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The paper presents the evaluation of capacitance matrix of an artificial orbiting satellite considering a composite metallic 
structure of a parabolic reflector antenna with cuboid and plates. Integral equations are formed by relating the unknown 
charge density on the metallic conductor and are solved using the Method of Moments (MoM) in which the pulse functions 
are used as basis functions and the delta functions are used as testing functions. The surfaces of the conducting structure are 
meshed using non-uniform triangular patches. The matrix equations are solved by iterative generalized minimum residual 
(GMRES) algorithm. The numerical data on the capacitance matrix and charge distribution of these structures have been 
presented. The capacitance of a metallic cuboid is computed to validate the approach. 
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1 Introduction 
Operational abnormalities and satellite failures 

have been reported since the inception of the space 
age, which is mainly due to the charging on electronic 
systems1-4 of the spacecrafts. The orbiting satellite 
structure consists of mainly metallic rectangular 
cuboid enclosure called the satellite bus on which all 
the satellite subsystems, RF transmitter and receiver, 
payload and the equipments required for its operation 
are mounted. In the event of spacecraft charging, if 
the spacecraft is charged to an extent that the 
materials supporting a high electrical potential 
difference begins to lose its insulation, electrostatic 
discharge (ESD) happens and this phenomenon may 
result into large amount of transitional electric current 
to flow across the material4. Thus, if there is a weak 
electronic circuit along the pathway of current, this 
may change its functioning. In order to mitigate the 
effects of spacecraft charging, the ESD phenomenon 
of spacecraft bodies can be predicted from the 
capacitance of the satellite bodies4-7. In practice, 
however, the temporal behaviour of the potential on 
the spacecraft body is computed using the capacitance 
of an equivalent sphere representing the satellite 
bodies8. In the recent work reported by Alad et al.5 
and Karthikeyan et al.6, the absolute value of 

capacitance of spacecraft body consisting of cuboid 
and solar panels has been presented. Alad & 
Chakrabarty7 reported the electrostatic modelling of 
coupled metallic bodies of shapes like a funnel with 
arbitrary position in the free space. It is of interest to 
evaluate the capacitance matrix and charge 
distribution of coupled bodies like paraboloid with 
conical horn mounted on the spacecraft cuboid and 
solar panels. To the best of the authors’ knowledge, 
the analysis of this type of structure including a 
number of satellite sub-systems has not been reported 
in an open literature. 

In this paper, the estimation of capacitance matrix 
and charge distribution of satellite bodies consisting 
of cuboid, paraboloid in the presence of conical horn 
and solar panels is presented using MoM. The 
analysis has been carried out by dividing this 
geometrical structure into unstructured triangular 
meshes. The unknown charge densities have been 
expanded using pulse functions and point matching 
has been used for generating the set of simultaneous 
equations5-7,9. The unknown charge densities are 
calculated by applying iterative technique of 
generalized minimum residual algorithm10. The 
numerical data on capacitance and charge distribution 
of this geometry are presented. 
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2 Problem formulations 
The composite metallic spacecraft model has been 

considered as a configuration of a rectangular cuboid 
(main spacecraft body) of dimensions of L×W×H with 
the two coplanar rectangular plates (solar panels) of 
dimensions L1×W1 and L2×W2 connected with 
parabolic reflector antenna with a primary feed horn 
as shown in Fig. 1. Plate1 is oriented parallel to the  
X-Y plane with the Z-axis perpendicular to the 
surface and is connected with the left side plate of the 
metallic cuboid and W/2 distance away from the 
origin. The rotating rectangular Plate2 is attached to 
the right side plate of the metallic cuboid through the 
yoke as shown in Fig. 1. The parabolic reflector 
antenna is connected with the top surface of the 
rectangular cuboid. The main body, solar panels and 
the paraboloid bowl with horn is connected 
electrically so same floating potential be present on 
this composite structure.  

The potential at any arbitrary point r(x, y, z) due to 
charge distribution at r’(x’, y’, z’) on the given 
composite structure is given by:  
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The surface s in Eq. (1) consists of the composite 
body of cuboid (s1), rectangular plate1 (s2), 
rectangular plate2 (s3) and paraboloid bowl (s4). Let 
ρ1, ρ2, ρ3 and ρ4 represent the unknown charge 
distributions, and V1, V2, V3 and V4 the corresponding 
potentials on the conducting surfaces. The potential 
on each body can be written as the superposition of 

the potential because of self-charge as well as mutual 
charges on other bodies. The potential V1 on the 
cuboid can be expressed as:  
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where, V11 is the potential of cuboid (s1) due to its 
own charges; while V12, V13 and V14 are the potential 
on cuboid surface due to charges on two coplanar 
plates and paraboloid bowl. Similarly, the potentials 
V2, V3 and V4 on the other three geometries can be 
written. In order to evaluate the capacitance of the 
structure shown in Fig. 1, the unknown charge 
distribution on the surfaces of cuboid, two coplanar 
plates and paraboloid bowl are found by solving the 
integral Eq. (2) using MoM. 

In order to apply the MoM, the entire surface of the 
structure is divided into a number of triangular 
subsections. Applying the pulse basis function and 
point matching method, as suggested by Gibson9, 
results into the following matrix equation: 
 

31 2 4

1 1 1 1
1 1 2 1 2 3

1 11 12 13 14
1 1 1 1

 
NN N N

n m n n m n n m n n m n
n n N n N N n N N N

V l l l l   
         

        

 …(3) 
 

 
2

1

4

321

2

3

21

22

1

2
1 1

24
1

2322
1

212  
 


N

Nn

N

NNNn
nmn

N

NNn
nmnnmn

N

n
nmn llllV    

 …(4) 
 

 
2

1

4

321
3

3

21
33

1

3 1 1
34

1
3332

1
313   

 

N

Nn

N

NNNn
nmn

N

NNn
nmnnmn

N

n
nmn llllV   

 …(5) 
 

 
2

1

4

321

4

3

21

44

1

4
1 1

44
1

4342
1

414  
 


N

Nn

N

NNNn
nmn

N

NNn
nmnnmn

N

n
nmn llllV 

 

 …(6) 
 

where, m1 = 1,…..,N1, m2 = 1,…..,N2, m3 = 1,…..,N3 
and m4 = 1,…..,N4; N1, N2, N3 and N4 are number of 
triangular subsections in cuboid, rectangular plate1, 
plate2 and paraboloid bowl with horn, respectively; 
l11m1n is the potential of cuboid due to its own charges; 
l12m1n, l13m1n and l14m1n, are the potential on cuboid 
surface due to charges on two coplanar plates and 
parabolic bawl with horn. The suffix m1 denotes the 
row number and n denotes the column number of the 
matrix, hence suffix indicates the order of each  
sub-matrix. The set of simultaneous equations 

 
 

Fig. 1 — Structure of paraboloidal with cuboid and plates using 
non-uniform triangular meshing 
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appearing in Eqs (3–6) may be expressed in matrix 
equation as under: 
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The square matrix relating the column matrices  
of the matrix equation is of the order of 
(N1+N2+N3+N4)  (N1+N2+N3+N4), which is partitioned 
into sixteen sub-matrices.  

The coefficients appearing in matrix Eq. (7) are 
found to be of the form: 
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where, S', is area of source triangle; r’(x’,y’,z’), the 
co-ordinate of the triangular source patch; and 
rm(xm,ym,zm), the matching point on the observation 
triangle. The spacecraft conducting surfaces are 
modeled by planar triangular sub-domains as shown 
in Fig. 2 in which the charge density is assumed to be 
constant. The integration is evaluated in area 
coordinates9, which comprises the transformation of 
arbitrary shape to a canonical coordinate system.  
The source sub-triangle is mapped into a reference 
triangle as shown in Fig. 2. In order to develop  
the area coordinate transformation, let us first  
define the positions of the corners (vertex nodes) of 
the each source triangular subsection as shown in  
the same figure. 

After applying this transformation, Eq. (8) can be 
written in the following form: 
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where, the position of the vertex nodes of the triangle, 
as mentioned in Fig. 2, is represented by the vectors: 
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In Eq. (9), I is the integral over the surface of 
triangle T and is given by: 
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The integral in Eq. (11) has been evaluated using 
Gauss Legendre quadrature technique and it is found 
that excellent convergence is achieved. The MoM 
with triangular elements requires the numerical 
integration of shape functions on a triangle. The 
required value of integral is found using following 
quadrature formula: 
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where, Ck, are the weights associated with specific 
points (xk,yk); N, the number of pivotal points related 
to the required precision; and n, the integrand 
sampling points used for integration of each 
subsections triangle. The integrand sampling point 
n=3 is used in the present simulation. 

As seen from Eq. (11), the diagonal elements (self 
influence of a patch) need not be treated separately as 
pulse function has been used as the basis function and 
the Eq. (11) shows that when the source and the 
observation points are the same, there is no singularity 
(R is non zero). 

The matrix elements of Eq. (7) have been 
computed using Eqs (9) and (11). The resultant dense 
linear system of Eq. (7) can be solved to compute 
charges of the patches from a given set of potentials 

 
 

Fig. 2 — Area coordinates for a sub triangle 
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and the capacitances can be derived by summing the 
charges of each triangular patch. If Gaussian 
elimination or any other direct method is used to solve 
Eq. (7), the number of operations is of the order n3. 
Obviously, this approach becomes computationally 
intensive due to very large number of triangular 
patches in the composite metallic body of Fig. 1. 
Hence, the unknown charge densities given in Eq. (7) 
for cuboid, coplanar plate1, rotating plate2 and 
paraboloid bowl with horn are evaluated using a 
generalized minimal residual algorithm (GMRES) 
iterative method10 due to large number of subsections. 
Such method has the computational time of the order 
of mn2, where, n2, is the operation for matrix vector 
product; and m, the number of iterations. 

Finally, the unknown coefficients as in Eq. (7) are 
expressed as:  
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where, mn , denotes the elements of inverse of the 
square matrix of Eq. (7). The charge on the 
conducting surface of cuboid is given by: 
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Similarly, the charges on other conducting surfaces 
of coplanar rectangular plate1, plate2 and paraboloid 
bowl with horn Q2, Q3 and Q4 can be obtained. 
Finally, the charge on the composite conducting 
surface of Fig. 1 is given by: 
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The absolute free space capacitance of the surface 
is obtained as: 
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While computing the capacitance values, it is 
assumed that V1=V2=V3=V4= V=1 Volt, hence the 
capacitance of composite metallic structure is a series 

combination of the capacitance of cuboid, plates and 
paraboloid bowl with horn. Using the concept of 
superposition9, the relationship between the charges 
and potential of the structure can be represented by 
the following set of linear equations: 
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where, Q1, .., Q4, are charges on the conducting 
surface of cuboid, coplanar rectangular plate1, plate2 
and paraboloid bowl with horn, respectively; C11, the 
capacitance of cuboid due to its own charges; C12, C13 
and C14, the potential on cuboid surface due to 
charges on two coplanar plates and paraboloid bowl. 

Finally, comparing Eqs (13) and (17), it can be 
shown that the sum of the elements of each sub matrix 
is identified as an element of the capacitance matrix 
appearing in Eq. (17). The expression for capacitance 
matrices are given by: 
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where, Acuboid, Aplate1, Aplate2 and AParaboloid, are the sub-
sectional area of cuboid, rectangular plate1, plate2 and 
paraboloid bowl, respectively. Similar expression for 
the other capacitance matrices of Eq. (17) can be 
obtained using analogous procedure.  
 
3 Numerical results 

The spacecraft is to be floating with respect to its 
surrounding environment. In order to calculate the 
free space capacitance and capacitance matrix of the 
conducting spacecraft model as a combination of 
cuboid connected with rectangular plates and 
paraboloidal reflector with horn specifically under the 
ambient plasma environment and considering space 
plasma potential as zero and defining the spacecraft 
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potential relative to that of the ambient plasma.  
A constant potential scenario with respect to the 
surrounding plasma has been assumed in the solution 
procedure. It is applied with a linear electric potential 
V(x, y, z) = 1 V on all surfaces. 

The capacitance of the structure of Fig. 1 is 
evaluated as a function of L×W×H = 2.2 m×2.2 m×2.2 
m, L1×W1 = 2.54 m×1.56 m, L2×W2 = 2.54 m×1.56 m, 
aperture diameter of paraboloid D=1 m, θ0=64o, focal 
length f=0.4 m, for conical horn antenna bigger and 
smaller diameter of Dw=0.025 m and Dc=0.1 m, 
respectively and length of waveguide and funnel 
section Lw=Lf=0.05 m. The variation of the 
capacitance is computed with different mesh density 
and the convergence data of the capacitance is 
presented in Table 1. The converged value of resultant 
capacitance is 209.6 pF for the given size of the 
spacecraft.  

The validation of analysis has been carried out 
considering similar geometry of metallic cuboid with 
connected rectangular plates having area of coplanar 
plates tending to zero then geometry converts to 
metallic cuboid with unit volume (W, L and H of 
cuboid tending to 1). The numerical value of the 
capacitance for metallic cuboid is achieved as 73.3 pF 
and the results are in good agreement with the values 
reported by Bai & Lonngren11. 

The capacitance matrix has also been computed for 
the structure shown in Fig. 1. The comparison of 
coupling capacitance data of Eq. (17) in pF is shown 
in Table 2.  

The isolated capacitance value has been calculated 
with elements disconnected from the spacecraft body. 
For computation of isolated body capacitance, it is 
considered that all the spacecraft conducting surfaces 

are electrically isolated. The isolated capacitance of 
conducting body of satellite geometry consisting of 
cuboid, plates and paraboloidal bowl is 162.2 pF  
(Ref. 11), 84.19 pF (Ref. 9) and 23.2 pF (Ref 12), 
respectively.  

The isolated free space capacitance of conducting 
body of paraboloidal bowl with conical horn for the 
same simulation parameter is computed. The variation 
of this capacitance as a function of distance between 
paraboloid and conical horn (focal length, f as shown 
in Fig. 1) has been computed and is shown in Fig. 3. 

The capacitance of the structure in Fig. 1 with 
different rotation angle θ of rotating plate2 is 
evaluated for the same simulation parameter. The 
numerical data on the capacitance are checked and 
presented in Table 3. 
 
4 Discussion and Conclusion 

The data presented in Table 1 depicts that 
capacitance increases upon the increase in the number 
of subsections and the absolute free space capacitance 
of the spacecraft geometry, shown in Fig. 1, 
converges to 209.55 pF for 1812 number of 
subsections. In the spacecraft geometry of Fig. 1, in 
the absence of paraboloid bowl as well as 

Table 1 — Computation of the capacitance in pF of the structure  

Number of 
subsections 

Capacitance, 
pF 

Error Function  
(pF) = Cap(NEXT) – 

Cap(PREV) 
1308 209.3575 - 
1812 209.5459 0.1884 x 10-12 
2138 209.6201 0.0742 x 10-12 
2760 209.6371 0.0170 x 10-12 

 
 

Table 2 — Capacitance matrix of the spacecraft structure  
 Cuboid Plate1 Plate2 Paraboloidal 
Cuboid 515.4850 69.1567 69.2834 94.8402 
Plate1 69.3189 121.4082 2.2961 0.2168 
Plate2 69.3052 2.2959 121.4148 0.2159 
Paraboloidal 94.9507 0.2222 0.2214 96.7257 

Table 3 — Capacitance data of spacecraft with the effect of 
rotation angle 

Rotation angle θ, deg Capacitance, pF 
0 209.55 

20 209.36 
45 206.04 
60 200.59 
80 188.42 
90 179.24 

 

 
 
Fig. 3 — Capacitance data of paraboloidal bowl with adjustable 
subtended angle 
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1 10, 0L W   and 2 0L   2 0W  , the 
geometry shown in Fig. 1 degenerates in to unit 
volume of a metallic cuboid and the value of the 
capacitance is 73.3 pF (Ref. 11). The coupling 
capacitance of cuboid in the presence of two plates 
and paraboloid bowl increases as shown in Table 2. 
There is slight asymmetry in capacitance matrix of 
Table 2 upto second decimal place and this may be 
attributed to the numerical method used while 
computing the matrix elements.  

This study reveals the fact that the capacitance of 
connected metallic bodies is higher as compared with 
the isolated metallic body. As shown in Table 2, the 
coupling capacitance on cuboid (C11), solar panels 
(C22 and C33) and paraboloidal bowl (C44) of the 
structure are significantly higher as compared with 
their isolated counter parts. As per the capacitance 
matrix data of Table 2, increasing the value of free 
space, capacitance of metallic cuboid, plates and 
paraboloid compared to its isolated capacitance is 
353.2 pF (Ref. 11), 37.2 pF (Ref. 9) and 73.5 pF  
(Ref 12), respectively. Hence, the capacitance of 
connected metallic body increases faster compared to 
isolated metallic body. As shown in Fig. 3, the 
isolated free space capacitance of conducting body of 
paraboloidal bowl with conical horn increases with 
increasing subtended angle or decreasing focal length. 
It reveals that more and more amount of charge will 
be accumulated on the metallic surface as distance 
between two metallic body decreases. 

This paper attempts the computation of absolute 
capacitance of satellite bodies by considering various 
geometrical structures. This is essential for the 
estimation of the temporal profile of the spacecraft 
body potential for which the knowledge of the 
absolute free space capacitance of the spacecraft with 
respect to infinity is needed. The motivation for this is 
the accurate estimation of the temporal profile of the 
absolute spacecraft body potential, which is used to 
predict the possibility of charge induced arcing events 
in the design phase of the spacecraft to improve the 
vulnerability of the space systems for smooth 
operation of the spacecraft in a given set of plasma 
conditions in orbit. Temporal profile of spacecraft 
potential during sub-storm or any other anomalies 
indicate the possibility of electrostatic discharge 
(ESD) (Ref. 8), which occurs when spacecraft body 

potential becomes highly negative with respect to the 
plasma potential. 
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