
Indian Journal of Radio & Space Physics

Vol. 50, June 2021, pp. 57-63

Implementation of Neural Networks in FPGA

Jayanthi B
*
 & Lakshmi Sutha Kumar

Department of Electronics and Communication Engineering, National Institute of Technology Puducherry,
Karaikal 609 609, India

Received: 12 February 2021; Accepted: 5 March 2021

Artificial Intelligence (AI) refers to the recreation of human intelligence in machines that have been designed to think

like humans and mimic their actions. AI has been used in many fields such as image processing, health care, education, and

marketing. Machine Learning (ML) has been the sub-division of AI, and deep learning has been the subdivision of ML.

Artificial Neural Network has been the most predominantly used deep learning technique. While implementing the ANN

technique, knowing whether the implementation could have been done in hardware or software becomes necessary, which is

essential to achieve the expected performance. This paper gives a survey on the available methods in which the ANN

architecture has been implemented to achieve efficient output with minimal resources. It is vital to study and analyze various

strategies for implementation and their functionality. This paper has also explained the advantages and disadvantages of

different implementation techniques that allow selecting the most appropriate hardware and respective methodology for
optimizing the hardware.

Keywords: Artificial intelligence, Artificial neural network, Convolutional neural network

1 Introduction

We are living in a world where automatic

process is gaining importance day by day, the

technological advancements have changed all the

manual operations to automations. There are many

automatic applications in our day to day life. Some

of those applications in real life are the music

recommender systems, Google maps, Uber etc.

These are some of the amazing technological

advancements in the field of automation which

are powered by artificial intelligence. Artificial

intelligence enables a machine to decide and act

without any human intervention. There are some

more important concepts like machine learning and

deep learning. Machine learning is a subdivision in

a larger family of artificial intelligence. It enables

the machine itself to learn and improve the result

without explicit programming. Then comes deep

learning, a subdivision of machine learning which

enables a computer model to filter the input data

through layers to predict and classify information.

The deep learning system functions as that of the

human brain. Some of its architectures include

Convolutional Neural Networks (CNN), Recurrent

Neural Networks (RNN), and Recursive Neural

Networks (RvNN).

Artificial Neural Network (ANN) is one the

rapidly emerging and predominantly used methods

for a wide range of applications that include

banking and online transactions, transportation

(driverless cars), electronics and digital media

platforms, aerospace and defense, medical research

tools (for reusing drugs), and high machinery

industries. Hence, it is important to know and

determine the ways in which ANN has been

implemented.

ANN Architecture is implemented either

using software or hardware. Software implementation

has a lower implementation cost. The software

libraries are readily available in many programming

languages. It is easy to run those software libraries

in available computer systems as they do not

require any hardware updates. Therefore, it is

easy to implement ANN Architecture in the

software.

Even though the software implementation has

many advantages, it also has some disadvantages
1
.

Since the data processing is carried out in a pseudo

parallel way, the actions implemented are not

efficient and quick. The software implementation

has a low conversion rate, high power consumption

and low physical protection
2
. Therefore, the

hardware implementation is preferred which has

the advantages of high speed, reliability and
——————
*Corresponding author (E-mail: jayanthib1995@yahoo.com)

58 INDIAN J RADIO & SPACE PHYS, JUNE 2021

security. This paper surveys the selection of

appropriate hardware, the commonly used neural

networks and various optimization techniques to

implement image applications in FPGA.

2 Materials and Methods

2.1 Hardware Selection

The first and foremost step in implementing

ANN architecture is the selection of appropriate

hardware based on the applications. ANN

applications are capable of handling large number

of data sets and also solve complex problems. The

size and complexity of the system used for ANN

applications and the requirements of resources are

very high. The system also demands parallel

processing of the data. In
3
, the most commonly

used hardware for this purpose are explained, some

of which are CPUs, GPUs, Servers, Clusters, FPGA

and ASICs.

CPU: It has a low computational efficiency

and cannot meet requirements of a real time

application. Hence, it was not suited for parallel

processing.

GPU: It does parallel processing, but it consumes a lot

of power. Hence, GPU was also not suitable for on

field implementation.

ASICs: ASICs are power efficient and can be used for

implementing ANN architectures. But their major

disadvantage is that they are specific to a particular

application and are not reusable for different

architectures. The development cycle of ASICs is

also large, hence it was not desirable to use for

implementing ANN architecture.

FPGA: FPGAs are known for their reconfigurable

structure
4
. They provide a possibility to reprogram

the network design many numbers of times.

They are low power consuming, enable parallel

processing, have a design flexibility as shown in

paper
5
, and the development life cycle for FPGA is

small as given in paper
6
.

GPU is a multi-core processor
7
 that is used for the

interference and training of the ANN architecture.

Since it does multi-million operations per second, it

was suited for training and validation of neural

networks. GPU consumes a lot of power, it was bulky

in size
8
, and cannot be suited for low power

embedded systems. GPU supports only limited data

types that are either single or double precision

floating point. It cannot handle other types like 8/16

bit fixed point or 1-2 bit binary data.

Based on the analysis of various hardware for

ANN architecture implementation, it was concluded

that FPGAs were suitable for implementing ANN

architectures in hardware, most commonly used

ANN architectures for image applications are discussed

next.

2.2 ANN Architectures for Image Applications

Deep Learning uses large datasets to recognize

the pattern within the input image and produces

classification within the image. Most commonly

used ANN architectures for image analysis is

CNN and RNN
9
. The challenge in deep learning

for image classification is the time taken to train

the ANN. This drawback can be overcome by the

use of CNN for image classification and CNN is

one of the most frequently used architecture

for image classification
4
, CNN is a multilayer

network for image classification, segmentation

and object detection
4
, whereas RNN is used to

analyze the sequential input. CNN reduces the

image into its key features and identifies the

feature using the combined probabilities. RNN

evaluates the section of an input speech signal or

video signal and then analyses the other sections

one by one. CNN is used for medical image

processing, face detection whereas RNN is used

for image description, video tagging and video

analysis.

Figure 1 shows the basic CNN Architecture, it

consists of convolution layers, pooling layers and

fully connected layers. There is much architecture in

CNN. LeNet-5 is the basic CNN architecture and

ResNet-50 and Dense Net is the most recent

architecture. The number of layers may with

the application. It is essential to optimize the

implementations of neural networks to achieve

better performance in terms of power, area and

execution time. The review of the optimization

techniques for implementing the neural networks are

provided next.

3 Results and Discussion

3.1 Optimization techniques

The optimizations may be either hardware or

software, they were mainly used to get better

values of the design metrics. The metrics needed to

determine the performance of the FPGA vary with

 JAYANTHI & LAKSHMI.: A SURVEY ON IMPLEMENTATION OF NEURAL NETWORKS IN FPGA 59

the applications
3
. The standard metric, used to find

whether hardware optimization was done or not,

was the Giga-Bit Operation per second (GOPS).

The remaining metrics used for identifying

hardware optimization were GOPS/W, GOPS/Slice,

GOPS/DSP, speedup, accuracy, energy consumption

and resources/area, and execution time.

3.2 Hardware optimizations

Hardware optimizations were done either by

optimizing the precision of data or by choosing the

appropriate resources or based on the memory

used.

3.2.1 Number system optimizations

The precision of data was changed either to

floating point or to fixed point for saving the area

of utilization in the FPGA
10

. Changing the numeric

representation or reducing the arithmetic precision
3
,

helped to reduce the off chip memory bandwidth

demand, reduced the on chip memory requirement,

and reduces the complexity of the arithmetic units

and thereby reduces the power consumption of the

system.

In, FPGA based implementation of a deep

neural network for the handwritten digit

recognition and the needed recognition problems

was shown, which needs millions of weights and

arithmetic operations for producing one output
11

. In

order to use only on-chip memory for weight

storage, the weights are represented in 3 bits, while

the internal signals employ the precision of 8 bits.

Table 1 — Resource utilization for digit recognition with
different weight precision11

Resource FF LUT BRAM DSP

3-bit without DSP 130237 124862 323 0

3-bit with DSP 130802 121173 323 900

8-bit fixed point 136677 213593 750.5 900

FF: Flip Flop; LUT: Look up table; BRAM: Block Random

Access Memory; DSP: Digital signal processor.

A retrain based fixed-point weight optimization

technique was employed to reduce the performance

gap with floating-point algorithms. The FPGA

resource utilization for Xilinx ZC706 evaluation

board is shown in Table I, where the designs with

and without DSP slices were compared. Using DSP

slices does not reduce the demand of FFs

(flip-flops) and LUTs much. A comparison of

resource utilization for the implementation with

8-bit fixed-point weights and 3-bit representation

was given. It was identified that 8-bit

representation consumes almost all of LUTs

and entire DSP slices on the FPGA chip because

8-bit weights need hardware multipliers for the

implementation. The 8-bit representation for weights

cannot be implemented on this FPGA because the

BRAM capacity was not sufficient.

3.2.2 Resource optimization

In resource optimization, main importance was

given for the Multiply and Accumulate (MAC).

Multiplication is the main operation in ANN and

these MAC units are replaced by fast and lower

resource consuming multiplication units. It was

Fig. 1 — Block diagram of CNN architecture9.

60 INDIAN J RADIO & SPACE PHYS, JUNE 2021

also replaced by a Wallace tree multiplier
5
. The

resources were further reduced by replacing the

MAC units with a Modified BOOTH Encoding

(MBE) Multiplier and Wallace tree Based Adders
12

.

The optimization was made further effectively

by using a FPGA based coprocessor design. The

use of FPGA based coprocessor design makes the

computer and the coprocessor to communicate with

each other through bus architecture. In
6
, training of

the CNN was done by using a coprocessor to

configure for new network structure without

changing the design but changing only the contents

in the block memory.

Another method was the hardware and software

co-design in which the SoC module supported the

parameter reconfiguration. In
8
, several network

mapping methods were proposed to reduce the area

and improve the efficiency of the system. The

accuracy of the system proposed in
8
 is 98% which

occupied less than 60% of the FPGA resources.

The processing time was reduced to 1.128s. It was

concluded that this method has improved the

system performance and use lesser resources with a

lesser delay.

The other commonly implemented optimizations

are parallelism and data multiplexing
3
. There are

three ways in which parallelism can be

implemented in the CNN architecture. They are

parallelism between different channels, parallelism

between different kernels, and using the parallel

convolution kernel
4
.

Data multiplexing is divided into intra-layer and

inter-layer multiplexing. Intra-layer multiplexing

the architecture is computed layer by layer this

increases the data multiplexing and parallelism at

the particular layer. Inter-layer multiplexing

reduces the off chip access of data. This can be

done by storing the intermediate results in the

off chip storage blocks. By using the pipeline

architecture, the execution time and memory access

time can be reduced. This is because the data in the

pipeline is used instead of getting the data from the

off chip memory every-time the data is needed
4
.

3.2.3 Memory Optimizations

Even though FPGA is best suited for

implementing ANN in hardware, the major

disadvantage is the memory constraint. The internal

memory of FPGA is very low. Even the latest

FPGA has a memory of 30 MB but the CNN

processing needs 100s of MBs, hence an external

DDR was used. So, the optimization of memory
8

plays a major role in affecting the number of

resources, processing speed and efficiency of the

output. One more parameter was the power

consumption of FPGA. The reasons for power

consumption were due to the complex

mathematical computations. Power could be

reduced by reducing the number of operations.

The latency of the processing was increasing due
to the frequent access of data from the DDR. The
memory reduction process is broadly divided into
on chip optimization and off chip optimizations.

On-chip optimization includes various data reuse,
loop optimization and data arrangement techniques.
Off-chip optimization included weight compression,
pruning and quantization techniques. These
techniques were used to reduce the number of
weights mostly during training.

On-chip Optimization – The primary information
such as input image and all kernels were stored in
external memory which must be loaded entirely
into FPGA for every test. But, results computed in
intermediate stages (the values calculated in the
adjacent layers) were stored in on-chip buffer. This
reduced the data access to external memory
significantly. Thus, the data stored in on-chip
buffers were used as the input for the next layers.
Commonly 2 ping-pong buffers were used for each
stage, where the former layer may write to or read
from one buffer while the next layer reads data
from the other buffer. Also, dual-port memory
driver and memory blocks were used to transfer
data like ping-pong to the buffers. Data reuse, loop
optimization techniques, batch based computations
and buffer bank are some of the computational
techniques which were proposed to reduce the
shortage of on-chip memory resources. They are
explained next

14
.

Figure 2 explains how the accelerator was
designed for CNN architecture. The image was
given as the input and the weights were fetched
from the external memory and fed to different
layers. The operations of different layers were done
and the intermediate results were propagated to the
adjacent layers and then the output was obtained
after the fully connected layer. This is the overview
of the hardware implementation of the CNN
architecture as explained in

14
.

Data reuse: This technique is mostly used for the

intermediate data from convolution to pooling

 JAYANTHI & LAKSHMI.: A SURVEY ON IMPLEMENTATION OF NEURAL NETWORKS IN FPGA 61

layer. Two types of data reuse methods were

discussed in
15

 such as spatial reuse and temporal

reuse. In spatial reuse, in one clock cycle, an image

pixel or a kernel read from on-chip buffers was

used for multiple parallel computation units, and in

temporal reuse, for multiple consecutive clock

cycles, an image pixel or a kernel read from on-

chip buffers was used. Also a novel data storage

and data reuse scheme was discussed in
16

, where all

intermediate data was stored in BRAMs. Based on

their design, memory usage was reduced more than

14 times for VGG16 implementation.

Loop optimization technique: In15
 the authors

explored various loop optimization techniques to

reduce memory consumption as well as to reduce
the data movement. They have maximized the
resource utilization in this way to achieve high
performance. Loop Tiling and loop unrolling are
the two main loop optimization techniques. In Loop
tiling, the FPGA on-chip memory is limited to store

all intermediate and input data. Therefore, it was
necessary to use external DRAMs to store the
weights and a portion of intermediate pixel values
from CNN layers

16
. Loop tiling was proposed in

15

to divide data into multiple blocks to be fit in
on-chip buffers. The loop tiling defined the

lower bound on the required on-chip buffer size.
In loop unrolling, unrolling along different loop

dimensions will generate different implementation
variants. Whether and to what extent two unrolled
execution instances share data will affect the
complexity of generated hardware, and eventually
affect the number of unrolled copies and the

hardware operation frequency. A step-by-step
example of how to unroll convolutions to matrix
multiplication and its architecture are shown in

16
.

Batch-based computing: A batch-based computing

technique can be used for Fully Connected layers

(FC). Multiple input feature vectors were computed

as a batch in parallel. The batch size was the

number of input feature vectors. In
13

, it was shown

that, the numbers of Arithmetic Operations (AOs)

were increased by batch size within the same

memory access. AO included both multiplication

and addition operations. Therefore, the memory

bandwidth was reduced. In order to keep the

maximum throughput, batch size should be more

than the number of clock cycles required to read

weights. Although this technique required larger on

chip memory.

Buffer bank: Data buffering techniques can be

used to hide the memory access latency and

interconnected, so that the computation time could

overlap with the data transfer overhead from the

device DRAM to FPGAs BRAM. Two DMAs

Fig. 2 — An overview of the accelerator architecture13.

62 INDIAN J RADIO & SPACE PHYS, JUNE 2021

usually used to establish communication between

input/output buffers and DRAM to read/write

simultaneously
15

. The input buffer could be split to

data buffer and weight buffer to be filled one by one

which was technically called ping-pong buffers.

Off-chip Optimization - Off-chip techniques were to

balance the computation through put and memory

bandwidth to keep the peak performance. Data

compression, data arrangement and data quantization

were generally utilized techniques to reduce and

optimize data size and its arrangement on memories.

Data compression: The efficiency of Neural network

model could be improved by reducing memory
access through compression

17,18
. The most common

deep compression techniques were pruning, trained
quantization and variable encoding that reduced the
memory requirement without affecting the system
accuracy

17
. All general steps of data compression

are shown as block diagram in Fig. 2. The pruning
method removed redundant connections by
learning the connectivity using standard network
training. Then, all the connections with weights
below a threshold (absolute value) were removed
from the network. Finally, the network was re-

trained to learn the final weights for the remaining
sparse connections. This technique reduced the
number of parameters by 9x and 13x for AlexNet
and VGG-16 model

17
, respectively.

The second block in Fig. 3 was meant for

quantization and weight sharing. In this process,

the weights from pruning were quantized, and

multiple connections shared the same weight.

Therefore, only the effective weights and the indices

of the weights need to be stored and each parameter

could be represented using very less number of bits
17

.

After the first two stages, all the weights were

represented with a fixed number of the bit width.

Variable encoding could reduce memory usage by

further compressing the model since the weights

distribution was non-uniform. In this method, fewer

bits were used to represent the more frequently

appearing weights, and more bits were used to

represent the less frequently appearing weights
17

. This

technique was offline since Huffman coding did not

require training. Table II shows various neural

networks and their accuracy comparisons. It was clear

from Table II that compression could save storage

significantly with no loss of accuracy
17

.

Data arrangement: The performance of the

accelerator was based on the arrangement of data

inside the DDR and BRAM. There are two different

methodologies for arranging data for all Convolution

and FC layers. For the Convolution layer data

arrangement, the tiles/data which was used

consecutively were stored at nearby memory

locations to increase burst size.

Data Quantization: In paper
19

, they have used 8-bit

data, and 4-bit weight quantization techniques to

reduce required memory and only 0.4% loss of

accuracy was reported as compared to 32-bit full

precision implementations. The networks could be 2-

bit network or 1 bit network. Some of the software

Table 2 — Networks and their accuracy comparison17

Network Original Compressed Ratio

Size Accuracy Size Accuracy

AlexNet 240MB 80.4% 6.9MB 80.3% 35X

VGGNet 550MB 88.7% 11.3MB 89.1% 49X

GoogleNet 28MB 88.9% 2.8MB 88.9% 10X

Fig. 3 — The three-stage compression pipeline: pruning, quantization and Huffman coding18.

 JAYANTHI & LAKSHMI.: A SURVEY ON IMPLEMENTATION OF NEURAL NETWORKS IN FPGA 63

optimization were analyzed in
3
, and they are

explained next.

3.4 Software Optimizations

As CNN has a number chained loops, loop un-

rolling was used to speed up the process and in turn

reduce the execution time. Pruning is a method of

disconnecting the neurons from the layers. This

could reduce the number weight that has to be

stored in the main memory. NSGAII (Estimator

Distribution Algorithm) is the best network to be

implemented in the hardware. It is possible to

determine the network that can be implemented

with more efficiency by using NSGAII. The other

software optimization techniques generally used

were interactive stencil loops, residual learning and

matrix multiplication. Coppersmith and Winogard

multiplication algorithm was implemented to

improve the way of implementing the matrix

multiplication and gives good results
3
.

Software optimizations are made by integrating

two layers in the CNN Architecture. In
20

, the

convolution layer and the batch normalization

layers were integrated together. The convolution

kernel was binarized and merged with the batch

normalization layer. This design was tested in

an object localizations system that was run on

MATLAB. To solve the object localization task, the

error was 1.6% and the accuracy decreased from

74 to 67% which is also a tolerable value.

4 Conclusion

This paper has compared the available hardware

and software implementation methods of ANN

architecture for image processing applications.

The advantages of using FPGA for hardware

implementations are that FPGA is effective in

terms of power and re-configurability. It has been

concluded from the survey that FPGA is best suited

for hardware implementation. It has been found

from the literature that most commonly used ANN

architectures for image analysis were CNN and

RNN. CNN architecture is being recommended for

image classification as it requires less supervision

and fewer hyper parameters. Even though FPGAs are

the best for hardware implementation, they have

resource and memory constraints. In order to

overcome these limitations, some of the hardware and

software optimization techniques are reviewed. These

methods give an insight of optimizing the hardware

and software based on the specific applications.

References
1 Tikhonov E E, Chebanov K A, & Burlyaeva V A, 2019

International Multi-Conference on Industrial Engineering
and Modern Technologies(IEEE, Vladivostok, Russia),

ISBN:978-1-7281-0061-6, 2019, p.1.
2 Hu H, Huang J, Xing J, & Wang W, 2008 Second

International Symposium on Intelligent Information Technology
Application(IEEE, Shanghai, China), I SBN: 978-0-7695-

3497-8,2008, p. 259.
3 Dias M A, & Ferreira D A P, 2019 IEEE International

Parallel and Distributed Processing Symposium Workshops

(IEEE, Rio de Janeiro, Brazil), ISBN: 978-1-7281-3510-6,
2019, p. 95.

4 Ding R, Tian X, Bai G, Su G, & Wu, X Ru, 2019 IEEE 13th
International Conference on ASIC (IEEE,Chongqing, China),

ISBN:978-1-7281-0735-6, 2019, p.1.
5 Farrukh FUD, Xie T, Zhang C, & Wang Z, 2018 IEEE

Conference on Integrated Circuits, technology and
Applications(IEEE, Beijing, China), ISBN:978-1-5386-6551-

0, 2018, p.88.
6 Clere S R, Sethumadhavan S, & Varghese K, 2018 21st

Euromicro Conference on Digital System Design(IEEE,
Prague, Czech Republic), ISBN:978-1-5386-7377-5, 2018,

p.381.
7 Highlander T, & Rodriguez A, 2019 British Machine Vision

Conference,arXiv preprint arXiv:1601.0681,2016.
8 Zhang N, Shi H, Chen L, Lin T & Shao X, 2019 IEEE

International Conference on Signal, Information and Data
Processing(IEEE, Chongqing, China), ISBN: 978-1-7281-

2345-5,2019, p.1.

9 https://missinglink.ai/guides/neural-network-concepts/cnn vs-
rnn-neural-network-right.

10 Shah N, Chaudhari P & Varghese K, IEEE Trans Neural
Netw Learn Syst, (2018) 5922.

11 Park J & Sung W, 2016 International Conference on Acoustics,
Speech, and Signal Processing (IEEE, Shangai, China), ISBN:

978-1-4799-9988-0, 2016, p. 1011.
12 Farrukh FUD, Jiang Y, Zhang Z, Wang Z, Wang Z, &

Jiang H, IEEE Open J Circuits Syst, 1 (2020) 76.
13 LiH , FanX, JiaoL, CaoW, Zhou W, & Wang L, 2016 26th

International Conference on Field Programmable Logic and
Applications(IEEE, Lausanne, Switzerland), ISBN:978-2-

8399-1844-2, 2016, p. 1.
14 Shahshahani M, Goswami P, & Bhatia D, 2018 IEEE 13th

Dallas Circuits and Systems Conference (IEEE, Dallas, TX,
USA), ISBN:978-1-5386-9262-2, 2018, p. 1.

15 Ma Y, Cao Y, Vrudhula S & Seo J.-s., Proceedings of the
2017 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, 2017, p. 45.
16 Wang J, Lin J & Wang Z, IEEE Trans Circuits Syst I Regul

Pap IEEE T CIRCUITS-I, 65 (2018) 6.
17 HanS, MaoH & Dally W L, 2016 International

Conference on Learning Representations, arXiv preprint
arXiv: 1510.00149, 2016.

18 Chen Y, Krishna T, Emer J S, & Sze V, IEEE J Solid-State
Circuits, 52 (2017) 127.

19 Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, Yu J, Tang T,
Xu N, Song S, Wang Y, & Yang H, 2016 International
Symposium on Field-Programmable Gate Arrays, 2016, p.26.

20 Sledevic T, 2019 Open Conference of Electrical, Electronic
and Information Sciences (eStream)(Vilnius, Lithuania),
ISBN: 978-1-7281-2499-5, 2019, p.1.

