19
19 and 20
20 and 21

1→2 
2→4 
4→1 

 
4 

 
20 

6 22 and 23
23 and 24

1→2 
2→1 

2 23 

7 26 and 27
27 and 28

1→3 
3→1 

3 27 

8 29 and 30
30 and 31

1→3 
3→1 

3 30 

9 31 and 32
33 and 34

1→2 
2→1 

2 32 

10 36 and 37
38 and 39

1→2 
2→1 

2 37 

11 39 and 40
40 and 41
41 and 42
42 and 43

1→2 
2→3 
3→2 
2→1 

 
3 

41 

12 43 and 44
44 and 45

1→2 
2→1 

2 44 

 

 
 

Fig. 9 — Number of states in SA and their evolution during 1875-
2012 
 

still to be understood. Work in that direction requires 
further analysis and is in progress. During the present 
interval (1875-2012) of study, total number of 
bifurcations occurred in SA is greater than that in SN. 
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Total number of bifurcations is 34 and 31 for SA and 
SN respectively (shown in Tables 2 and 5). More 
number of bifurcations in SA compared to SN 
indicates that dynamics of the former is more 
susceptible to random noise than latter. Kakad37 
developed a model for predicting peak SN and ascent 
time of the upcoming solar cycle by considering 
random fluctuations in SN during different phases of 
solar cycle. Significance of considering randomness 
during sunspot prediction is noticeable. Chang38 find 
out random noise superimposed cyclical evolution of 
SA asymmetry. 
 
5 Conclusions 

Potential analysis of SN and SA for the years 1875 
to 2012 is an effort to understand the underlying 
dynamics of sunspots due to stochastic forcing. The 
basic nature of noise is shown to be the one creating 
potentials with single wells. The maximum noise in 
SN and SA coinciding with various sunspot minimum 
periods is an interesting result which requires further 
studies and analysis to explain. 

The study establishes the presence of random noise 
during their formation. Sources of random noise 
producing amplitude fluctuations in the dynamo 
models of solar cycle are fluctuations of large scale 
flows in the convective envelope such as differential 
rotation and meridional circulation39. A threshold 
magnetic field of 105G, required for the appearance of 
sunspots is provided by fluctuating magnetic fields 
superimposed on the mean field. These fluctuating 
magnetic fields are treated as noise and are also 
generated by dynamo action.  

Our results support the view that the formation of 
sunspots is strongly affected by random noise. From 
previous studies, it is clear that fluctuations in the 
differential rotation and meridional circulation in the 
convective zone act as random noise in the evolution of 
sunspots. Production of toroidal flux at the solar 
convection zone leading to sunspot formation is highly 
sensitive to values of magnetic diffusivity40. Also 
fluctuations in magnetic diffusivity had caused 
asymmetries in sunspot distribution between two 
hemispheres during Maunder minimum 41. Hence 
variations in magnetic diffusivity are also considered as 
a crucial factor in the context of random fluctuations in 
SNs. We used two proxies - SN and SA- to study 
random noise. Random noise affecting SN and SA 
dynamics shows one particular characteristic in 
common: In both the parameters, the highest peak of 

random noise appears during the longest interval of 
noise persistence. In addition the amplitude grows and 
declines very quickly. Two- state noise or single 
potential well noise was shown to be occurring most 
frequently in both of these proxies. This shows that 
random noise is an integral part of sunspot formation. 
Results obtained from potential analysis of sunspot 
parameters provides a new result that potential 
representing sunspot area undergoes more number of 
deformations due to the presence of random noise than 
that observed in the potential of sunspot number 
evolution during the period of years from 1875-2010. 
Thus, SA dynamics is most susceptible to random 
noise than SN. SN and SA represent two aspects of 
solar dynamo. Action of variables influencing the above 
two processes may be different. Hence, they may have 
different time evolution. But in both the parameters, 
random noise plays a crucial factor in their time 
behaviour. Hence on the basis of assumptions made in 
theory of potential analysis, it can be concluded that 
stochastic forcing reflected as non-linear behaviour in 
the observational features of sunspots is discontinuous 
with varying amplitudes and intervals of persistence. 
Therefore, dynamo models with a random noise 
component can effectively reproduce irregularities 
shown by the sunspot cycle. Insufficient knowledge 
about the nature of irregularities will however make the 
accurate prediction of sunspots almost impossible. In 
this regard, potential analysis exploring the nature of 
noise and irregularities in solar parameters is an effective 
tool of investigation. 
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