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Artificial Intelligence (AI) refers to the recreation of human intelligence in machines that have been designed to think 

like humans and mimic their actions. AI has been used in many fields such as image processing, health care, education, and 

marketing. Machine Learning (ML) has been the sub-division of AI, and deep learning has been the subdivision of ML. 

Artificial Neural Network has been the most predominantly used deep learning technique. While implementing the ANN 

technique, knowing whether the implementation could have been done in hardware or software becomes necessary, which is 

essential to achieve the expected performance. This paper gives a survey on the available methods in which the ANN 

architecture has been implemented to achieve efficient output with minimal resources. It is vital to study and analyze various 

strategies for implementation and their functionality. This paper has also explained the advantages and disadvantages of 

different implementation techniques that allow selecting the most appropriate hardware and respective methodology for 
optimizing the hardware. 
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1 Introduction 

We are living in a world where automatic 

process is gaining importance day by day, the 

technological advancements have changed all the 

manual operations to automations. There are many 

automatic applications in our day to day life. Some 

of those applications in real life are the music 

recommender systems, Google maps, Uber etc. 

These are some of the amazing technological 

advancements in the field of automation which 

are powered by artificial intelligence. Artificial 

intelligence enables a machine to decide and act 

without any human intervention. There are some 

more important concepts like machine learning and 

deep learning. Machine learning is a subdivision in 

a larger family of artificial intelligence. It enables 

the machine itself to learn and improve the result 

without explicit programming. Then comes deep 

learning, a subdivision of machine learning which 

enables a computer model to filter the input data 

through layers to predict and classify information. 

The deep learning system functions as that of the 

human brain. Some of its architectures include 

Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), and Recursive Neural 

Networks (RvNN). 

Artificial Neural Network (ANN) is one the 

rapidly emerging and predominantly used methods 

for a wide range of applications that include 

banking and online transactions, transportation 

(driverless cars), electronics and digital media 

platforms, aerospace and defense, medical research 

tools (for reusing drugs), and high machinery 

industries. Hence, it is important to know and 

determine the ways in which ANN has been 

implemented. 

ANN Architecture is implemented either 

using software or hardware. Software implementation 

has a lower implementation cost. The software 

libraries are readily available in many programming 

languages. It is easy to run those software libraries 

in available computer systems as they do not 

require any hardware updates. Therefore, it is 

easy to implement ANN Architecture in the 

software.  

Even though the software implementation has 

many advantages, it also has some disadvantages
1
. 

Since the data processing is carried out in a pseudo 

parallel way, the actions implemented are not 

efficient and quick. The software implementation 

has a low conversion rate, high power consumption 

and low physical protection
2
. Therefore, the 

hardware implementation is preferred which has 

the advantages of high speed, reliability and 
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security. This paper surveys the selection of 

appropriate hardware, the commonly used neural 

networks and various optimization techniques to 

implement image applications in FPGA.  
 

2 Materials and Methods 
 

2.1 Hardware Selection  

The first and foremost step in implementing 

ANN architecture is the selection of appropriate 

hardware based on the applications. ANN 

applications are capable of handling large number 

of data sets and also solve complex problems. The 

size and complexity of the system used for ANN 

applications and the requirements of resources are 

very high. The system also demands parallel 

processing of the data. In
3
, the most commonly 

used hardware for this purpose are explained, some 

of which are CPUs, GPUs, Servers, Clusters, FPGA 

and ASICs. 
 

CPU: It has a low computational efficiency  

and cannot meet requirements of a real time 

application. Hence, it was not suited for parallel 

processing. 
 

GPU: It does parallel processing, but it consumes a lot 

of power. Hence, GPU was also not suitable for on 

field implementation.  
 

ASICs: ASICs are power efficient and can be used for 

implementing ANN architectures. But their major 

disadvantage is that they are specific to a particular 

application and are not reusable for different 

architectures. The development cycle of ASICs is  

also large, hence it was not desirable to use for 

implementing ANN architecture. 
 

FPGA: FPGAs are known for their reconfigurable 

structure
4
. They provide a possibility to reprogram 

the network design many numbers of times.  

They are low power consuming, enable parallel 

processing, have a design flexibility as shown in 

paper
5
, and the development life cycle for FPGA is 

small as given in paper
6
. 

GPU is a multi-core processor
7
 that is used for the 

interference and training of the ANN architecture. 

Since it does multi-million operations per second, it 

was suited for training and validation of neural 

networks. GPU consumes a lot of power, it was bulky 

in size
8
, and cannot be suited for low power 

embedded systems. GPU supports only limited data 

types that are either single or double precision 

floating point. It cannot handle other types like 8/16 

bit fixed point or 1-2 bit binary data. 

Based on the analysis of various hardware for  

ANN architecture implementation, it was concluded  

that FPGAs were suitable for implementing ANN 

architectures in hardware, most commonly used  

ANN architectures for image applications are discussed 

next. 
 

2.2 ANN Architectures for Image Applications 

Deep Learning uses large datasets to recognize 

the pattern within the input image and produces 

classification within the image. Most commonly 

used ANN architectures for image analysis is 

CNN and RNN
9
. The challenge in deep learning 

for image classification is the time taken to train 

the ANN. This drawback can be overcome by the 

use of CNN for image classification and CNN is 

one of the most frequently used architecture  

for image classification
4
, CNN is a multilayer 

network for image classification, segmentation 

and object detection
4
, whereas RNN is used to 

analyze the sequential input. CNN reduces the 

image into its key features and identifies the 

feature using the combined probabilities. RNN 

evaluates the section of an input speech signal or 

video signal and then analyses the other sections 

one by one. CNN is used for medical image 

processing, face detection whereas RNN is used 

for image description, video tagging and video 

analysis.  

Figure 1 shows the basic CNN Architecture, it 

consists of convolution layers, pooling layers and 

fully connected layers. There is much architecture in 

CNN. LeNet-5 is the basic CNN architecture and 

ResNet-50 and Dense Net is the most recent 

architecture. The number of layers may with  

the application. It is essential to optimize the 

implementations of neural networks to achieve  

better performance in terms of power, area and 

execution time. The review of the optimization 

techniques for implementing the neural networks are 

provided next. 

 

3 Results and Discussion 
 

3.1 Optimization techniques 

The optimizations may be either hardware or 

software, they were mainly used to get better 

values of the design metrics. The metrics needed to 

determine the performance of the FPGA vary with 
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the applications
3
. The standard metric, used to find 

whether hardware optimization was done or not, 

was the Giga-Bit Operation per second (GOPS). 

The remaining metrics used for identifying 

hardware optimization were GOPS/W, GOPS/Slice, 

GOPS/DSP, speedup, accuracy, energy consumption 

and resources/area, and execution time.  
 

3.2 Hardware optimizations  

Hardware optimizations were done either by 

optimizing the precision of data or by choosing the 

appropriate resources or based on the memory 

used. 
 

3.2.1 Number system optimizations 

The precision of data was changed either to 

floating point or to fixed point for saving the area 

of utilization in the FPGA
10

. Changing the numeric 

representation or reducing the arithmetic precision
3
, 

helped to reduce the off chip memory bandwidth 

demand, reduced the on chip memory requirement, 

and reduces the complexity of the arithmetic units 

and thereby reduces the power consumption of the 

system.  

In,  FPGA based implementation of a deep 

neural network for the handwritten digit 

recognition and the needed recognition problems 

was shown, which needs millions of weights and 

arithmetic operations for producing one output
11

. In 

order to use only on-chip memory for weight 

storage, the weights are represented in 3 bits, while 

the internal signals  employ the precision  of  8  bits.  

Table 1 — Resource utilization for digit recognition with 
different weight precision11 

Resource FF LUT BRAM DSP 

3-bit without DSP 130237 124862 323 0 

3-bit with DSP 130802 121173 323 900 

8-bit fixed point 136677 213593 750.5 900 

FF: Flip Flop; LUT: Look up table; BRAM: Block Random 

Access Memory; DSP: Digital signal processor. 
 

A retrain based fixed-point weight optimization 

technique was employed to reduce the performance 

gap with floating-point algorithms. The FPGA 

resource utilization for Xilinx ZC706 evaluation 

board is shown in Table I, where the designs with 

and without DSP slices were compared. Using DSP 

slices does not reduce the demand of FFs  

(flip-flops) and LUTs much. A comparison of 

resource utilization for the implementation with  

8-bit fixed-point weights and 3-bit representation 

was given. It was identified that 8-bit 

representation consumes almost all of LUTs  

and entire DSP slices on the FPGA chip because  

8-bit weights need hardware multipliers for the 

implementation. The 8-bit representation for weights 

cannot be implemented on this FPGA because the 

BRAM capacity was not sufficient.  
 

3.2.2 Resource optimization 

In resource optimization, main importance was 

given for the Multiply and Accumulate (MAC). 

Multiplication is the main operation in ANN and 

these MAC units are replaced by fast and lower 

resource consuming multiplication units. It was 

 
 

Fig. 1 — Block diagram of CNN architecture9. 
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also replaced by a Wallace tree multiplier
5
. The 

resources were further reduced by replacing the 

MAC units with a Modified BOOTH Encoding 

(MBE) Multiplier and Wallace tree Based Adders
12

. 

The optimization was made further effectively 

by using a FPGA based coprocessor design. The 

use of FPGA based coprocessor design makes the 

computer and the coprocessor to communicate with 

each other through bus architecture. In
6
, training of 

the CNN was done by using a coprocessor to 

configure for new network structure without 

changing the design but changing only the contents 

in the block memory. 

Another method was the hardware and software 

co-design in which the SoC module supported the 

parameter reconfiguration. In
8
, several network 

mapping methods were proposed to reduce the area 

and improve the efficiency of the system. The 

accuracy of the system proposed in
8
 is 98% which 

occupied less than 60% of the FPGA resources. 

The processing time was reduced to 1.128s. It was 

concluded that this method has improved the 

system performance and use lesser resources with a 

lesser delay.  

The other commonly implemented optimizations 

are parallelism and data multiplexing
3
. There are 

three ways in which parallelism can be 

implemented in the CNN architecture. They are 

parallelism between different channels, parallelism 

between different kernels, and using the parallel 

convolution kernel
4
.  

Data multiplexing is divided into intra-layer and 

inter-layer multiplexing. Intra-layer multiplexing 

the architecture is computed layer by layer this 

increases the data multiplexing and parallelism at 

the particular layer. Inter-layer multiplexing 

reduces the off chip access of data. This can be 

done by storing the intermediate results in the  

off chip storage blocks. By using the pipeline 

architecture, the execution time and memory access 

time can be reduced. This is because the data in the 

pipeline is used instead of getting the data from the 

off chip memory every-time the data is needed
4
.  

 

3.2.3 Memory Optimizations 

Even though FPGA is best suited for 

implementing ANN in hardware, the major 

disadvantage is the memory constraint. The internal 

memory of FPGA is very low. Even the latest 

FPGA has a memory of 30 MB but the CNN 

processing needs 100s of MBs, hence an external 

DDR was used. So, the optimization of memory
8
 

plays a major role in affecting the number of 

resources, processing speed and efficiency of the 

output. One more parameter was the power 

consumption of FPGA. The reasons for power 

consumption were due to the complex 

mathematical computations. Power could be 

reduced by reducing the number of operations. 

The latency of the processing was increasing due 
to the frequent access of data from the DDR. The 
memory reduction process is broadly divided into 
on chip optimization and off chip optimizations. 

On-chip optimization includes various data reuse, 
loop optimization and data arrangement techniques. 
Off-chip optimization included weight compression, 
pruning and quantization techniques. These 
techniques were used to reduce the number of 
weights mostly during training. 
 

On-chip Optimization – The primary information 
such as input image and all kernels were stored in 
external memory which must be loaded entirely 
into FPGA for every test. But, results computed in 
intermediate stages (the values calculated in the 
adjacent layers) were stored in on-chip buffer. This 
reduced the data access to external memory 
significantly. Thus, the data stored in on-chip 
buffers were used as the input for the next layers. 
Commonly 2 ping-pong buffers were used for each 
stage, where the former layer may write to or read 
from one buffer while the next layer reads data 
from the other buffer. Also, dual-port memory 
driver and memory blocks were used to transfer 
data like ping-pong to the buffers. Data reuse, loop 
optimization techniques, batch based computations 
and buffer bank are some of the computational 
techniques which were proposed to reduce the 
shortage of on-chip memory resources. They are 
explained next

14
. 

Figure 2 explains how the accelerator was 
designed for CNN architecture. The image was 
given as the input and the weights were fetched 
from the external memory and fed to different 
layers. The operations of different layers were done 
and the intermediate results were propagated to the 
adjacent layers and then the output was obtained 
after the fully connected layer. This is the overview 
of the hardware implementation of the CNN 
architecture as explained in

14
. 

 

Data reuse: This technique is mostly used for the 

intermediate data from convolution to pooling 
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layer. Two types of data reuse methods were 

discussed in
15

 such as spatial reuse and temporal 

reuse. In spatial reuse, in one clock cycle, an image 

pixel or a kernel read from on-chip buffers was 

used for multiple parallel computation units, and in 

temporal reuse, for multiple consecutive clock 

cycles, an image pixel or a kernel read from on-

chip buffers was used. Also a novel data storage 

and data reuse scheme was discussed in
16

, where all 

intermediate data was stored in BRAMs. Based on 

their design, memory usage was reduced more than 

14 times for VGG16 implementation. 
 

Loop  optimization  technique:  In15
  the   authors  

explored various loop optimization techniques to 

reduce memory consumption as well as to reduce 
the data movement. They have maximized the 
resource utilization in this way to achieve high 
performance. Loop Tiling and loop unrolling are 
the two main loop optimization techniques. In Loop 
tiling, the FPGA on-chip memory is limited to store 

all intermediate and input data. Therefore, it was 
necessary to use external DRAMs to store the 
weights and a portion of intermediate pixel values 
from CNN layers

16
. Loop tiling was proposed in

15
 

to divide data into multiple blocks to be fit in  
on-chip buffers. The loop tiling defined the  

lower bound on the required on-chip buffer size.  
In loop unrolling, unrolling along different loop 

dimensions will generate different implementation 
variants. Whether and to what extent two unrolled 
execution instances share data will affect the 
complexity of generated hardware, and eventually 
affect the number of unrolled copies and the 

hardware operation frequency. A step-by-step 
example of how to unroll convolutions to matrix 
multiplication and its architecture are shown in

16
.  

 

Batch-based computing: A batch-based computing 

technique can be used for Fully Connected layers 

(FC). Multiple input feature vectors were computed 

as a batch in parallel. The batch size was the 

number of input feature vectors. In
13

, it was shown 

that, the numbers of Arithmetic Operations (AOs) 

were increased by batch size within the same 

memory access. AO included both multiplication 

and addition operations. Therefore, the memory 

bandwidth was reduced. In order to keep the 

maximum throughput, batch size should be more 

than the number of clock cycles required to read 

weights. Although this technique required larger on 

chip memory. 
 

Buffer bank: Data buffering techniques can be  

used to hide the memory access latency and 

interconnected, so that the computation time could 

overlap with the data transfer overhead from the 

device DRAM to FPGAs BRAM. Two DMAs 

 
 

Fig. 2 — An overview of the accelerator architecture13. 
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usually used to establish communication between 

input/output buffers and DRAM to read/write 

simultaneously
15

. The input buffer could be split to 

data buffer and weight buffer to be filled one by one 

which was technically called ping-pong buffers. 
 

Off-chip Optimization - Off-chip techniques were to 

balance the computation through put and memory 

bandwidth to keep the peak performance. Data 

compression, data arrangement and data quantization 

were generally utilized techniques to reduce and 

optimize data size and its arrangement on memories.  
 

Data compression: The efficiency of Neural network  

model could be improved by reducing memory 
access through compression

17,18
. The most common 

deep compression techniques were pruning, trained 
quantization and variable encoding that reduced the 
memory requirement without affecting the system 
accuracy

17
. All general steps of data compression 

are shown as block diagram in Fig. 2. The pruning 
method removed redundant connections by 
learning the connectivity using standard network 
training. Then, all the connections with weights 
below a threshold (absolute value) were removed 
from the network. Finally, the network was re-

trained to learn the final weights for the remaining 
sparse connections. This technique reduced the 
number of parameters by 9x and 13x for AlexNet 
and VGG-16 model

17
, respectively.  

The second block in Fig. 3 was meant for 

quantization and weight sharing. In this process, 

the weights from pruning were quantized, and 

multiple connections shared the same weight. 

Therefore, only the effective weights and the indices 

of the weights need to be stored and each parameter 

could be represented using very less number of bits
17

. 

After the first two stages, all the weights were 

represented with a fixed number of the bit width. 

Variable encoding could reduce memory usage by 

further compressing the model since the weights 

distribution was non-uniform. In this method, fewer 

bits were used to represent the more frequently 

appearing weights, and more bits were used to 

represent the less frequently appearing weights
17

. This 

technique was offline since Huffman coding did not 

require training. Table II shows various neural 

networks and their accuracy comparisons. It was clear 

from Table II that compression could save storage 

significantly with no loss of accuracy
17

. 
 

Data arrangement: The performance of the 

accelerator was based on the arrangement of data 

inside the DDR and BRAM. There are two different 

methodologies for arranging data for all Convolution 

and FC layers. For the Convolution layer data 

arrangement, the tiles/data which was used 

consecutively were stored at nearby memory 

locations to increase burst size. 

Data Quantization: In paper
19

, they have used 8-bit 

data, and 4-bit weight quantization techniques to 

reduce required memory and only 0.4% loss of 

accuracy was reported as compared to 32-bit full 

precision implementations. The networks could be 2-

bit network or 1 bit network. Some of the software 

Table 2 — Networks and their accuracy comparison17 

Network Original Compressed Ratio 

Size Accuracy Size Accuracy 

AlexNet 240MB 80.4% 6.9MB 80.3% 35X 

VGGNet 550MB 88.7% 11.3MB 89.1% 49X 

GoogleNet 28MB 88.9% 2.8MB 88.9% 10X 
 

 
 

Fig. 3 — The three-stage compression pipeline: pruning, quantization and Huffman coding18. 



            JAYANTHI & LAKSHMI.: A SURVEY ON IMPLEMENTATION OF NEURAL NETWORKS IN FPGA 63 
 

 

optimization were analyzed in
3
, and they are 

explained next. 
 

3.4 Software Optimizations  

As CNN has a number chained loops, loop un-

rolling was used to speed up the process and in turn 

reduce the execution time. Pruning is a method of 

disconnecting the neurons from the layers. This 

could reduce the number weight that has to be 

stored in the main memory. NSGAII (Estimator 

Distribution Algorithm) is the best network to be 

implemented in the hardware. It is possible to 

determine the network that can be implemented 

with more efficiency by using NSGAII. The other 

software optimization techniques generally used 

were interactive stencil loops, residual learning and 

matrix multiplication. Coppersmith and Winogard 

multiplication algorithm was implemented to 

improve the way of implementing the matrix 

multiplication and gives good results
3
.  

Software optimizations are made by integrating 

two layers in the CNN Architecture. In
20

, the 

convolution layer and the batch normalization 

layers were integrated together. The convolution 

kernel was binarized and merged with the batch 

normalization layer. This design was tested in  

an object localizations system that was run on 

MATLAB. To solve the object localization task, the 

error was 1.6% and the accuracy decreased from  

74 to 67% which is also a tolerable value.  
 

4 Conclusion 

This paper has compared the available hardware 

and software implementation methods of ANN 

architecture for image processing applications.  

The advantages of using FPGA for hardware 

implementations are that FPGA is effective in 

terms of power and re-configurability. It has been 

concluded from the survey that FPGA is best suited 

for hardware implementation. It has been found 

from the literature that most commonly used ANN 

architectures for image analysis were CNN and 

RNN. CNN architecture is being recommended for 

image classification as it requires less supervision 

and fewer hyper parameters. Even though FPGAs are 

the best for hardware implementation, they have 

resource and memory constraints. In order to 

overcome these limitations, some of the hardware and 

software optimization techniques are reviewed. These 

methods give an insight of optimizing the hardware 

and software based on the specific applications.  
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