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In recent years, the performance of deep learning algorithms for image recognition has improved tremendously. The 
inherent ability of a convolutional neural network has made the task of classifying glaucoma and normal fundus images 
more appropriately. Transferring the weights from the pre-trained model resulted in faster and easier training than training 
the network from scratch. In this paper, a dense convolutional neural network (Densenet201) has been utilized to extract the 
relevant features for classification. Training with 80% of the images and testing with 20% of the images has been 
performed. The performance metrics obtained by various classifiers such as softmax, support vector machine (SVM), k-
nearest neighbor (KNN), and Naive Bayes (NB) have been compared. Experimental results have shown that the softmax 
classifier outperformed the other classifiers with 96.48% accuracy, 98.88% sensitivity, 92.1% specificity, 95.82% precision, 
and 97.28% F1-score, with DRISHTI-GS1 database. An increase in the classification accuracy of about 1% has been 
achieved with enhanced fundus images. 

Keywords: Deep learning, Fine-tuning, Ocular disease, Transfer learning 

1 Introduction 

Glaucoma indicates a cluster of eye disorders that 
impair the vision of humans. Peripheral vision loss has 
been caused by the weakening of optic nerves because 
of increased eye pressure1. Early screening and 
detection are essential, as this disease hasno symptoms. 
Glaucoma has been characterized by increased cup 
size2. Intraocular pressure measurement, visual field 
test, and optic nerve head examination are the standard 
clinical procedures followed by the clinicians  
for identifying the presence of glaucoma. Such 
examinations, however, suffer from intra/inter observer 
errors. Computer-aided diagnosis (CAD) approaches3-5 
may resolve the limitations of conventional clinical 
examinations. While CAD-based algorithms yield 
better results, the key downside is that these techniques 
depend primarily on handcrafted features. Deep 
learning algorithms, on the other hand, perform the 
classification by extracting the features directly from 
the images. 

Transfer learning is a typical deep learning 
approach in which the weights and layers from pre-
trained models can be transferred to a new 
classification problem. This results in faster and easier 
training. Different pre-trained models with varying 
depth have been developed to enhance the 
performance of image classification and image 

recognition tasks. Densenet201, one among the 
standard pre-trained model which has been effectively 
used for image classification due to its deep 
architecture. By introducing the dense connection 
between each layer, the performance of the model has 
been improved. 

Figure 1 represent glaucoma infected and normal 
fundus images from DRISHTI-GS1 database6. The 
distinct features may not be noticeable in some fundus 
images. By improving the contrast of those images the 
performance of the network may get improved. From 
the literature, it has been observed that better results 
are obtained by contrast enhancement based on two-
dimensional histogram7. While enhancing the images 
using two-dimensional histogram methods, the 
contextual information around each pixel has been 
considered. This overcomes the drawbacks of using 
one-dimensional histograms significantly8. 

The main objective is to enhance the performance 
of classification system by incorporating the suitable 
pre-processing technique and also to compare the 
performance of Densenet201 model with various 
classifiers towards the task of classifying glaucoma 
and normal fundus images. 

The major contributions of this work are:  
(i) improving the quality of fundus images using 
Residual spatial entropy-based contrast enhancement 
(RESE algorithm) (ii) accurate selection of different 
hyperparameters to boost the performance of the 
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classification system (iii) fine-tuning the Densenet 
201 model for better classification (iv) comparing the 
performance of various classifiers. 

With the invention of different pre-trained models, 
the performance of image classification problem has 
been greatly improved. As pre-trained networks are 
trained with a large number of images, transferring 
the weights and layers to new classification problem 
will make the training easier and faster. Several works 
for the automatic detection of glaucoma from fundus 
images using CNN have been published in the 
literature. In some current works9-13, classification is 
done using standard CNN model. Transfer learning 
based glaucoma diagnosis is employed in14-15. 

Chen et al.9 have classified glaucoma and normal 
images using a sixteen-layer CNN model. The 
network weights are learned using the SGDM 
optimizer. Authors have reported AUC values of 
0.831 and 0.887 for ORIGA and Singapore Chinese 
Eye Study (SCES) databases, respectively. 

A twenty-layer CNN model for two class 
classification problem has been developed by 
Raghavendra et al.10 The performance of CNN for 
various learning rates has been investigated. Authors 
have reached 98.13%, 98%, and 98.3%, respectively, for 
accuracy, sensitivity, and specificity with 1426 images. 

Li et al.12 have classified glaucoma and normal 
images using attention-based CNN (AG-CNN). For 
evaluation, a large-scale attention-based glaucoma 
(LAG) database comprising 5824 fundus images has 
been developed. In the LAG and RIMONE2 
databases, the authors achieved an overall accuracy of 
95.3% and 85.2%, respectively. 

Juan et al.16 have investigated the performance of 
various pre-trained models for glaucoma detection. 
Results have been compared with a standard sixteen 
layer CNN. Among the networks, VGG19 yields the 
highest AUC of 0.94, sensitivity of 87.01%, and 
specificity of 89.01% with 2313 images. Andres  
et al.14 examined the performance of different pre-
trained models. The authors have concluded that the 
Xception model has outperformed other models using 
1707 images with overall accuracy, sensitivity, and 
specificity of 96.05%, 93.46%, and 85.80%, 
respectively. 

Zhen et al.15 have compared around eight pre-
trained models in their work. Authorshave reported 
that the densenet model performs better with the 
highest classification accuracy of 75.50% using 5978 
images. Orlando et al.17 have exploited the transfer 
learning approach using overfeat and VGG-S for 
glaucoma classification. The contrast of the fundus 
images is enhanced using Contrast Limited Adaptive 
Histogram Equalization (CLAHE). With DRISHTI-
GS1 database, an overall AUC of 0.7626 and 0.7180 
are obtained using overfeat and VGG-S, respectively. 

Private databases (images taken from hospitals) are 
used in most of the existing works. So it is difficult to 
determine the quality of those images. The nature and 
quality of fundus images will greatly improve the 
performance of the deep neural network. However, 
literature studies reveal that at the pre-processing 
stage in the deep learning-based image classification, 
minimal work has been performed in the field of 
image enhancement. This inspired us to create a 
framework that could improve the performance 
metrics by considering the enhanced images.  
 

2 Materials and Methods 

In recent years, the classification of glaucomatous 
and normal fundus images using a deep neural 
network had increased in popularity. Training the 
neural network from scratch was time-consuming. 
Also, it requires an effective hyperparameter selection 
technique. Instead, transferring the weights from the 
standard pre-trained network was easy and had better 
performance metrics for classification problems. The 

 
 

Fig. 1 — Fundus images6 (a) glaucoma, and (b) normal. 
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proposed method for glaucoma detection using the 
Densenet201 network was shown in Fig. 2. 

The block diagram comprises of three stages:  
pre-processing, feature extraction, and classification. 
Improving the quality of images, enlarging the 
number of images, and resizing were performed in 
pre-processing stage. In the feature extraction stage, 
the relevant features were extracted from the 
Densenet201 model using transfer learning approach. 
Finally, classification of glaucomatous and normal 
images were performed in classification stage. 
 
2.1 Contrast enhancement 

The contrast of the image was improved by the 
Residual entropy based contrast enhancement 
technique8. In this method, histograms were calculated 
based on the distributions concerning the spatial 
locations called two-dimensional histograms and used 
for enhancement. 

The two dimensional histogram and the spatial 
entropy were obtained by using the following 
equations:  

	

௝݄ ൌ ௝݄ሺݕ,ݔሻ, 1 ൑ ݔ ൑ ,ܯ 1 ൑ ݕ ൑ ܰ …(1) 
where, ௝݄ሺݕ,ݔሻ denotes the two dimensional 
histogram of the ݆௧௛ intensity value and ݕ,ݔ 
represents the spatial grid values on the image. ܯ and 
ܰ represents the total number of grids in the input 
image. Spatial entropy ( ௝ܵ) was calculated from the 

௝݄.The mapping fuction was obtained from the ௝ܵ 
 

௝ܵ ൌ െ∑ 	ெ
௫ୀଵ ∑ 	ே

௬ୀଵ ௝݄ሺݔ, ሻlogଶݕ ቀ ௝݄ሺݕ,ݔሻቁ …(2) 
 

Discrete function ௝݂ 	was derived from ௝ܵ, and it 
was represented as 

 

௝݂ ൌ
ௌೕ

∑ 	ೖ
೗సభ,೗ಯೕ ௌ೗

 …(3) 
 

The joint spatial entropy ( ௝ܵ,௠) was obtained from 
joint histogram ( ௝݄,௠) by the following equation  

௝݄,௠ሺݕ,ݔሻ ൌ max ቀ ௝݄ሺݕ,ݔሻ݄௠ሺݔ,  ሻቁ …(4)ݕ
 

௝ܵ,௠ ൌ െ∑ 	ெ
௫ୀଵ ∑ 	ே

௬ୀଵ ௝݄,௠ሺݕ,ݔሻlogଶ ௝݄,௠ሺݕ,ݔሻ …(5) 
 

Residual entropy ( ௝ܴ) was obtained from by using 

௝ܵ,௠ 
 

௝ܴ ൌ
௪ೕ௦ೕି௪ೕ,೜ ∑ 	಼

೘సభ,೗ಯೖ ௌೕ,೘
௪ೕା௪ೕ,೜

 …(6) 
 

 ௝,௤ are two dimensional histogramsݓ ௜ andݓ
weighting functions and joint histograms respectively, 
defined as  

 

௝ݓ ൌ ∑ 	ெ
௫ୀଵ ∑ 	ே

௫ୀଵ ௝݄ሺݕ,ݔሻ …(7) 
 

௝,௤ݓ ൌ ∑ 	௄
௟ୀଵ,௟ஷ௝ ∑ 	ெ

௫ୀଵ ∑ 	ே
௬ୀଵ ௝݄,௠ሺݕ,ݔሻ …(8) 

 

The discrete function ௝݂ and a CDF ܨ௝ was obtained 
by 

 

௝݂ ൌ
ோೕ

∑ 	ೖ
೗సభ,೗ಯ೔ ோ೗

 …(9) 
 

The mapping function ݕ௝was generated by ܨ௝ 
 

௝ݕ ൌ උܨ௝ ൈ ሺݕ௨ െ ௗሻݕ ൅  ௗඏ …(10)ݕ
 

 ௗݕ ௨ represents the minimum intensity andݕ
denotes the maximum intensity of the dynamic scale. 
 
2.2 Data augmentation 

Data augmentation was essential, as a deep neural 
network with a large number of images works better. 
The fundus images were enlarged using rotation 
augmentation technique. As DRISHTI-GS1 database 
had unbalanced (89 glaucoma images and 12 normal 
images), the rotation steps may get varied. Each 
glaucoma image was randomly rotated between zero 
and nineteen degrees in a clockwise direction. 
Rotating each normal image between zero and ninety-
nine degrees in the clockwise direction would 
generate 1200 images. The fundus images were 

 
 

Fig. 2 — Glaucoma detection from fundus images using pre-trained Densenet201 model18. 
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resized to 224 ൈ 224, as this standard input image 
size was required by the Densenet201 model. 
 
2.3 Pre-trained model 

For image classification, Densenet20118 was most 
commonly used, as it had many advantages such as 
alleviating the issue of the vanishing gradient, 
enhancing the propagation of features, facilitating 
reuse of features, and significantly reducing the 
number of parameters. Densenet201 includes four 
dense blocks and three transition blocks. Each dense 
block had a varying number of dense layers (6, 12, 48, 
32 in blocks 1, 2, 3, 4, respectively) which were 
densely connected. Through feature reuse, Densenet201 
realizes the objective of easy training and parameter 
performance, which incorporates the concatenated 
feature maps created by all previous layers into the 
subsequent layer. The ݄݇ݐ layer receives the feature 
maps of all proceeding layers. The output feature map 
at the ݄݇ݐ layer was given as 

 

௞ݔ ൌ ,଴ݔ௞ሺሾܪ ,ଵݔ . . . ௞ݔ െ 1ሿሻ, …(11) 
 

where, ሾݔ଴, ,ଵݔ . . . ௞ݔ െ 1ሿ refers to the concatenation 
of feature maps produced in the appropriate layers. 
The composite function ܪ௞ includes batch 
normalization19

, rectified linear unit (ReLU)20
, and 

convolution. By normalizing the activations using 
Equation 12, batch normalization layer achieves 
stable distribution of activations throughout the 
network. 

 

௜ܺ ൌ
௫೔ିఓ್

ටఙ್
మାఢ
, …(12) 

 

where, mini batch mean (ߤ௕) and variance (ߪ௕
ଶ) are 

defined as  
 

௕ߤ ൌ
ଵ

௠
∑ 	௠
௜ୀଵ  ௜ …(13)ݔ

 

௕ߪ
ଶ ൌ

ଵ

௠
∑ 	௠
௜ୀଵ ሺݔ െ  ௕ሻଶ …(14)ߤ

 

Further mean and standard deviation were 
parameterized as trainable parameters using  

 

௜ݕ ൌ ߛ ௜ܺ ൅  (15)… .ߚ
 

To improve the training speed, ReLU activation 
function defined as ݂ሺݔሻ = ݉ܽݔሺ0,  .ሻ was employedݔ
The convolution layer extracts the features by 
convolving the input representation with kernel  
given by  

,ሺ݅ܥ ݆ሻ ൌ ∑ 	௠
௨ୀି௠ ∑ 	௠

௩ୀି௠ ሺ݅ܫ	 െ ,ݑ ݆ െ ,ݑሺܭ.ሻݒ ሻݒ ൅ ܾ, …(16) 
 

where, ܾ represents the bias term. Bottleneck layers 
were introduced by utilizing a 1 ൈ 1 convolution 
before each 3 ൈ 3 convolution. This reduces the 
computational complexity in dense layers. 
Hyperparameters such as kernel size, stride, and 
padding are chosen so that feature map dimensions 
remains constant within the block. Dimensionality 
reduction was achieved by a transition layer, which 
includes batch normalization, 1 ൈ 1 convolution, and 
2 ൈ 2 average pooling layers. 

Fine tuning was performed so that the network 
weights and initial layers were transferred. Final 
layers were modified according to the number of 
classes. The learnable parameters were optimized 
using Adam optimizer21 to reduce the cross entropy 
loss defined by  

 

ݏݏ݋݈ ൌ െ∑ 	௑
௠ୀଵ ∑ 	௒

௡ୀଵ ௠௡݈݊ሺܣ ௠ܲ௡ሻ …(17) 
 

where, ܺ and ܻ denotes number of samples and 
number of classes, respectively. ܣ௠௡ indicates the 
actual output and ௠ܲ௡ gives the predicted output. The 
parameters were updated using 

 

௜ܹାଵ ൌ ௜ܹ െ
ఈ

ඥ௏೔ା఍
௜ܯ , …(18) 

 

The bias-corrected mean ܯ௜ and bias-corrected 
variance ௜ܸwere described by 

 

௜ܯ ൌ
௠೔

ଵିఉభ
೔ , …(19) 

 

௜ܸ ൌ
௩೔

ଵିఉమ
೔ , …(20) 

 
3 Results and Discussion 

This work takes into account the publicly 
accessible DRISHTI-GS1 database to evaluate the 
performance of the network. Different metrics used in 
this work were described in Table 1.  

Table 1 — Performance metrics13 

 Metrics Mathematical Expression 

 Accuracy 

ܥܥܣ ൌ
ܶܲ ൅ ܶܰ

ܶܲ ൅ ܶܰ ൅ ܲܨ ൅ ܰܨ
 

 Sensitivity 

ܵܰ ൌ
ܶܲ

ܶܲ ൅ ܰܨ
 

 Specificity 

ܵܲ ൌ
ܶܰ

ܶܰ ൅ ܲܨ
 

 Precision 

ܴܲ ൌ
ܶܲ

ܶܲ ൅ ܲܨ
 

 F1-score 
1െܨ ݁ݎ݋ܿݏ ൌ

ଶ∗ோ௘௖௔௟௟∗௉௥௘௖௜௦௜௢௡

ோ௘௖௔௟௟ା௉௥௘௖௜௦௜௢௡
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Hyperparameters such as batch size, learning rate, 
optimizer, and maximum epochs can decide the 
overall performance of the model. Using Adam 
optimizer, the network weights were optimized as it 
had many benefits compared to other optimizers22. 
The initial learning rate and batch size had a  
major influence on network performance. These  
two hyperparameters were selected using two-stage 
tuning approach13. Based on the results, a batch  
size of 32 and an initial learning rate of 0.00001  
yield better glaucomatous and normal image 
classification. A maximum epoch of 20 was used  
in this work. 

The Densenet201 model was trained with 1420 
glaucoma and 1000 normal images. With 360 glaucoma 
and 200 normal images, the model testing was 
completed. The simulation experiment with various 
folds of enhanced images was replicated. 80% of 
training images and 20% of testing images were 
included in each fold. Five different folds of images 
were used in this work. 

Using softmax classifier, the better classification 
accuracy of 96.48%, sensitivity of 98.88%, specificity 
of 92.1%, precision of 95.82%, and F1-score of 
97.28% were obtained. The results were indicated in 
Table 2. For the classification of glaucomatous and 
normal images using SVM, KNN, and NB classifiers, 
distinct features were extracted from the global 
average pooling layer. It was evident from Table 3 
that the metrics obtained by the  SVM  classifier  were  

Table 6 — Metrics obtained using networks9,11,18 

Performance 
metrics / network 

ACC SN SP PR F1-score 

Chen et al. 93.8 98.74 84.9 92.18 94.64 

Bajwa et al. 93.22 97.26 86 92.68 95.34 

Densenet201 96.48 98.88 92.1 95.82 97.28 

 
approximately the same as the Softmax classifier. 
Tables 4 and 5 indicates the results obtained using 
KNN and NB classifiers. Average accuracy of 
96.34%, 93.88%, and 95.56% were obtained using 
SVM, KNN, and NB, respectively. 

In addition, Densenet201 model was also trained 
with different folds of original images for 
comparison. Figure 3 illustrates the obtained results 
for original and enhanced images. With original 
images, the highest average sensitivity was achieved 
with softmax, SVM, KNN, and NB classifiers of 
99.5%, 99.56%, 97.62%, and 99.44% , respectively. 
By taking into account the enhanced images, the 
highest average classification accuracy was obtained. 
It was also evident from the results that, except  
KNN classifier, the accuracy of classification 
increased by about 1% when considering enhanced 
images. 

Further the results obtained by Chen et al.9 and 
Bajwa et al.11 were compared with the proposed 
Densenet201 network. Table 6 describes the metrics 
obtained by various models. Densenet201 model 
classifies better compared to other two models.  

Table 2 — Metrics obtained using softmax classifier18 

Performance 
metrics / Data folds 

ACC SN SP PR F1-score 

Fold 1 97.3 95.8 100 100 97.85 

Fold 2 97.9 100 94 96.8 98.37 

Fold 3 94.3 98.6 86.5 92.9 95.66 

Fold 4 96.8 100 91 95.2 97.54 

Fold 5 96.1 100 89 94.2 97.01 

Average 96.48 98.88 92.1 95.82 97.28 
 

 

Table 3 — Metrics obtained using SVM classifier18 

Performance 
metrics / Data folds 

ACC SN SP PR F1-score 

Fold 1 97.1 95.6 99.5 99.7 97.60 

Fold 2 98.4 100 95.5 97.6 98.78 

Fold 3 93.6 96.7 88 93.5 95.07 

Fold 4 95.5 100 87.5 93.5 96.64 

Fold 5 95.5 100 87.5 93.5 96.64 

Average 96.34 98.34 92.7 96.1 97.17 

Table 4 — Metrics obtained using KNN classifier18 

Performance  
metrics / Data folds 

ACC SN SP PR F1-score 

Fold 1 95.4 93.1 99.5 99.7 96.28 

Fold 2 96.1 100 89 94.2 97.01 

Fold 3 90.7 94.7 83.5 91.2 92.91 

Fold 4 94.5 98.3 87.5 93.4 95.78 

Fold 5 92.7 98.9 81.5 90.6 94.56 

Average 93.88 97 88.2 93.82 95.30 
 

 

Table 5 — Metrics obtained using NB classifier18 

Performance  
metrics / data folds 

ACC SN SP PR F1-score 

Fold 1 97.9 100 94 96.8 98.37 

Fold 2 99.6 100 99 99.4 99.69 

Fold 3 93.2 95.3 89.5 94.2 94.74 

Fold 4 92.1 92.5 91.5 95.1 93.78 

Fold 5 95 95.4 92.5 95.9 95.64 

Average 95.56 96.64 93.3 96.28 96.44 
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Fig. 3 — Comparison of metrics with enhanced8 and original 
fundus images6 (a) softmax classifier, (b) SVM classifier,  
(c) KNN classifier, and (d) NB classifier. 
 
4 Conclusion 

In this paper, the transfer learning approach to 
glaucoma detection from fundus images has been 
discussed. Residual Spatial Entropy-based Image 
Contrast Enhancement (RESE) technique has been 

employed to enhance the quality of fundus images 
taken from the DRISHTI-GS1 database. Densenet201 
model has been fine-tuned effectively to extract the 
relevant features for classification. Using different 
metrics such as accuracy, sensitivity, specificity, 
precision, and F1-score, the model’s performance  
has been evaluated. With a suitable selection of 
hyperparameters, better results have been achieved by 
the softmax classifier. Also, the classification accuracy 
has been improved by 1% using enhanced images. 
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